Class AbstractWEKAFitnessFunction
- java.lang.Object
-
- adams.core.logging.LoggingObject
-
- adams.core.logging.CustomLoggingLevelObject
-
- adams.core.option.AbstractOptionHandler
-
- adams.opt.optimise.AbstractFitnessFunction
-
- adams.opt.optimise.genetic.fitnessfunctions.AbstractWEKAFitnessFunction
-
- All Implemented Interfaces:
Destroyable,GlobalInfoSupporter,LoggingLevelHandler,LoggingSupporter,OptionHandler,SizeOfHandler,FitnessFunction,Serializable
- Direct Known Subclasses:
AttributeSelection
public abstract class AbstractWEKAFitnessFunction extends AbstractFitnessFunction
Perform attribute selection using WEKA classification.- Author:
- dale
- See Also:
- Serialized Form
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static classAbstractWEKAFitnessFunction.MeasureThe measure to use for evaluating.
-
Field Summary
Fields Modifier and Type Field Description protected weka.classifiers.Classifierm_Classifierthe classifier to use if no serialized model is given.protected Stringm_ClassIndexthe class index.protected intm_CrossValidationSeedthe cross-validation seed.protected PlaceholderFilem_Datasetthe filename of the data to use for cross-validation.protected intm_Foldsthe number of folds for cross-validation.protected booleanm_initinitialised?protected weka.core.Instancesm_Instancesthe data to use for cross-validation.protected AbstractWEKAFitnessFunction.Measurem_Measurethe measure to use for evaluating the fitness.protected PlaceholderDirectorym_OutputDirectorythe directory to store the generated ARFF files in.-
Fields inherited from class adams.core.option.AbstractOptionHandler
m_OptionManager
-
Fields inherited from class adams.core.logging.LoggingObject
m_Logger, m_LoggingIsEnabled, m_LoggingLevel
-
-
Constructor Summary
Constructors Constructor Description AbstractWEKAFitnessFunction()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description StringclassifierTipText()Returns the tip text for this property.StringclassIndexTipText()Returns the tip text for this property.StringcrossValidationSeedTipText()Returns the tip text for this property.StringdatasetTipText()Returns the tip text for this property.voiddefineOptions()Adds options to the internal list of options.StringfoldsTipText()Returns the tip text for this property.weka.classifiers.ClassifiergetClassifier()Returns the currently set classifier.StringgetClassIndex()Returns the current class index.intgetCrossValidationSeed()Returns the current seed value for cross-validation.PlaceholderFilegetDataset()Returns the currently set filename of the dataset for cross-validation.intgetFolds()Returns the number of folds to use in cross-validation.weka.core.InstancesgetInstances()Returns the currently set dataset for cross-validation.AbstractWEKAFitnessFunction.MeasuregetMeasure()Returns the current measure for evaluating the fitness.PlaceholderDirectorygetOutputDirectory()Returns the currently set directory for the generated ARFF files.StringglobalInfo()Returns a string describing the object.protected voidinit()StringmeasureTipText()Returns the tip text for this property.StringoutputDirectoryTipText()Returns the tip text for this property.voidsetClassifier(weka.classifiers.Classifier value)Sets the classifier to use (if no serialized model is used).voidsetClassIndex(String value)Sets the class index.voidsetCrossValidationSeed(int value)Sets the seed value to use for cross-validation.voidsetDataset(PlaceholderFile value)Sets the filename of the dataset to use for cross-validation.voidsetFolds(int value)Sets the number of folds to use in cross-validation.voidsetInstances(weka.core.Instances value)Sets the data to use for cross-validation.voidsetMeasure(AbstractWEKAFitnessFunction.Measure value)Sets the measure used for evaluating the fitness.voidsetOutputDirectory(PlaceholderDirectory value)Sets the directory for the generated ARFF files.-
Methods inherited from class adams.opt.optimise.AbstractFitnessFunction
newBest
-
Methods inherited from class adams.core.option.AbstractOptionHandler
cleanUpOptions, destroy, finishInit, getDefaultLoggingLevel, getOptionManager, initialize, loggingLevelTipText, newOptionManager, reset, setLoggingLevel, toCommandLine, toString
-
Methods inherited from class adams.core.logging.LoggingObject
configureLogger, getLogger, getLoggingLevel, initializeLogging, isLoggingEnabled, sizeOf
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface adams.opt.optimise.FitnessFunction
evaluate
-
Methods inherited from interface adams.core.logging.LoggingLevelHandler
getLoggingLevel
-
-
-
-
Field Detail
-
m_Instances
protected weka.core.Instances m_Instances
the data to use for cross-validation.
