Package adams.data.instancesanalysis.pls
Class PLS1
- java.lang.Object
-
- adams.core.logging.LoggingObject
-
- adams.core.logging.CustomLoggingLevelObject
-
- adams.core.option.AbstractOptionHandler
-
- adams.data.instancesanalysis.pls.AbstractPLS
-
- adams.data.instancesanalysis.pls.AbstractSingleClassPLS
-
- adams.data.instancesanalysis.pls.PLS1
-
- All Implemented Interfaces:
adams.core.Destroyable,adams.core.GlobalInfoSupporter,adams.core.logging.LoggingLevelHandler,adams.core.logging.LoggingSupporter,adams.core.option.OptionHandler,adams.core.SizeOfHandler,adams.core.TechnicalInformationHandler,Serializable,weka.core.CapabilitiesHandler,GenericPLSMatrixAccess
public class PLS1 extends AbstractSingleClassPLS
Implementation of PLS1 algorithm.
For more information see:
Tormod Naes, Tomas Isaksson, Tom Fearn, Tony Davies (2002). A User Friendly Guide to Multivariate Calibration and Classification. NIR Publications.
StatSoft, Inc.. Partial Least Squares (PLS).
Bent Jorgensen, Yuri Goegebeur. Module 7: Partial least squares regression I.
BibTeX:@book{Naes2002, author = {Tormod Naes and Tomas Isaksson and Tom Fearn and Tony Davies}, publisher = {NIR Publications}, title = {A User Friendly Guide to Multivariate Calibration and Classification}, year = {2002}, ISBN = {0-9528666-2-5} } @misc{missing_id, author = {StatSoft, Inc.}, booktitle = {Electronic Textbook StatSoft}, title = {Partial Least Squares (PLS)}, HTTP = {http://www.statsoft.com/textbook/stpls.html} } @misc{missing_id, author = {Bent Jorgensen and Yuri Goegebeur}, booktitle = {ST02: Multivariate Data Analysis and Chemometrics}, title = {Module 7: Partial least squares regression I}, HTTP = {http://statmaster.sdu.dk/courses/ST02/module07/} }
Valid options are:-debug <value> If enabled, additional info may be output to the console. (default: false)
-preprocessing <value> The type of preprocessing to perform. (default: CENTER)
-C <value> The number of components to compute. (default: 20)
-prediction <value> The type of prediction to perform. (default: NONE)
- Version:
- $Revision$
- Author:
- FracPete (fracpete at waikato dot ac dot nz)
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description protected weka.core.matrix.Matrixm_b_hatthe b-hat vectorprotected weka.core.matrix.Matrixm_Pthe P matrixprotected weka.core.matrix.Matrixm_r_hatthe regression vector "r-hat"protected weka.core.matrix.Matrixm_Wthe W matrix-
Fields inherited from class adams.data.instancesanalysis.pls.AbstractSingleClassPLS
m_ClassMean, m_ClassStdDev, m_Filter, m_Missing, PARAM_CLASSVALUES
-
Fields inherited from class adams.data.instancesanalysis.pls.AbstractPLS
m_Initialized, m_NumComponents, m_OutputFormat, m_PredictionType, m_PreprocessingType, m_ReplaceMissing
-
-
Constructor Summary
Constructors Constructor Description PLS1()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description protected weka.core.InstancesdoTransform(weka.core.Instances data, Map<String,Object> params)Transforms the data, initializes if necessary.weka.core.matrix.MatrixgetLoadings()Returns the loadings, if available.weka.core.matrix.MatrixgetMatrix(String name)Returns the matrix with the specified name.String[]getMatrixNames()Returns the all the available matrices.adams.core.TechnicalInformationgetTechnicalInformation()Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.StringglobalInfo()Returns a string describing this class.booleanhasLoadings()Whether the algorithm supports return of loadings.protected weka.core.Instancespredict(weka.core.Instances data)Performs predictions on the data.voidreset()Resets the scheme.-
Methods inherited from class adams.data.instancesanalysis.pls.AbstractSingleClassPLS
determineOutputFormat, postTransform, preTransform
-
Methods inherited from class adams.data.instancesanalysis.pls.AbstractPLS
defineOptions, getCapabilities, getDefaultPreprocessingType, getNumComponents, getOutputFormat, getPredictionType, getPreprocessingType, getReplaceMissing, isInitialized, numComponentsTipText, predictionTypeTipText, preprocessingTypeTipText, replaceMissingTipText, setNumComponents, setPredictionType, setPreprocessingType, setReplaceMissing, transform
-
Methods inherited from class adams.core.option.AbstractOptionHandler
cleanUpOptions, destroy, finishInit, getDefaultLoggingLevel, getOptionManager, initialize, loggingLevelTipText, newOptionManager, setLoggingLevel, toCommandLine, toString
-
Methods inherited from class adams.core.logging.LoggingObject
configureLogger, getLogger, getLoggingLevel, initializeLogging, isLoggingEnabled, sizeOf
-
-
-
-
Method Detail
-
globalInfo
public String globalInfo()
Returns a string describing this class.- Specified by:
globalInfoin interfaceadams.core.GlobalInfoSupporter- Specified by:
globalInfoin classadams.core.option.AbstractOptionHandler- Returns:
- a description of the class suitable for displaying in the explorer/experimenter gui
-
getTechnicalInformation
public adams.core.TechnicalInformation getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.- Specified by:
getTechnicalInformationin interfaceadams.core.TechnicalInformationHandler- Specified by:
getTechnicalInformationin classAbstractPLS- Returns:
- the technical information about this class
-
reset
public void reset()
Resets the scheme.- Overrides:
resetin classAbstractSingleClassPLS
-
getMatrixNames
public String[] getMatrixNames()
Returns the all the available matrices.- Specified by:
getMatrixNamesin interfaceGenericPLSMatrixAccess- Specified by:
getMatrixNamesin classAbstractPLS- Returns:
- the names of the matrices
-
getMatrix
public weka.core.matrix.Matrix getMatrix(String name)
Returns the matrix with the specified name.- Specified by:
getMatrixin interfaceGenericPLSMatrixAccess- Specified by:
getMatrixin classAbstractPLS- Parameters:
name- the name of the matrix- Returns:
- the matrix, null if not available
-
hasLoadings
public boolean hasLoadings()
Whether the algorithm supports return of loadings.- Specified by:
hasLoadingsin interfaceGenericPLSMatrixAccess- Specified by:
hasLoadingsin classAbstractPLS- Returns:
- true if supported
- See Also:
getLoadings()
-
getLoadings
public weka.core.matrix.Matrix getLoadings()
Returns the loadings, if available.- Specified by:
getLoadingsin interfaceGenericPLSMatrixAccess- Specified by:
getLoadingsin classAbstractPLS- Returns:
- the loadings, null if not available
-
predict
protected weka.core.Instances predict(weka.core.Instances data)
Performs predictions on the data.- Parameters:
data- the input data- Returns:
- the predicted data
-
doTransform
protected weka.core.Instances doTransform(weka.core.Instances data, Map<String,Object> params) throws ExceptionTransforms the data, initializes if necessary.- Specified by:
doTransformin classAbstractPLS- Parameters:
data- the data to useparams- additional parameters- Returns:
- the transformed data
- Throws:
Exception
-
-