Package adams.ml.model.regression
Class WekaRegressor
- java.lang.Object
-
- adams.core.logging.LoggingObject
-
- adams.core.logging.CustomLoggingLevelObject
-
- adams.core.option.AbstractOptionHandler
-
- adams.ml.model.regression.AbstractRegressor
-
- adams.ml.model.regression.WekaRegressor
-
- All Implemented Interfaces:
adams.core.Destroyable
,adams.core.GlobalInfoSupporter
,adams.core.logging.LoggingLevelHandler
,adams.core.logging.LoggingSupporter
,adams.core.option.OptionHandler
,adams.core.SizeOfHandler
,adams.ml.capabilities.CapabilitiesHandler
,adams.ml.model.Algorithm<adams.ml.model.regression.RegressionModel>
,adams.ml.model.regression.Regressor
,Serializable
public class WekaRegressor extends adams.ml.model.regression.AbstractRegressor
Wraps around a Weka classifier that handles numeric classes (= regression).
-logging-level <OFF|SEVERE|WARNING|INFO|CONFIG|FINE|FINER|FINEST> (property: loggingLevel) The logging level for outputting errors and debugging output. default: WARNING
-strict-capabilities <boolean> (property: strictCapabilities) If enabled, a strict capabilities test is performed; otherwise, it is attempted to adjust the data to fit the algorithm's capabilities. default: false
-classifier <weka.classifiers.Classifier> (property: classifier) The classifier to use. default: weka.classifiers.functions.LinearRegressionJ -S 0 -R 1.0E-8 -num-decimal-places 4
- Version:
- $Revision$
- Author:
- FracPete (fracpete at waikato dot ac dot nz)
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description protected weka.classifiers.Classifier
m_Classifier
the weka classifier to use.
-
Constructor Summary
Constructors Constructor Description WekaRegressor()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description String
classifierTipText()
Returns the tip text for this property.void
defineOptions()
Adds options to the internal list of options.protected adams.ml.model.regression.RegressionModel
doBuildModel(adams.ml.data.Dataset data)
Builds a model from the data.adams.ml.capabilities.Capabilities
getCapabilities()
Returns the algorithm's capabilities in terms of data.weka.classifiers.Classifier
getClassifier()
Returns the classifier to use.String
globalInfo()
Returns a string describing the object.void
setClassifier(weka.classifiers.Classifier value)
Sets the classifier to use.-
Methods inherited from class adams.ml.model.regression.AbstractRegressor
buildModel, check, getStrictCapabilities, handles, setStrictCapabilities, strictCapabilitiesTipText
-
Methods inherited from class adams.core.option.AbstractOptionHandler
cleanUpOptions, destroy, finishInit, getDefaultLoggingLevel, getOptionManager, initialize, loggingLevelTipText, newOptionManager, reset, setLoggingLevel, toCommandLine, toString
-
Methods inherited from class adams.core.logging.LoggingObject
configureLogger, getLogger, getLoggingLevel, initializeLogging, isLoggingEnabled, sizeOf
-
-
-
-
Method Detail
-
globalInfo
public String globalInfo()
Returns a string describing the object.- Specified by:
globalInfo
in interfaceadams.core.GlobalInfoSupporter
- Specified by:
globalInfo
in classadams.core.option.AbstractOptionHandler
- Returns:
- a description suitable for displaying in the gui
-
defineOptions
public void defineOptions()
Adds options to the internal list of options.- Specified by:
defineOptions
in interfaceadams.core.option.OptionHandler
- Overrides:
defineOptions
in classadams.ml.model.regression.AbstractRegressor
-
setClassifier
public void setClassifier(weka.classifiers.Classifier value)
Sets the classifier to use.- Parameters:
value
- the classifier
-
getClassifier
public weka.classifiers.Classifier getClassifier()
Returns the classifier to use.- Returns:
- the classifier
-
classifierTipText
public String classifierTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
getCapabilities
public adams.ml.capabilities.Capabilities getCapabilities()
Returns the algorithm's capabilities in terms of data.- Specified by:
getCapabilities
in interfaceadams.ml.model.Algorithm<adams.ml.model.regression.RegressionModel>
- Specified by:
getCapabilities
in interfaceadams.ml.capabilities.CapabilitiesHandler
- Overrides:
getCapabilities
in classadams.ml.model.regression.AbstractRegressor
- Returns:
- the algorithm's capabilities
-
doBuildModel
protected adams.ml.model.regression.RegressionModel doBuildModel(adams.ml.data.Dataset data) throws Exception
Builds a model from the data.- Specified by:
doBuildModel
in classadams.ml.model.regression.AbstractRegressor
- Parameters:
data
- the data to use for building the model- Returns:
- the generated model
- Throws:
Exception
- if the build fails
-
-