adams.flow.source.WekaDataGenerator
Generates artificial data using a Weka data generator.
Flow input/output:
- output: weka.core.Instances
The logging level for outputting errors and debugging output.
command-line | -logging-level <OFF|SEVERE|WARNING|INFO|CONFIG|FINE|FINER|FINEST> |
default | WARNING |
min-user-mode | Expert |
The name of the actor.
command-line | -name <java.lang.String> |
default | WekaDataGenerator |
The annotations to attach to this actor.
command-line | -annotation <adams.core.base.BaseAnnotation> |
default |
|
If set to true, transformation is skipped and the input token is just forwarded as it is.
command-line | -skip <boolean> |
default | false |
If set to true, the flow execution at this level gets stopped in case this actor encounters an error; the error gets propagated; useful for critical actors.
command-line | -stop-flow-on-error <boolean> |
default | false |
min-user-mode | Expert |
If enabled, then no errors are output in the console; Note: the enclosing actor handler must have this enabled as well.
command-line | -silent <boolean> |
default | false |
min-user-mode | Expert |
The properties to update with the values associated with the specified values.
command-line | -property <adams.core.base.BaseString> [-property ...] |
default |
|
The names of the variables to update the properties with.
command-line | -variable <adams.core.VariableName> [-variable ...] |
default |
|
The data generator to use for generating the weka.core.Instances object.
command-line | -generator <weka.datagenerators.DataGenerator> |
default | weka.datagenerators.classifiers.classification.Agrawal -r weka.datagenerators.classifiers.classification.Agrawal-S_1_-n_100_-F_1_-P_0.05 -S 1 -n 100 -F 1 -P 0.05 |