adams.flow.transformer.TimeseriesFeatureGenerator
Applies a timeseries feature generator to the incoming timeseries and outputs the generated features.
Flow input/output:
- input: adams.data.timeseries.Timeseries
- output: adams.data.spreadsheet.Row
The logging level for outputting errors and debugging output.
command-line | -logging-level <OFF|SEVERE|WARNING|INFO|CONFIG|FINE|FINER|FINEST> |
default | WARNING |
min-user-mode | Expert |
The name of the actor.
command-line | -name <java.lang.String> |
default | TimeseriesFeatureGenerator |
The annotations to attach to this actor.
command-line | -annotation <adams.core.base.BaseAnnotation> |
default |
|
If set to true, transformation is skipped and the input token is just forwarded as it is.
command-line | -skip <boolean> |
default | false |
If set to true, the flow execution at this level gets stopped in case this actor encounters an error; the error gets propagated; useful for critical actors.
command-line | -stop-flow-on-error <boolean> |
default | false |
min-user-mode | Expert |
If enabled, then no errors are output in the console; Note: the enclosing actor handler must have this enabled as well.
command-line | -silent <boolean> |
default | false |
min-user-mode | Expert |
The feature generation algorithm to use.
command-line | -algorithm <adams.data.timeseries.AbstractTimeseriesFeatureGenerator> |
default | adams.data.timeseries.Values -converter \"adams.data.featureconverter.SpreadSheet -data-row-type adams.data.spreadsheet.DenseDataRow -spreadsheet-type adams.data.spreadsheet.DefaultSpreadSheet\" |
The variable to monitor for resetting trainable batch filters.
command-line | -var-name <adams.core.VariableName> |
default | variable |