Class PLS1

  • All Implemented Interfaces:
    adams.core.Destroyable, adams.core.GlobalInfoSupporter, adams.core.logging.LoggingLevelHandler, adams.core.logging.LoggingSupporter, adams.core.option.OptionHandler, adams.core.SizeOfHandler, adams.core.TechnicalInformationHandler, Serializable, weka.core.CapabilitiesHandler, GenericPLSMatrixAccess

    public class PLS1
    extends AbstractSingleClassPLS
    Implementation of PLS1 algorithm.

    For more information see:

    Tormod Naes, Tomas Isaksson, Tom Fearn, Tony Davies (2002). A User Friendly Guide to Multivariate Calibration and Classification. NIR Publications.

    StatSoft, Inc.. Partial Least Squares (PLS).

    Bent Jorgensen, Yuri Goegebeur. Module 7: Partial least squares regression I.

    BibTeX:
     @book{Naes2002,
        author = {Tormod Naes and Tomas Isaksson and Tom Fearn and Tony Davies},
        publisher = {NIR Publications},
        title = {A User Friendly Guide to Multivariate Calibration and Classification},
        year = {2002},
        ISBN = {0-9528666-2-5}
     }
    
     @misc{missing_id,
        author = {StatSoft, Inc.},
        booktitle = {Electronic Textbook StatSoft},
        title = {Partial Least Squares (PLS)},
        HTTP = {http://www.statsoft.com/textbook/stpls.html}
     }
    
     @misc{missing_id,
        author = {Bent Jorgensen and Yuri Goegebeur},
        booktitle = {ST02: Multivariate Data Analysis and Chemometrics},
        title = {Module 7: Partial least squares regression I},
        HTTP = {http://statmaster.sdu.dk/courses/ST02/module07/}
     }
     


    Valid options are:

     -debug <value>
      If enabled, additional info may be output to the console.
      (default: false)
     -preprocessing <value>
      The type of preprocessing to perform.
      (default: CENTER)
     -C <value>
      The number of components to compute.
      (default: 20)
     -prediction <value>
      The type of prediction to perform.
      (default: NONE)
    Version:
    $Revision$
    Author:
    FracPete (fracpete at waikato dot ac dot nz)
    See Also:
    Serialized Form
    • Field Detail

      • m_r_hat

        protected weka.core.matrix.Matrix m_r_hat
        the regression vector "r-hat"
      • m_P

        protected weka.core.matrix.Matrix m_P
        the P matrix
      • m_W

        protected weka.core.matrix.Matrix m_W
        the W matrix
      • m_b_hat

        protected weka.core.matrix.Matrix m_b_hat
        the b-hat vector
    • Constructor Detail

      • PLS1

        public PLS1()
    • Method Detail

      • globalInfo

        public String globalInfo()
        Returns a string describing this class.
        Specified by:
        globalInfo in interface adams.core.GlobalInfoSupporter
        Specified by:
        globalInfo in class adams.core.option.AbstractOptionHandler
        Returns:
        a description of the class suitable for displaying in the explorer/experimenter gui
      • getTechnicalInformation

        public adams.core.TechnicalInformation getTechnicalInformation()
        Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.
        Specified by:
        getTechnicalInformation in interface adams.core.TechnicalInformationHandler
        Specified by:
        getTechnicalInformation in class AbstractPLS
        Returns:
        the technical information about this class
      • getMatrix

        public weka.core.matrix.Matrix getMatrix​(String name)
        Returns the matrix with the specified name.
        Specified by:
        getMatrix in interface GenericPLSMatrixAccess
        Specified by:
        getMatrix in class AbstractPLS
        Parameters:
        name - the name of the matrix
        Returns:
        the matrix, null if not available
      • predict

        protected weka.core.Instances predict​(weka.core.Instances data)
        Performs predictions on the data.
        Parameters:
        data - the input data
        Returns:
        the predicted data
      • doTransform

        protected weka.core.Instances doTransform​(weka.core.Instances data,
                                                  Map<String,​Object> params)
                                           throws Exception
        Transforms the data, initializes if necessary.
        Specified by:
        doTransform in class AbstractPLS
        Parameters:
        data - the data to use
        params - additional parameters
        Returns:
        the transformed data
        Throws:
        Exception