Uses of Class
adams.data.instancesanalysis.pls.AbstractPLS
-
Packages that use AbstractPLS Package Description adams.data.instancesanalysis adams.data.instancesanalysis.pls weka.classifiers.functions weka.filters.supervised.attribute -
-
Uses of AbstractPLS in adams.data.instancesanalysis
Fields in adams.data.instancesanalysis declared as AbstractPLS Modifier and Type Field Description protected AbstractPLS
PLS. m_Algorithm
the algorithm to use.Methods in adams.data.instancesanalysis that return AbstractPLS Modifier and Type Method Description AbstractPLS
PLS. getAlgorithm()
Returns the algorithm to use.Methods in adams.data.instancesanalysis with parameters of type AbstractPLS Modifier and Type Method Description void
PLS. setAlgorithm(AbstractPLS value)
Sets the algorithm to use. -
Uses of AbstractPLS in adams.data.instancesanalysis.pls
Subclasses of AbstractPLS in adams.data.instancesanalysis.pls Modifier and Type Class Description class
AbstractMultiClassPLS
Ancestor for schemes that predict multiple classes.class
AbstractSingleClassPLS
Ancestor for schemes that predict a single class.class
DIPLS
Domain Invariant Partial Least Squares (DIPLS).
For more information see:
Ramin Nikzad-Langerodi, Werner Zellinger, Edwin Lughofer,, Susanne Saminger-Platz.class
KernelPLS
Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space
For more information see:
Roman Rosipal, Leonard J.class
NIPALS
Nonlinear Iterative Partial Least Squares (NIPALS).
For more information see:
scikit-learn.class
OPLS
Orthogonal Projections to latent structures (O-PLS).
For more informatio see:
Johan Trygg, Svante Wold (2001).class
PLS1
Implementation of PLS1 algorithm.
For more information see:
Tormod Naes, Tomas Isaksson, Tom Fearn, Tony Davies (2002).class
PRM
Partial robust M-regression (PRM).
For more information see:
Sven Serneels, Christophe Croux, Peter Filzmoser, Pierre J.Van Espen (2005).class
SIMPLS
Implementation of SIMPLS algorithm.
Available matrices: W, B
For more information see:
Tormod Naes, Tomas Isaksson, Tom Fearn, Tony Davies (2002).class
SparsePLS
Nonlinear Iterative Partial Least Squares (SparsePLS).
Automatically standardizes X and Y internally.
For more information see:
Chun H, Keles S. (2010).class
VCPLS
Variance constrained partial least squares.
For more information see:
Xiubao Jiang, Xinge You, Shujian Yu, Dacheng Tao, C.L. -
Uses of AbstractPLS in weka.classifiers.functions
Fields in weka.classifiers.functions declared as AbstractPLS Modifier and Type Field Description protected AbstractPLS
PLSRegressor. m_Algorithm
the PLS algorithmprotected AbstractPLS
PLSWeighted. m_Algorithm
the PLS algorithmMethods in weka.classifiers.functions that return AbstractPLS Modifier and Type Method Description AbstractPLS
PLSRegressor. getAlgorithm()
Returns the PLS algorithm to use.AbstractPLS
PLSWeighted. getAlgorithm()
Get the PLS algorithm.protected AbstractPLS
PLSRegressor. getDefaultAlgorithm()
Returns the default algorithm.AbstractPLS
PLSWeighted. getDefaultAlgorithm()
Returns the default PLS filter.Methods in weka.classifiers.functions with parameters of type AbstractPLS Modifier and Type Method Description void
PLSRegressor. setAlgorithm(AbstractPLS value)
Sets the PLS algorithm to use.void
PLSWeighted. setAlgorithm(AbstractPLS value)
Set the PLS algorithm (only used for setup). -
Uses of AbstractPLS in weka.filters.supervised.attribute
Fields in weka.filters.supervised.attribute declared as AbstractPLS Modifier and Type Field Description protected AbstractPLS
MultiPLS. m_Algorithm
the PLS algorithm.protected AbstractPLS
PLS. m_Algorithm
the PLS algorithm.Fields in weka.filters.supervised.attribute with type parameters of type AbstractPLS Modifier and Type Field Description protected Map<String,AbstractPLS>
MultiPLS. m_PLS
the PLS algorithms corresponding to the Y attributes.Methods in weka.filters.supervised.attribute that return AbstractPLS Modifier and Type Method Description AbstractPLS
MultiPLS. getAlgorithm()
Returns the PLS algorithm to use.AbstractPLS
PLS. getAlgorithm()
Returns the PLS algorithm to use.protected AbstractPLS
MultiPLS. getDefaultAlgorithm()
Returns the default algorithm.protected AbstractPLS
PLS. getDefaultAlgorithm()
Returns the default algorithm.Methods in weka.filters.supervised.attribute with parameters of type AbstractPLS Modifier and Type Method Description void
MultiPLS. setAlgorithm(AbstractPLS value)
Sets the PLS algorithm to use.void
PLS. setAlgorithm(AbstractPLS value)
Sets the PLS algorithm to use.
-