Package weka.classifiers.functions
Class GaussianProcessesWeighted
- java.lang.Object
-
- weka.classifiers.AbstractClassifier
-
- weka.classifiers.functions.GaussianProcessesWeighted
-
- All Implemented Interfaces:
Serializable,Cloneable,weka.classifiers.Classifier,weka.classifiers.IntervalEstimator,weka.core.BatchPredictor,weka.core.CapabilitiesHandler,weka.core.CapabilitiesIgnorer,weka.core.CommandlineRunnable,weka.core.OptionHandler,weka.core.RevisionHandler,weka.core.TechnicalInformationHandler,weka.core.WeightedInstancesHandler
public class GaussianProcessesWeighted extends weka.classifiers.AbstractClassifier implements weka.core.WeightedInstancesHandler, weka.core.OptionHandler, weka.classifiers.IntervalEstimator, weka.core.TechnicalInformationHandlerImplements Gaussian Processes for regression without hyperparameter-tuning. For more information see
David J.C. Mackay (1998). Introduction to Gaussian Processes. Dept. of Physics, Cambridge University, UK.
BibTeX:@misc{Mackay1998, address = {Dept. of Physics, Cambridge University, UK}, author = {David J.C. Mackay}, title = {Introduction to Gaussian Processes}, year = {1998}, PS = {http://wol.ra.phy.cam.ac.uk/mackay/gpB.ps.gz} }
Valid options are:
-D If set, classifier is run in debug mode and may output additional info to the console
-L <double> Level of Gaussian Noise. (default: 1.0)
-N Whether to 0=normalize/1=standardize/2=neither. (default: 0=normalize)
-K <classname and parameters> The Kernel to use. (default: weka.classifiers.functions.supportVector.PolyKernel)
Options specific to kernel weka.classifiers.functions.supportVector.RBFKernel:
-D Enables debugging output (if available) to be printed. (default: off)
-no-checks Turns off all checks - use with caution! (default: checks on)
-C <num> The size of the cache (a prime number), 0 for full cache and -1 to turn it off. (default: 250007)
-G <num> The Gamma parameter. (default: 0.01)
- Version:
- $Revision$
- Author:
- Kurt Driessens ([email protected])
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description static intFILTER_NONEno filterstatic intFILTER_NORMALIZEnormalizes the datastatic intFILTER_STANDARDIZEstandardizes the dataprotected doublem_AlinThe parameters of the linear transforamtion realized by the filter on the class attributeprotected doublem_avg_targetThe training data.protected doublem_Blinprotected weka.core.matrix.Matrixm_CThe covariance matrix.protected booleanm_checksTurnedOffTurn off all checks and conversions?protected intm_classIndexThe class index from the training dataprotected doublem_deltaGaussian Noise Value.protected weka.filters.Filterm_FilterThe filter used to standardize/normalize all values.protected intm_filterTypeWhether to normalize/standardize/neitherprotected weka.classifiers.functions.supportVector.Kernelm_kernelKernel to useprotected booleanm_KernelIsLinearwhether the kernel is a linear oneprotected weka.filters.unsupervised.attribute.ReplaceMissingValuesm_MissingThe filter used to get rid of missing values.protected weka.filters.unsupervised.attribute.NominalToBinarym_NominalToBinaryThe filter used to make attributes numeric.protected intm_NumTrainThe number of training instancesprotected weka.core.matrix.Matrixm_tThe vector of target values.static weka.core.Tag[]TAGS_FILTERThe filter to apply to the training data
-
Constructor Summary
Constructors Constructor Description GaussianProcessesWeighted()the default constructor
