adams.flow.transformer.WekaSplitGenerator
Splits a dataset into a training and test sets using the specified splitter.
The training set can be accessed in the container with 'Train' and the test set with 'Test'.
Depending on the split generator in use, more than one container may be output.
Flow input/output:
- input: weka.core.Instances
- output: adams.flow.container.WekaTrainTestSetContainer
Container information:
- adams.flow.container.WekaTrainTestSetContainer:
- Train: training set; weka.core.Instances
- Test: test set; weka.core.Instances
- Seed: seed value; java.lang.Long
- FoldNumber: current fold (1-based); java.lang.Integer
- FoldCount: total number of folds; java.lang.Integer
- Train original indices: original indices (0-based, train); array of int
- Test original indices: original indices (0-based, test); array of int
The logging level for outputting errors and debugging output.
command-line | -logging-level <OFF|SEVERE|WARNING|INFO|CONFIG|FINE|FINER|FINEST> |
default | WARNING |
min-user-mode | Expert |
The name of the actor.
command-line | -name <java.lang.String> |
default | WekaSplitGenerator |
The annotations to attach to this actor.
command-line | -annotation <adams.core.base.BaseAnnotation> |
default |
|
If set to true, transformation is skipped and the input token is just forwarded as it is.
command-line | -skip <boolean> |
default | false |
If set to true, the flow execution at this level gets stopped in case this actor encounters an error; the error gets propagated; useful for critical actors.
command-line | -stop-flow-on-error <boolean> |
default | false |
min-user-mode | Expert |
If enabled, then no errors are output in the console; Note: the enclosing actor handler must have this enabled as well.
command-line | -silent <boolean> |
default | false |
min-user-mode | Expert |
If enabled, the splits are output as array rather than one-by-one.
command-line | -output-array <boolean> |
default | false |
The scheme to use for generating the split.
command-line | -generator <weka.classifiers.SplitGenerator> |
default | weka.classifiers.DefaultRandomSplitGenerator |