Package adams.ml.model.clustering
Class WekaClusterer
- java.lang.Object
-
- adams.core.logging.LoggingObject
-
- adams.core.logging.CustomLoggingLevelObject
-
- adams.core.option.AbstractOptionHandler
-
- adams.ml.model.clustering.AbstractClusterer
-
- adams.ml.model.clustering.WekaClusterer
-
- All Implemented Interfaces:
Destroyable,GlobalInfoSupporter,LoggingLevelHandler,LoggingSupporter,OptionHandler,SizeOfHandler,CapabilitiesHandler,Algorithm<ClusteringModel>,Clusterer,Serializable
public class WekaClusterer extends AbstractClusterer
Wraps around a Weka clusterer.
-logging-level <OFF|SEVERE|WARNING|INFO|CONFIG|FINE|FINER|FINEST> (property: loggingLevel) The logging level for outputting errors and debugging output. default: WARNING
-strict-capabilities <boolean> (property: strictCapabilities) If enabled, a strict capabilities test is performed; otherwise, it is attempted to adjust the data to fit the algorithm's capabilities. default: false
-clusterer <weka.clusterers.Clusterer> (property: clusterer) The clusterer to use. default: weka.clusterers.SimpleKMeans -init 0 -max-candidates 100 -periodic-pruning 10000 -min-density 2.0 -t1 -1.25 -t2 -1.0 -N 2 -A \"weka.core.EuclideanDistance -R first-last\" -I 500 -num-slots 1 -S 10
- Version:
- $Revision$
- Author:
- FracPete (fracpete at waikato dot ac dot nz)
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description protected weka.clusterers.Clustererm_Clustererthe weka classifier to use.-
Fields inherited from class adams.ml.model.clustering.AbstractClusterer
m_StrictCapabilities
-
Fields inherited from class adams.core.option.AbstractOptionHandler
m_OptionManager
-
Fields inherited from class adams.core.logging.LoggingObject
m_Logger, m_LoggingIsEnabled, m_LoggingLevel
-
-
Constructor Summary
Constructors Constructor Description WekaClusterer()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description StringclustererTipText()Returns the tip text for this property.voiddefineOptions()Adds options to the internal list of options.protected ClusteringModeldoBuildModel(Dataset data)Builds a model from the data.CapabilitiesgetCapabilities()Returns the algorithm's capabilities in terms of data.weka.clusterers.ClusterergetClusterer()Returns the clusterer to use.StringglobalInfo()Returns a string describing the object.voidsetClusterer(weka.clusterers.Clusterer value)Sets the clusterer to use.-
Methods inherited from class adams.ml.model.clustering.AbstractClusterer
buildModel, check, getStrictCapabilities, handles, setStrictCapabilities, strictCapabilitiesTipText
-
Methods inherited from class adams.core.option.AbstractOptionHandler
cleanUpOptions, destroy, finishInit, getDefaultLoggingLevel, getOptionManager, initialize, loggingLevelTipText, newOptionManager, reset, setLoggingLevel, toCommandLine, toString
-
Methods inherited from class adams.core.logging.LoggingObject
configureLogger, getLogger, getLoggingLevel, initializeLogging, isLoggingEnabled, sizeOf
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface adams.core.Destroyable
destroy
-
Methods inherited from interface adams.core.logging.LoggingLevelHandler
getLoggingLevel
-
Methods inherited from interface adams.core.option.OptionHandler
cleanUpOptions, getOptionManager, toCommandLine
-
-
-
-
Method Detail
-
globalInfo
public String globalInfo()
Returns a string describing the object.- Specified by:
globalInfoin interfaceGlobalInfoSupporter- Specified by:
globalInfoin classAbstractOptionHandler- Returns:
- a description suitable for displaying in the gui
-
defineOptions
public void defineOptions()
Adds options to the internal list of options.- Specified by:
defineOptionsin interfaceOptionHandler- Overrides:
defineOptionsin classAbstractClusterer
-
setClusterer
public void setClusterer(weka.clusterers.Clusterer value)
Sets the clusterer to use.- Parameters:
value- the clusterer
-
getClusterer
public weka.clusterers.Clusterer getClusterer()
Returns the clusterer to use.- Returns:
- the clusterer
-
clustererTipText
public String clustererTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
getCapabilities
public Capabilities getCapabilities()
Returns the algorithm's capabilities in terms of data.- Specified by:
getCapabilitiesin interfaceAlgorithm<ClusteringModel>- Specified by:
getCapabilitiesin interfaceCapabilitiesHandler- Overrides:
getCapabilitiesin classAbstractClusterer- Returns:
- the algorithm's capabilities
-
doBuildModel
protected ClusteringModel doBuildModel(Dataset data) throws Exception
Builds a model from the data.- Specified by:
doBuildModelin classAbstractClusterer- Parameters:
data- the data to use for building the model- Returns:
- the generated model
- Throws:
Exception- if the build fails
-
-