adams.flow.transformer.WekaAttributeSelection
Performs attribute selection on the incoming data.
In case of input in form of a class adams.flow.container.WekaTrainTestSetContainer object, the train and test sets stored in the container are being used.
NB: In case of cross-validation no reduced or transformed data can get generated!
Flow input/output:
- input: weka.core.Instances, adams.flow.container.WekaTrainTestSetContainer
- output: adams.flow.container.WekaAttributeSelectionContainer
Container information:
- adams.flow.container.WekaTrainTestSetContainer:
- Train: training set; weka.core.Instances
- Test: test set; weka.core.Instances
- Seed: seed value; java.lang.Long
- FoldNumber: current fold (1-based); java.lang.Integer
- FoldCount: total number of folds; java.lang.Integer
- Train original indices: original indices (0-based, train); array of int
- Test original indices: original indices (0-based, test); array of int
- adams.flow.container.WekaAttributeSelectionContainer:
- Train: training set; weka.core.Instances
- Reduced: reduced dataset; weka.core.Instances
- Transformed: transformed dataset (if weka.attributeSelection.AttributeTransformer); weka.core.Instances
- Test: test set; weka.core.Instances
- Test reduced: reduced test dataset; weka.core.Instances
- Test transformed: transformed test dataset (if weka.attributeSelection.AttributeTransformer); weka.core.Instances
- Evaluation: attribute selection evaluation object; weka.attributeSelection.AttributeSelection
- Statistics: spreadsheet with the statistics; adams.data.spreadsheet.SpreadSheet
- Selected attributes: range string of selected attributes (1-based indices); java.lang.String
- Seed: seed value (cross-validation); java.lang.Long
- FoldCount: fold (cross-validation); java.lang.Integer
The logging level for outputting errors and debugging output.
command-line | -logging-level <OFF|SEVERE|WARNING|INFO|CONFIG|FINE|FINER|FINEST> |
default | WARNING |
min-user-mode | Expert |
The name of the actor.
command-line | -name <java.lang.String> |
default | WekaAttributeSelection |
The annotations to attach to this actor.
command-line | -annotation <adams.core.base.BaseAnnotation> |
default |
|
If set to true, transformation is skipped and the input token is just forwarded as it is.
command-line | -skip <boolean> |
default | false |
If set to true, the flow execution at this level gets stopped in case this actor encounters an error; the error gets propagated; useful for critical actors.
command-line | -stop-flow-on-error <boolean> |
default | false |
min-user-mode | Expert |
If enabled, then no errors are output in the console; Note: the enclosing actor handler must have this enabled as well.
command-line | -silent <boolean> |
default | false |
min-user-mode | Expert |
The evaluation method to use.
command-line | -evaluator <weka.attributeSelection.ASEvaluation> |
default | weka.attributeSelection.CfsSubsetEval -P 1 -E 1 |
The search method to use.
command-line | -search <weka.attributeSelection.ASSearch> |
default | weka.attributeSelection.BestFirst -D 1 -N 5 |
The seed value for cross-validation (used for randomization).
command-line | -seed <long> |
default | 1 |
The number of folds to use in the cross-validation; no cross-validation is performed if folds < 2.
command-line | -folds <int> |
default | 10 |
minimum | -1 |