adams.flow.transformer.WekaPrimeForecaster
Primes a forecaster with the incoming data and outputs the updated forecaster alongside the training header (in a model container).
Flow input/output:
- input: weka.core.Instances, weka.core.Instance
- output: adams.flow.container.WekaModelContainer
Container information:
- adams.flow.container.WekaModelContainer:
- Model: model object; java.lang.Object
- Header: dataset header; weka.core.Instances
- Dataset: full dataset; weka.core.Instances
The logging level for outputting errors and debugging output.
command-line | -logging-level <OFF|SEVERE|WARNING|INFO|CONFIG|FINE|FINER|FINEST> |
default | WARNING |
min-user-mode | Expert |
The name of the actor.
command-line | -name <java.lang.String> |
default | WekaPrimeForecaster |
The annotations to attach to this actor.
command-line | -annotation <adams.core.base.BaseAnnotation> |
default |
|
If set to true, transformation is skipped and the input token is just forwarded as it is.
command-line | -skip <boolean> |
default | false |
If set to true, the flow execution at this level gets stopped in case this actor encounters an error; the error gets propagated; useful for critical actors.
command-line | -stop-flow-on-error <boolean> |
default | false |
min-user-mode | Expert |
If enabled, then no errors are output in the console; Note: the enclosing actor handler must have this enabled as well.
command-line | -silent <boolean> |
default | false |
min-user-mode | Expert |
The Weka forecaster to prime on the input data; can be a adams.flow.container.WekaModelContainer or a weka.classifiers.timeseries.AbstractForecaster.
command-line | -forecaster <adams.flow.core.CallableActorReference> |
default | WekaForecasterSetup |