Package adams.opt.optimise
Class SplitSearch
-
- All Implemented Interfaces:
CleanUpHandler,Destroyable,GlobalInfoSupporter,LoggingLevelHandler,LoggingSupporter,OptionHandler,SizeOfHandler,Serializable,Comparable
public class SplitSearch extends AbstractOptimiser
Grid Search searches the parameter hyper-grid space. The search is refineable.
Valid options are:
-D (property: debug) If set to true, scheme may output additional info to the console.-iterations <int> (property: iterations) The number of iterations to use. default: 1000-grids <int> (property: grids) The number of grids to use. default: 3- Version:
- $Revision$
- Author:
- dale
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description protected intm_NumSplitsnumber of iterations.-
Fields inherited from class adams.opt.optimise.AbstractOptimiser
m_bestf, m_bestv
-
Fields inherited from class adams.core.option.AbstractOptionHandler
m_OptionManager
-
Fields inherited from class adams.core.logging.LoggingObject
m_Logger, m_LoggingIsEnabled, m_LoggingLevel
-
-
Constructor Summary
Constructors Constructor Description SplitSearch()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description voiddefineOptions()Adds options to the internal list of options.OptDatadoGrid(OptData datadef, FitnessFunction fitness)Calc for this grid.intgetSplits()Gets the iterations use.StringglobalInfo()Returns a string describing the object.OptDataoptimise(OptData datadef, FitnessFunction fitness)Do grid Optimisation.protected voidsetMax(OptData datadef)Initialise vars to their maximum.protected voidsetMin(OptData datadef)Initialise vars to their minimum.voidsetSplits(int value)Sets the iterations to use.protected voidsetStepSizes(OptData datadef, Hashtable<String,Double> stepsize)set Set sizes for params.StringsplitsTipText()Returns the tip text for this property.-
Methods inherited from class adams.opt.optimise.AbstractOptimiser
checkBest, cleanUp, compareTo, destroy, equals, forCommandLine, forName, getOptimisers, initialize, reset, shallowCopy, shallowCopy
-
Methods inherited from class adams.core.option.AbstractOptionHandler
cleanUpOptions, finishInit, getDefaultLoggingLevel, getOptionManager, loggingLevelTipText, newOptionManager, setLoggingLevel, toCommandLine, toString
-
Methods inherited from class adams.core.logging.LoggingObject
configureLogger, getLogger, getLoggingLevel, initializeLogging, isLoggingEnabled, sizeOf
-
Methods inherited from class java.lang.Object
clone, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface adams.core.logging.LoggingLevelHandler
getLoggingLevel
-
-
-
-
Method Detail
-
globalInfo
public String globalInfo()
Returns a string describing the object.- Specified by:
globalInfoin interfaceGlobalInfoSupporter- Specified by:
globalInfoin classAbstractOptionHandler- Returns:
- a description suitable for displaying in the gui
-
defineOptions
public void defineOptions()
Adds options to the internal list of options.- Specified by:
defineOptionsin interfaceOptionHandler- Overrides:
defineOptionsin classAbstractOptionHandler
-
setSplits
public void setSplits(int value)
Sets the iterations to use.- Parameters:
value- the iterations.
-
getSplits
public int getSplits()
Gets the iterations use.- Returns:
- the iterations
-
splitsTipText
public String splitsTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
setMin
protected void setMin(OptData datadef)
Initialise vars to their minimum.- Parameters:
datadef- vars
-
setMax
protected void setMax(OptData datadef)
Initialise vars to their maximum.- Parameters:
datadef- vars
-
doGrid
public OptData doGrid(OptData datadef, FitnessFunction fitness)
Calc for this grid.- Parameters:
datadef- varsfitness- fitness fn- Returns:
- best
-
optimise
public OptData optimise(OptData datadef, FitnessFunction fitness)
Do grid Optimisation.- Specified by:
optimisein classAbstractOptimiser- Parameters:
datadef- the varsfitness- fitness function- Returns:
- best vars
-
-