adams.flow.transformer.WekaTrainTestSetEvaluator
Trains a classifier on an incoming training dataset (from a container) and then evaluates it on the test set (also from a container).
The classifier setup being used in the evaluation is a callable 'Classifier' actor.
Flow input/output:
- input: adams.flow.container.WekaTrainTestSetContainer
- output: adams.flow.container.WekaEvaluationContainer
Container information:
- adams.flow.container.WekaTrainTestSetContainer:
- Train: training set; weka.core.Instances
- Test: test set; weka.core.Instances
- Seed: seed value; java.lang.Long
- FoldNumber: current fold (1-based); java.lang.Integer
- FoldCount: total number of folds; java.lang.Integer
- Train original indices: original indices (0-based, train); array of int
- Test original indices: original indices (0-based, test); array of int
- adams.flow.container.WekaEvaluationContainer:
- Evaluation: evaluation object; weka.classifiers.Evaluation
- Model: model object; java.lang.Object
- Prediction output: prediction output text; java.lang.String
- Original indices: original indices (0-based); array of int
- Test data: data used for testing; weka.core.Instances
The logging level for outputting errors and debugging output.
command-line | -logging-level <OFF|SEVERE|WARNING|INFO|CONFIG|FINE|FINER|FINEST> |
default | WARNING |
min-user-mode | Expert |
The name of the actor.
command-line | -name <java.lang.String> |
default | WekaTrainTestSetEvaluator |
The annotations to attach to this actor.
command-line | -annotation <adams.core.base.BaseAnnotation> |
default |
|
If set to true, transformation is skipped and the input token is just forwarded as it is.
command-line | -skip <boolean> |
default | false |
If set to true, the flow execution at this level gets stopped in case this actor encounters an error; the error gets propagated; useful for critical actors.
command-line | -stop-flow-on-error <boolean> |
default | false |
min-user-mode | Expert |
If enabled, then no errors are output in the console; Note: the enclosing actor handler must have this enabled as well.
command-line | -silent <boolean> |
default | false |
min-user-mode | Expert |
The class for generating prediction output; if 'Null' is used, then an Evaluation object is forwarded instead of a String.
command-line | -output <weka.classifiers.evaluation.output.prediction.AbstractOutput> |
default | weka.classifiers.evaluation.output.prediction.Null |
If enabled, always outputs an evaluation container.
command-line | -always-use-container <boolean> |
default | false |
The callable classifier actor to train and evaluate on the test data.
command-line | -classifier <adams.flow.core.CallableActorReference> |
default | WekaClassifierSetup |
If enabled, the collection of predictions during evaluation is suppressed, wich will conserve memory.
command-line | -no-predictions <boolean> |
default | false |
If enabled, tries to offload the processing onto a adams.flow.standalone.JobRunnerInstance.
command-line | -prefer-jobrunner <boolean> |
default | false |