Package weka.classifiers.functions
Class GPD
- java.lang.Object
-
- weka.classifiers.AbstractClassifier
-
- weka.classifiers.StoppableClassifier
-
- weka.classifiers.functions.GPD
-
- All Implemented Interfaces:
Stoppable
,StoppableWithFeedback
,Serializable
,Cloneable
,weka.classifiers.Classifier
,weka.core.BatchPredictor
,weka.core.CapabilitiesHandler
,weka.core.CapabilitiesIgnorer
,weka.core.CommandlineRunnable
,weka.core.OptionHandler
,weka.core.RevisionHandler
,weka.core.TechnicalInformationHandler
,weka.core.WeightedInstancesHandler
public class GPD extends StoppableClassifier implements weka.core.WeightedInstancesHandler, weka.core.OptionHandler, weka.core.TechnicalInformationHandler
Implements Gaussian Processes for regression without hyperparameter-tuning, with an inline RBF kernel.
For more information see
David J.C. Mackay (1998). Introduction to Gaussian Processes. Dept. of Physics, Cambridge University, UK.BibTeX:
@misc{Mackay1998, address = {Dept. of Physics, Cambridge University, UK}, author = {David J.C. Mackay}, title = {Introduction to Gaussian Processes}, year = {1998}, PS = {http://wol.ra.phy.cam.ac.uk/mackay/gpB.ps.gz} }
Valid options are:
-output-debug-info If set, classifier is run in debug mode and may output additional info to the console
-do-not-check-capabilities If set, classifier capabilities are not checked before classifier is built (use with caution).
-L <double> Level of Gaussian Noise. (default: 0.01)
-G <double> Gamma for the RBF kernel. (default: 0.01)
-N Whether to 0=normalize/1=standardize/2=neither. (default: 0=normalize)
-output-debug-info If set, classifier is run in debug mode and may output additional info to the console
-do-not-check-capabilities If set, classifier capabilities are not checked before classifier is built (use with caution).
- Author:
- Kurt Driessens (kurtd@cs.waikato.ac.nz), Bernhard Pfahringer (bernhard@cs.waikato.ac.nz)
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description static int
FILTER_NONE
no filterstatic int
FILTER_NORMALIZE
normalizes the datastatic int
FILTER_STANDARDIZE
standardizes the dataprotected double
m_Alin
The parameters of the linear transforamtion realized by the filter on the class attributeprotected double
m_avg_target
The training data.protected double
m_Blin
protected boolean
m_checksTurnedOff
Turn off all checks and conversions? Turning them off assumes that data is purely numeric, doesn't contain any missing values, and has a numeric class.protected int
m_classIndex
The class index from the training dataprotected double[][]
m_data
protected double
m_delta
Gaussian Noise Value.protected GaussianProcessesNoWeights
m_FallBack
the fallback model.protected weka.filters.Filter
m_Filter
The filter used to standardize/normalize all values.protected int
m_filterType
Whether to normalize/standardize/neitherprotected double
m_gamma
protected weka.filters.unsupervised.attribute.ReplaceMissingValues
m_Missing
The filter used to get rid of missing values.protected weka.filters.unsupervised.attribute.NominalToBinary
m_NominalToBinary
The filter used to make attributes numeric.protected int
m_NumTrain
The number of training instancesprotected double[]
m_t
The vector of target values.static weka.core.Tag[]
TAGS_FILTER
The filter to apply to the training data-
Fields inherited from class weka.classifiers.StoppableClassifier
m_Stopped
-
-
Constructor Summary
Constructors Constructor Description GPD()
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description void
buildClassifier(weka.core.Instances insts)
Method for building the classifier.protected double[][]
choleskyDecomposition(double[][] A)
Cholesky decomposition.double
classifyInstance(weka.core.Instance inst)
Classifies a given instance.String
filterTypeTipText()
Returns the tip text for this property.String
gammaTipText()
Returns the tip text for this property.weka.core.Capabilities
getCapabilities()
Returns default capabilities of the classifier.weka.core.SelectedTag
getFilterType()