-
m_Dataset
protected PlaceholderFile m_Dataset
the filename of the data to use for cross-validation.
-
m_Classifier
protected weka.classifiers.Classifier m_Classifier
the classifier to use if no serialized model is given.
-
m_OutputDirectory
protected PlaceholderDirectory m_OutputDirectory
the directory to store the generated ARFF files in.
-
m_Folds
protected int m_Folds
the number of folds for cross-validation.
-
m_CrossValidationSeed
protected int m_CrossValidationSeed
the cross-validation seed.
-
m_ClassIndex
protected String m_ClassIndex
the class index.
-
m_Measure
protected AbstractWEKAFitnessFunction.Measure m_Measure
the measure to use for evaluating the fitness.
-
m_init
protected boolean m_init
initialised?
-
-
Method Detail
-
defineOptions
public void defineOptions()
Adds options to the internal list of options.- Specified by:
defineOptionsin interfaceOptionHandler- Overrides:
defineOptionsin classAbstractOptionHandler
-
setFolds
public void setFolds(int value)
Sets the number of folds to use in cross-validation.- Parameters:
value- the number of folds
-
getFolds
public int getFolds()
Returns the number of folds to use in cross-validation.- Returns:
- the number of folds
-
foldsTipText
public String foldsTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
setCrossValidationSeed
public void setCrossValidationSeed(int value)
Sets the seed value to use for cross-validation.- Parameters:
value- the seed to use
-
getCrossValidationSeed
public int getCrossValidationSeed()
Returns the current seed value for cross-validation.- Returns:
- the seed value
-
crossValidationSeedTipText
public String crossValidationSeedTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
setInstances
public void setInstances(weka.core.Instances value)
Sets the data to use for cross-validation.- Parameters:
value- the dataset
-
getInstances
public weka.core.Instances getInstances()
Returns the currently set dataset for cross-validation.- Returns:
- the dataset
-
setDataset
public void setDataset(PlaceholderFile value)
Sets the filename of the dataset to use for cross-validation.- Parameters:
value- the filename
-
getDataset
public PlaceholderFile getDataset()
Returns the currently set filename of the dataset for cross-validation.- Returns:
- the filename
-
datasetTipText
public String datasetTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
setClassifier
public void setClassifier(weka.classifiers.Classifier value)
Sets the classifier to use (if no serialized model is used).- Parameters:
value- the classifier
-
getClassifier
public weka.classifiers.Classifier getClassifier()
Returns the currently set classifier.- Returns:
- the classifier
-
classifierTipText
public String classifierTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
setOutputDirectory
public void setOutputDirectory(PlaceholderDirectory value)
Sets the directory for the generated ARFF files.- Parameters:
value- the directory
-
getOutputDirectory
public PlaceholderDirectory getOutputDirectory()
Returns the currently set directory for the generated ARFF files.- Returns:
- the directory
-
outputDirectoryTipText
public String outputDirectoryTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
setClassIndex
public void setClassIndex(String value)
Sets the class index.- Parameters:
value- the class index
-
getClassIndex
public String getClassIndex()
Returns the current class index.- Returns:
- the class index
-
classIndexTipText
public String classIndexTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
setMeasure
public void setMeasure(AbstractWEKAFitnessFunction.Measure value)
Sets the measure used for evaluating the fitness.- Parameters:
value- the fitness measure
-
getMeasure
public AbstractWEKAFitnessFunction.Measure getMeasure()
Returns the current measure for evaluating the fitness.- Returns:
- the measure
-
measureTipText
public String measureTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
globalInfo
public String globalInfo()
Description copied from class:AbstractOptionHandlerReturns a string describing the object.- Specified by:
globalInfoin interfaceGlobalInfoSupporter- Specified by:
globalInfoin classAbstractOptionHandler- Returns:
- a description suitable for displaying in the gui
-
init
protected void init()
-
-