Package adams.flow.sink
Class WekaClassifierErrors.DataGenerator
- java.lang.Object
-
- adams.flow.sink.WekaClassifierErrors.DataGenerator
-
- Enclosing class:
- WekaClassifierErrors
public static class WekaClassifierErrors.DataGenerator extends Object
Helper class for generating visualization data.- Author:
- fracpete (fracpete at waikato dot ac dot nz)
-
-
Field Summary
Fields Modifier and Type Field Description protected AbstractErrorScaler
m_ErrorScaler
the scaler scheme to use.protected weka.classifiers.Evaluation
m_Evaluation
the underlying Evaluation object.protected weka.core.Instances
m_PlotInstances
the underlying data.protected weka.core.FastVector
m_PlotShapes
for storing the plot shapes.protected weka.core.FastVector
m_PlotSizes
for storing the plot sizes.protected boolean
m_Processed
whether the data has already been processed.
-
Constructor Summary
Constructors Constructor Description DataGenerator(weka.classifiers.Evaluation eval, AbstractErrorScaler scaler)
Initializes the generator.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description protected void
createDataset(weka.classifiers.Evaluation eval)
Generates a dataset, containing the predicted vs actual values.AbstractErrorScaler
getErrorScaler()
Returns the scaling scheme.weka.classifiers.Evaluation
getEvaluation()
Returns the underlying Evaluation object.weka.gui.visualize.PlotData2D
getPlotData()
Assembles and returns the plot.weka.core.Instances
getPlotInstances()
Returns the generated dataset that is plotted.protected void
process()
Processes the data if necessary.
-
-
-
Field Detail
-
m_Evaluation
protected weka.classifiers.Evaluation m_Evaluation
the underlying Evaluation object.
-
m_PlotInstances
protected weka.core.Instances m_PlotInstances
the underlying data.
-
m_PlotShapes
protected weka.core.FastVector m_PlotShapes
for storing the plot shapes.
-
m_PlotSizes
protected weka.core.FastVector m_PlotSizes
for storing the plot sizes.
-
m_ErrorScaler
protected AbstractErrorScaler m_ErrorScaler
the scaler scheme to use.
-
m_Processed
protected boolean m_Processed
whether the data has already been processed.
-
-
Constructor Detail
-
DataGenerator
public DataGenerator(weka.classifiers.Evaluation eval, AbstractErrorScaler scaler)
Initializes the generator.- Parameters:
eval
- the Evaluation object to usescaler
- the scaler scheme to use for the errors
-
-
Method Detail
-
process
protected void process()
Processes the data if necessary.
-
getEvaluation
public weka.classifiers.Evaluation getEvaluation()
Returns the underlying Evaluation object.- Returns:
- the Evaluation object
-
getErrorScaler
public AbstractErrorScaler getErrorScaler()
Returns the scaling scheme.- Returns:
- the scaler
-
getPlotInstances
public weka.core.Instances getPlotInstances()
Returns the generated dataset that is plotted.- Returns:
- the dataset
-
createDataset
protected void createDataset(weka.classifiers.Evaluation eval)
Generates a dataset, containing the predicted vs actual values.- Parameters:
eval
- for obtaining the dataset information and predictions
-
-