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description voidbuildClassifier(weka.core.Instances insts)Method for building the classifier.doubleclassifyInstance(weka.core.Instance inst)Classifies a given instance.StringfilterTypeTipText()Returns the tip text for this propertyweka.core.CapabilitiesgetCapabilities()Returns default capabilities of the classifier.weka.core.SelectedTaggetFilterType()Gets how the training data will be transformed.weka.classifiers.functions.supportVector.KernelgetKernel()Gets the kernel to use.doublegetNoise()Get the value of noise.String[]getOptions()Gets the current settings of the classifier.StringgetRevision()Returns the revision string.doublegetStandardDeviation(weka.core.Instance inst)Gives the variance of the prediction at the given instanceweka.core.TechnicalInformationgetTechnicalInformation()Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.StringglobalInfo()Returns a string describing classifierStringkernelTipText()Returns the tip text for this propertyEnumerationlistOptions()Returns an enumeration describing the available options.static voidmain(String[] argv)Main method for testing this class.StringnoiseTipText()Returns the tip text for this propertydouble[][]predictIntervals(weka.core.Instance inst, double confidenceLevel)Predicts a confidence interval for the given instance and confidence level.voidsetFilterType(weka.core.SelectedTag newType)Sets how the training data will be transformed.voidsetKernel(weka.classifiers.functions.supportVector.Kernel value)Sets the kernel to use.voidsetNoise(double v)Set the level of Gaussian Noise.voidsetOptions(String[] options)Parses a given list of options.StringtoString()Prints out the classifier.-
Methods inherited from class weka.classifiers.AbstractClassifier
batchSizeTipText, debugTipText, distributionForInstance, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
-
-
-
-
Field Detail
-
m_NominalToBinary
protected weka.filters.unsupervised.attribute.NominalToBinary m_NominalToBinary
The filter used to make attributes numeric.
-
FILTER_NORMALIZE
public static final int FILTER_NORMALIZE
normalizes the data- See Also:
- Constant Field Values
-
FILTER_STANDARDIZE
public static final int FILTER_STANDARDIZE
standardizes the data- See Also:
- Constant Field Values
-
FILTER_NONE
public static final int FILTER_NONE
no filter- See Also:
- Constant Field Values
-
TAGS_FILTER
public static final weka.core.Tag[] TAGS_FILTER
The filter to apply to the training data
-
m_Filter
protected weka.filters.Filter m_Filter
The filter used to standardize/normalize all values.
-
m_filterType
protected int m_filterType
Whether to normalize/standardize/neither
-
m_Missing
protected weka.filters.unsupervised.attribute.ReplaceMissingValues m_Missing
The filter used to get rid of missing values.
-
m_checksTurnedOff
protected boolean m_checksTurnedOff
Turn off all checks and conversions? Turning them off assumes that data is purely numeric, doesn't contain any missing values, and has a numeric class.
-
m_delta
protected double m_delta
Gaussian Noise Value.
-
m_classIndex
protected int m_classIndex
The class index from the training data
-
m_Alin
protected double m_Alin
The parameters of the linear transforamtion realized by the filter on the class attribute
-
m_Blin
protected double m_Blin
-
m_kernel
protected weka.classifiers.functions.supportVector.Kernel m_kernel
Kernel to use
-
m_NumTrain
protected int m_NumTrain
The number of training instances
-
m_avg_target
protected double m_avg_target
The training data.
-
m_C
protected weka.core.matrix.Matrix m_C
The covariance matrix.
-
m_t
protected weka.core.matrix.Matrix m_t
The vector of target values.
