adams.flow.transformer.MekaTrainClassifier
Trains a Meka classifier based on the incoming dataset and outputs the built classifier alongside the training header (in a model container).
Flow input/output:
- input: weka.core.Instances
- output: adams.flow.container.WekaModelContainer
Container information:
- adams.flow.container.WekaModelContainer: 
   - Model: model object; java.lang.Object
   - Header: dataset header; weka.core.Instances
   - Dataset: full dataset; weka.core.Instances
The logging level for outputting errors and debugging output.
| command-line | -logging-level <OFF|SEVERE|WARNING|INFO|CONFIG|FINE|FINER|FINEST> | 
| default | WARNING | 
| min-user-mode | Expert | 
The name of the actor.
| command-line | -name <java.lang.String> | 
| default | MekaTrainClassifier | 
The annotations to attach to this actor.
| command-line | -annotation <adams.core.base.BaseAnnotation> | 
| default |  | 
If set to true, transformation is skipped and the input token is just forwarded as it is.
| command-line | -skip <boolean> | 
| default | false | 
If set to true, the flow execution at this level gets stopped in case this actor encounters an error; the error gets propagated; useful for critical actors.
| command-line | -stop-flow-on-error <boolean> | 
| default | false | 
| min-user-mode | Expert | 
If enabled, then no errors are output in the console; Note: the enclosing actor handler must have this enabled as well.
| command-line | -silent <boolean> | 
| default | false | 
| min-user-mode | Expert | 
The MEKA classifier to train on the input data.
| command-line | -classifier <adams.flow.core.CallableActorReference> | 
| default | MekaClassifierSetup |