Package weka.classifiers.meta
Class AbstainMinimumProbability
- java.lang.Object
-
- weka.classifiers.AbstractClassifier
-
- weka.classifiers.SingleClassifierEnhancer
-
- weka.classifiers.meta.AbstainMinimumProbability
-
- All Implemented Interfaces:
Serializable,Cloneable,AbstainingClassifier,weka.classifiers.Classifier,weka.core.BatchPredictor,weka.core.CapabilitiesHandler,weka.core.CapabilitiesIgnorer,weka.core.CommandlineRunnable,weka.core.OptionHandler,weka.core.RevisionHandler
public class AbstainMinimumProbability extends weka.classifiers.SingleClassifierEnhancer implements AbstainingClassifier
Abstains if the probability of the chosen class label is below the specified threshold. Valid options are:-W Full name of base classifier. (default: weka.classifiers.rules.ZeroR)
-output-debug-info If set, classifier is run in debug mode and may output additional info to the console
-do-not-check-capabilities If set, classifier capabilities are not checked before classifier is built (use with caution).
Options specific to classifier weka.classifiers.rules.ZeroR:
-output-debug-info If set, classifier is run in debug mode and may output additional info to the console
-do-not-check-capabilities If set, classifier capabilities are not checked before classifier is built (use with caution).
-min-probability <value> The minimum probability that the chosen label must meet. (default: 0.8)
- Version:
- $Revision$
- Author:
- FracPete (fracpete at waikato dot ac dot nz)
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description protected doublem_MinProbabilitythe minimum probability that the classification must meet (0-1).protected intm_NumLabelsthe number of class labels.static StringMIN_PROBABILITY
-
Constructor Summary
Constructors Constructor Description AbstainMinimumProbability()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description voidbuildClassifier(weka.core.Instances data)Generates a classifier.booleancanAbstain()Whether abstaining is possible, e.g., used in meta-classifiers.double[]distributionForInstance(weka.core.Instance instance)Returns the class distribution for an instance.doublegetAbstentionClassification(weka.core.Instance inst)The prediction that made the classifier abstain.double[]getAbstentionDistribution(weka.core.Instance inst)The class distribution that made the classifier abstain.weka.core.CapabilitiesgetCapabilities()Returns default capabilities of the base classifier.protected doublegetDefaultMinProbability()Returns the default minimum probability that the chosen class label must meet.doublegetMinProbability()Returns the minimum probability that the chosen class label must meet.String[]getOptions()Gets the current option settings for the OptionHandler.StringglobalInfo()Returns a string describing classifier.EnumerationlistOptions()Returns an enumeration describing the available options.StringminProbabilityTipText()Returns the tip text for this propertyvoidsetMinProbability(double value)Sets the minimum probability that the chosen class label must meet.voidsetOptions(String[] options)Sets the OptionHandler's options using the given list.StringtoString()Returns the model.-
Methods inherited from class weka.classifiers.SingleClassifierEnhancer
classifierTipText, defaultClassifierOptions, defaultClassifierString, getClassifier, getClassifierSpec, postExecution, preExecution, setClassifier
-
Methods inherited from class weka.classifiers.AbstractClassifier
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, getRevision, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
-
-
-
-
Field Detail
-
MIN_PROBABILITY
public static final String MIN_PROBABILITY
- See Also:
- Constant Field Values
-
m_MinProbability
protected double m_MinProbability
the minimum probability that the classification must meet (0-1).
-
m_NumLabels
protected int m_NumLabels
the number of class labels.
-
-
Method Detail
-
globalInfo
public String globalInfo()
Returns a string describing classifier.- Returns:
- a description suitable for displaying in the explorer/experimenter gui
-
getDefaultMinProbability
protected double getDefaultMinProbability()
Returns the default minimum probability that the chosen class label must meet.- Returns:
- value the default
-
setMinProbability
public void setMinProbability(double value)
Sets the minimum probability that the chosen class label must meet.- Parameters:
value- the minimum probability
-
getMinProbability
public double getMinProbability()
Returns the minimum probability that the chosen class label must meet.- Returns:
- value the minimum probability
-
minProbabilityTipText
public String minProbabilityTipText()
Returns the tip text for this property- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
listOptions
public Enumeration listOptions()
Returns an enumeration describing the available options.- Specified by:
listOptionsin interfaceweka.core.OptionHandler- Overrides:
listOptionsin classweka.classifiers.SingleClassifierEnhancer- Returns:
- an enumeration of all the available options.
-
setOptions
public void setOptions(String[] options) throws Exception
Sets the OptionHandler's options using the given list. All options will be set (or reset) during this call (i.e. incremental setting of options is not possible).- Specified by:
setOptionsin interfaceweka.core.OptionHandler- Overrides:
setOptionsin classweka.classifiers.SingleClassifierEnhancer- Parameters:
options- the list of options as an array of strings- Throws:
Exception- if an option is not supported
-
getOptions
public String[] getOptions()
Gets the current option settings for the OptionHandler.- Specified by:
getOptionsin interfaceweka.core.OptionHandler- Overrides:
getOptionsin classweka.classifiers.SingleClassifierEnhancer- Returns:
- the list of current option settings as an array of strings
-
getCapabilities
public weka.core.Capabilities getCapabilities()
Returns default capabilities of the base classifier.- Specified by:
getCapabilitiesin interfaceweka.core.CapabilitiesHandler- Specified by:
getCapabilitiesin interfaceweka.classifiers.Classifier- Overrides:
getCapabilitiesin classweka.classifiers.SingleClassifierEnhancer- Returns:
- the capabilities of the base classifier
-
buildClassifier
public void buildClassifier(weka.core.Instances data) throws ExceptionGenerates a classifier. Must initialize all fields of the classifier that are not being set via options (ie. multiple calls of buildClassifier must always lead to the same result). Must not change the dataset in any way.- Specified by:
buildClassifierin interfaceweka.classifiers.Classifier- Parameters:
data- set of instances serving as training data- Throws:
Exception- if the classifier has not been generated successfully
-
canAbstain
public boolean canAbstain()
Whether abstaining is possible, e.g., used in meta-classifiers.- Specified by:
canAbstainin interfaceAbstainingClassifier- Returns:
- true if abstaining is possible
-
distributionForInstance
public double[] distributionForInstance(weka.core.Instance instance) throws ExceptionReturns the class distribution for an instance.- Specified by:
distributionForInstancein interfaceweka.classifiers.Classifier- Overrides:
distributionForInstancein classweka.classifiers.AbstractClassifier- Parameters:
instance- the instance to get the distribution for- Returns:
- the distribution
- Throws:
Exception- if classification fails
-
getAbstentionClassification
public double getAbstentionClassification(weka.core.Instance inst) throws ExceptionThe prediction that made the classifier abstain.- Specified by:
getAbstentionClassificationin interfaceAbstainingClassifier- Parameters:
inst- the instance to get the prediction for- Returns:
- the prediction
- Throws:
Exception- if fails to make prediction
-
getAbstentionDistribution
public double[] getAbstentionDistribution(weka.core.Instance inst) throws ExceptionThe class distribution that made the classifier abstain.- Specified by:
getAbstentionDistributionin interfaceAbstainingClassifier- Parameters:
inst- the instance to get the prediction for- Returns:
- the class distribution
- Throws:
Exception- if fails to make prediction
-
-