-
m_KernelIsLinear
protected boolean m_KernelIsLinear
whether the kernel is a linear one
-
-
Method Detail
-
globalInfo
public String globalInfo()
Returns a string describing classifier- Returns:
- a description suitable for displaying in the explorer/experimenter gui
-
getTechnicalInformation
public weka.core.TechnicalInformation getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.- Specified by:
getTechnicalInformationin interfaceweka.core.TechnicalInformationHandler- Returns:
- the technical information about this class
-
getCapabilities
public weka.core.Capabilities getCapabilities()
Returns default capabilities of the classifier.- Specified by:
getCapabilitiesin interfaceweka.core.CapabilitiesHandler- Specified by:
getCapabilitiesin interfaceweka.classifiers.Classifier- Overrides:
getCapabilitiesin classweka.classifiers.AbstractClassifier- Returns:
- the capabilities of this classifier
-
buildClassifier
public void buildClassifier(weka.core.Instances insts) throws ExceptionMethod for building the classifier.- Specified by:
buildClassifierin interfaceweka.classifiers.Classifier- Parameters:
insts- the set of training instances- Throws:
Exception- if the classifier can't be built successfully
-
classifyInstance
public double classifyInstance(weka.core.Instance inst) throws ExceptionClassifies a given instance.- Specified by:
classifyInstancein interfaceweka.classifiers.Classifier- Overrides:
classifyInstancein classweka.classifiers.AbstractClassifier- Parameters:
inst- the instance to be classified- Returns:
- the classification
- Throws:
Exception- if instance could not be classified successfully
-
predictIntervals
public double[][] predictIntervals(weka.core.Instance inst, double confidenceLevel) throws ExceptionPredicts a confidence interval for the given instance and confidence level.- Specified by:
predictIntervalsin interfaceweka.classifiers.IntervalEstimator- Parameters:
inst- the instance to make the prediction forconfidenceLevel- the percentage of cases the interval should cover- Returns:
- a 1*2 array that contains the boundaries of the interval
- Throws:
Exception- if interval could not be estimated successfully
-
getStandardDeviation
public double getStandardDeviation(weka.core.Instance inst) throws ExceptionGives the variance of the prediction at the given instance- Parameters:
inst- the instance to get the variance for- Returns:
- tha variance
- Throws:
Exception- if computation fails
-
listOptions
public Enumeration listOptions()
Returns an enumeration describing the available options.- Specified by:
listOptionsin interfaceweka.core.OptionHandler- Overrides:
listOptionsin classweka.classifiers.AbstractClassifier- Returns:
- an enumeration of all the available options.
-
setOptions
public void setOptions(String[] options) throws Exception
Parses a given list of options.
Valid options are:
-D If set, classifier is run in debug mode and may output additional info to the console
-L <double> Level of Gaussian Noise. (default: 1.0)
-N Whether to 0=normalize/1=standardize/2=neither. (default: 0=normalize)
-K <classname and parameters> The Kernel to use. (default: weka.classifiers.functions.supportVector.PolyKernel)
Options specific to kernel weka.classifiers.functions.supportVector.RBFKernel:
-D Enables debugging output (if available) to be printed. (default: off)
-no-checks Turns off all checks - use with caution! (default: checks on)
-C <num> The size of the cache (a prime number), 0 for full cache and -1 to turn it off. (default: 250007)
-G <num> The Gamma parameter. (default: 0.01)
- Specified by:
setOptionsin interfaceweka.core.OptionHandler- Overrides:
setOptionsin classweka.classifiers.AbstractClassifier- Parameters:
options- the list of options as an array of strings- Throws:
Exception- if an option is not supported
-
getOptions
public String[] getOptions()
Gets the current settings of the classifier.- Specified by:
getOptionsin interfaceweka.core.OptionHandler- Overrides:
getOptionsin classweka.classifiers.AbstractClassifier- Returns:
- an array of strings suitable for passing to setOptions
-
kernelTipText
public String kernelTipText()
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getKernel
public weka.classifiers.functions.supportVector.Kernel getKernel()
Gets the kernel to use.- Returns:
- the kernel
-
setKernel
public void setKernel(weka.classifiers.functions.supportVector.Kernel value)
Sets the kernel to use.- Parameters:
value- the new kernel
-
filterTypeTipText
public String filterTypeTipText()
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getFilterType
public weka.core.SelectedTag getFilterType()
Gets how the training data will be transformed. Will be one of FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE.2200Instances- Returns:
- the filtering mode
-
setFilterType
public void setFilterType(weka.core.SelectedTag newType)
Sets how the training data will be transformed. Should be one of FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE.- Parameters:
newType- the new filtering mode
-
noiseTipText
public String noiseTipText()
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getNoise
public double getNoise()
Get the value of noise.- Returns:
- Value of noise.
-
setNoise
public void setNoise(double v)
Set the level of Gaussian Noise.- Parameters:
v- Value to assign to noise.
-
toString
public String toString()
Prints out the classifier.
-
getRevision
public String getRevision()
Returns the revision string.- Specified by:
getRevisionin interfaceweka.core.RevisionHandler- Overrides:
getRevisionin classweka.classifiers.AbstractClassifier- Returns:
- the revision
-
main
public static void main(String[] argv)
Main method for testing this class.- Parameters:
argv- the commandline parameters
-
-