Package adams.ml.model.clustering
Class WekaClusterer
- java.lang.Object
-
- adams.core.logging.LoggingObject
-
- adams.core.logging.CustomLoggingLevelObject
-
- adams.core.option.AbstractOptionHandler
-
- adams.ml.model.clustering.AbstractClusterer
-
- adams.ml.model.clustering.WekaClusterer
-
- All Implemented Interfaces:
adams.core.Destroyable
,adams.core.GlobalInfoSupporter
,adams.core.logging.LoggingLevelHandler
,adams.core.logging.LoggingSupporter
,adams.core.option.OptionHandler
,adams.core.SizeOfHandler
,adams.ml.capabilities.CapabilitiesHandler
,adams.ml.model.Algorithm<adams.ml.model.clustering.ClusteringModel>
,adams.ml.model.clustering.Clusterer
,Serializable
public class WekaClusterer extends adams.ml.model.clustering.AbstractClusterer
Wraps around a Weka clusterer.
-logging-level <OFF|SEVERE|WARNING|INFO|CONFIG|FINE|FINER|FINEST> (property: loggingLevel) The logging level for outputting errors and debugging output. default: WARNING
-strict-capabilities <boolean> (property: strictCapabilities) If enabled, a strict capabilities test is performed; otherwise, it is attempted to adjust the data to fit the algorithm's capabilities. default: false
-clusterer <weka.clusterers.Clusterer> (property: clusterer) The clusterer to use. default: weka.clusterers.SimpleKMeans -init 0 -max-candidates 100 -periodic-pruning 10000 -min-density 2.0 -t1 -1.25 -t2 -1.0 -N 2 -A \"weka.core.EuclideanDistance -R first-last\" -I 500 -num-slots 1 -S 10
- Version:
- $Revision$
- Author:
- FracPete (fracpete at waikato dot ac dot nz)
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description protected weka.clusterers.Clusterer
m_Clusterer
the weka classifier to use.
-
Constructor Summary
Constructors Constructor Description WekaClusterer()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description String
clustererTipText()
Returns the tip text for this property.void
defineOptions()
Adds options to the internal list of options.protected adams.ml.model.clustering.ClusteringModel
doBuildModel(adams.ml.data.Dataset data)
Builds a model from the data.adams.ml.capabilities.Capabilities
getCapabilities()
Returns the algorithm's capabilities in terms of data.weka.clusterers.Clusterer
getClusterer()
Returns the clusterer to use.String
globalInfo()
Returns a string describing the object.void
setClusterer(weka.clusterers.Clusterer value)
Sets the clusterer to use.-
Methods inherited from class adams.ml.model.clustering.AbstractClusterer
buildModel, check, getStrictCapabilities, handles, setStrictCapabilities, strictCapabilitiesTipText
-
Methods inherited from class adams.core.option.AbstractOptionHandler
cleanUpOptions, destroy, finishInit, getDefaultLoggingLevel, getOptionManager, initialize, loggingLevelTipText, newOptionManager, reset, setLoggingLevel, toCommandLine, toString
-
Methods inherited from class adams.core.logging.LoggingObject
configureLogger, getLogger, getLoggingLevel, initializeLogging, isLoggingEnabled, sizeOf
-
-
-
-
Method Detail
-
globalInfo
public String globalInfo()
Returns a string describing the object.- Specified by:
globalInfo
in interfaceadams.core.GlobalInfoSupporter
- Specified by:
globalInfo
in classadams.core.option.AbstractOptionHandler
- Returns:
- a description suitable for displaying in the gui
-
defineOptions
public void defineOptions()
Adds options to the internal list of options.- Specified by:
defineOptions
in interfaceadams.core.option.OptionHandler
- Overrides:
defineOptions
in classadams.ml.model.clustering.AbstractClusterer
-
setClusterer
public void setClusterer(weka.clusterers.Clusterer value)
Sets the clusterer to use.- Parameters:
value
- the clusterer
-
getClusterer
public weka.clusterers.Clusterer getClusterer()
Returns the clusterer to use.- Returns:
- the clusterer
-
clustererTipText
public String clustererTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
getCapabilities
public adams.ml.capabilities.Capabilities getCapabilities()
Returns the algorithm's capabilities in terms of data.- Specified by:
getCapabilities
in interfaceadams.ml.model.Algorithm<adams.ml.model.clustering.ClusteringModel>
- Specified by:
getCapabilities
in interfaceadams.ml.capabilities.CapabilitiesHandler
- Overrides:
getCapabilities
in classadams.ml.model.clustering.AbstractClusterer
- Returns:
- the algorithm's capabilities
-
doBuildModel
protected adams.ml.model.clustering.ClusteringModel doBuildModel(adams.ml.data.Dataset data) throws Exception
Builds a model from the data.- Specified by:
doBuildModel
in classadams.ml.model.clustering.AbstractClusterer
- Parameters:
data
- the data to use for building the model- Returns:
- the generated model
- Throws:
Exception
- if the build fails
-
-