adams.flow.transformer.WekaAggregateEvaluations
Aggregates incoming weka.classifiers.Evaluation objects and forwards the current aggregated state.
Only works with the predictions stored in the evaluation object.
NB: Relative absolute error and Root relative squared error will differ a bit.
Flow input/output:
- input: weka.classifiers.Evaluation, adams.flow.container.WekaEvaluationContainer
- output: adams.flow.container.WekaEvaluationContainer
Container information:
- adams.flow.container.WekaEvaluationContainer:
- Evaluation: evaluation object; weka.classifiers.Evaluation
- Model: model object; java.lang.Object
- Prediction output: prediction output text; java.lang.String
- Original indices: original indices (0-based); array of int
- Test data: data used for testing; weka.core.Instances
The logging level for outputting errors and debugging output.
command-line | -logging-level <OFF|SEVERE|WARNING|INFO|CONFIG|FINE|FINER|FINEST> |
default | WARNING |
min-user-mode | Expert |
The name of the actor.
command-line | -name <java.lang.String> |
default | WekaAggregateEvaluations |
The annotations to attach to this actor.
command-line | -annotation <adams.core.base.BaseAnnotation> |
default |
|
If set to true, transformation is skipped and the input token is just forwarded as it is.
command-line | -skip <boolean> |
default | false |
If set to true, the flow execution at this level gets stopped in case this actor encounters an error; the error gets propagated; useful for critical actors.
command-line | -stop-flow-on-error <boolean> |
default | false |
min-user-mode | Expert |
If enabled, then no errors are output in the console; Note: the enclosing actor handler must have this enabled as well.
command-line | -silent <boolean> |
default | false |
min-user-mode | Expert |