Gets how the training data will be transformed.double
getGamma()
Returns the gamma for the RBF kernel.double
getNoise()
Get the value of noise.String[]
getOptions()
Gets the current settings of the classifier.String
getRevision()
Returns the revision string.weka.core.TechnicalInformation
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.String
globalInfo()
Returns a string describing classifierEnumeration
listOptions()
Returns an enumeration describing the available options.static void
main(String[] args)
Main method for testing this class.String
noiseTipText()
Returns the tip text for this property.protected double
rbfKernel(double[] x, double[] y, double gamma)
Computes the RBF kernel.void
setFilterType(weka.core.SelectedTag newType)
Sets how the training data will be transformed.void
setGamma(double v)
Set the gamma for the RBF kernel.void
setNoise(double v)
Set the level of Gaussian Noise.void
setOptions(String[] options)
Parses a given list of options.protected double[]
solveChol(double[][] L, double[] b)
specialised to solve A * x = b, where x and b are one-dimensionalprotected double
squaredDistance(double[] x, double[] y)
Computes the squared distance.String
toString()
Prints out the classifier.-
Methods inherited from class weka.classifiers.StoppableClassifier
isStopped, stopExecution
-
Methods inherited from class weka.classifiers.AbstractClassifier
batchSizeTipText, debugTipText, distributionForInstance, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
-
-
-
-
Field Detail
-
m_NominalToBinary
protected weka.filters.unsupervised.attribute.NominalToBinary m_NominalToBinary
The filter used to make attributes numeric.
-
FILTER_NORMALIZE
public static final int FILTER_NORMALIZE
normalizes the data- See Also:
- Constant Field Values
-
FILTER_STANDARDIZE
public static final int FILTER_STANDARDIZE
standardizes the data- See Also:
- Constant Field Values
-
FILTER_NONE
public static final int FILTER_NONE
no filter- See Also:
- Constant Field Values
-
TAGS_FILTER
public static final weka.core.Tag[] TAGS_FILTER
The filter to apply to the training data
-
m_Filter
protected weka.filters.Filter m_Filter
The filter used to standardize/normalize all values.
-
m_filterType
protected int m_filterType
Whether to normalize/standardize/neither
-
m_Missing
protected weka.filters.unsupervised.attribute.ReplaceMissingValues m_Missing
The filter used to get rid of missing values.
-
m_checksTurnedOff
protected boolean m_checksTurnedOff
Turn off all checks and conversions? Turning them off assumes that data is purely numeric, doesn't contain any missing values, and has a numeric class.
-
m_delta
protected double m_delta
Gaussian Noise Value.
-
m_classIndex
protected int m_classIndex
The class index from the training data
-
m_data
protected double[][] m_data
-
m_gamma
protected double m_gamma
-
m_Alin
protected double m_Alin
The parameters of the linear transforamtion realized by the filter on the class attribute
-
m_Blin
protected double m_Blin
-
m_NumTrain
protected int m_NumTrain
The number of training instances
-
m_avg_target
protected double m_avg_target
The training data.
-
m_t
protected double[] m_t
The vector of target values.
-
m_FallBack
protected GaussianProcessesNoWeights m_FallBack
the fallback model.
-
-
Method Detail
-
globalInfo
public String globalInfo()
Returns a string describing classifier- Returns:
- a description suitable for displaying in the explorer/experimenter gui
-
getTechnicalInformation
public weka.core.TechnicalInformation getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.- Specified by:
getTechnicalInformation
in interfaceweka.core.TechnicalInformationHandler
- Returns:
- the technical information about this class
-
listOptions
public Enumeration listOptions()
Returns an enumeration describing the available options.- Specified by:
listOptions
in interfaceweka.core.OptionHandler
- Overrides:
listOptions
in classweka.classifiers.AbstractClassifier
- Returns:
- an enumeration of all the available options.
-
setOptions
public void setOptions(String[] options) throws Exception
Parses a given list of options.- Specified by:
setOptions
in interfaceweka.core.OptionHandler
- Overrides:
setOptions
in classweka.classifiers.AbstractClassifier
- Parameters:
options
- the list of options as an array of strings- Throws:
Exception
- if an option is not supported
-
getOptions
public String[] getOptions()
Gets the current settings of the classifier.- Specified by:
getOptions
in interfaceweka.core.OptionHandler
- Overrides:
getOptions
in classweka.classifiers.AbstractClassifier
- Returns:
- an array of strings suitable for passing to setOptions
-
setFilterType
public void setFilterType(weka.core.SelectedTag newType)
Sets how the training data will be transformed. Should be one of FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE.- Parameters:
newType
- the new filtering mode
-
getFilterType
public weka.core.SelectedTag getFilterType()
Gets how the training data will be transformed. Will be one of FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE.2200Instances- Returns:
- the filtering mode
-
filterTypeTipText
public String filterTypeTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
setNoise
public void setNoise(double v)
Set the level of Gaussian Noise.- Parameters:
v
- Value to assign to noise.
-
getNoise
public double getNoise()
Get the value of noise.- Returns:
- Value of noise.
-
noiseTipText
public String noiseTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
setGamma
public void setGamma(double v)
Set the gamma for the RBF kernel.- Parameters:
v
- the gamma
-
getGamma
public double getGamma()
Returns the gamma for the RBF kernel.- Returns:
- the gamma
-
gammaTipText
public String gammaTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getCapabilities
public weka.core.Capabilities getCapabilities()
Returns default capabilities of the classifier.- Specified by:
getCapabilities
in interfaceweka.core.CapabilitiesHandler
- Specified by:
getCapabilities
in interfaceweka.classifiers.Classifier
- Overrides:
getCapabilities
in classweka.classifiers.AbstractClassifier
- Returns:
- the capabilities of this classifier
-
choleskyDecomposition
protected double[][] choleskyDecomposition(double[][] A) throws Exception
Cholesky decomposition.- Parameters:
A
- the matrix.- Returns:
- the decomposition
- Throws:
Exception
-
solveChol
protected double[] solveChol(double[][] L, double[] b)
specialised to solve A * x = b, where x and b are one-dimensional
-
squaredDistance
protected double squaredDistance(double[] x, double[] y)
Computes the squared distance.- Parameters:
x
-y
-- Returns:
-
rbfKernel
protected double rbfKernel(double[] x, double[] y, double gamma)
Computes the RBF kernel.- Parameters:
x
-y
-gamma
-- Returns:
-
buildClassifier
public void buildClassifier(weka.core.Instances insts) throws Exception
Method for building the classifier.- Specified by:
buildClassifier
in interfaceweka.classifiers.Classifier
- Parameters:
insts
- the set of training instances- Throws:
Exception
- if the classifier can't be built successfully
-
classifyInstance
public double classifyInstance(weka.core.Instance inst) throws Exception
Classifies a given instance.- Specified by:
classifyInstance
in interfaceweka.classifiers.Classifier
- Overrides:
classifyInstance
in classweka.classifiers.AbstractClassifier
- Parameters:
inst
- the instance to be classified- Returns:
- the classification
- Throws:
Exception
- if instance could not be classified successfully
-
toString
public String toString()
Prints out the classifier.
-
getRevision
public String getRevision()
Returns the revision string.- Specified by:
getRevision
in interfaceweka.core.RevisionHandler
- Overrides:
getRevision
in classweka.classifiers.AbstractClassifier
- Returns:
- the revision
-
main
public static void main(String[] args)
Main method for testing this class.- Parameters:
args
- the commandline parameters
-
-