Package weka.classifiers.functions
Class FromPredictions
- java.lang.Object
-
- adams.core.logging.LoggingObject
-
- adams.core.logging.CustomLoggingLevelObject
-
- adams.core.option.AbstractOptionHandler
-
- weka.core.AbstractSimpleOptionHandler
-
- weka.classifiers.simple.AbstractSimpleClassifier
-
- weka.classifiers.functions.FromPredictions
-
- All Implemented Interfaces:
adams.core.Destroyable,adams.core.GlobalInfoSupporter,adams.core.logging.LoggingLevelHandler,adams.core.logging.LoggingSupporter,adams.core.option.OptionHandler,adams.core.SizeOfHandler,Serializable,weka.classifiers.Classifier,weka.core.CapabilitiesHandler,weka.core.OptionHandler
public class FromPredictions extends AbstractSimpleClassifier
Encapsulates predictions from a spreadsheet. Dummy classifier for the Investigator.- Author:
- FracPete (fracpete at waikato dot ac dot nz)
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description protected adams.data.spreadsheet.SpreadSheetColumnIndexm_Actualthe column with the actual values.protected intm_ActualIndexthe actual column index.protected adams.data.spreadsheet.SpreadSheetColumnRangem_Additionalthe additional columns in the spreadsheet to add to the plot containers.protected int[]m_AdditionalIndicesthe additional column indices.protected adams.data.spreadsheet.SpreadSheetUnorderedColumnRangem_ClassDistributionthe class distribution columns (if any).protected int[]m_ClassDistributionIndicesthe class distribution column indices.protected adams.data.spreadsheet.SpreadSheetColumnIndexm_Predictedthe column with the predicted values.protected intm_PredictedIndexthe predicted column index.protected adams.data.spreadsheet.SpreadSheetm_Predictionsthe actual predictions.protected adams.core.io.PlaceholderFilem_PredictionsFilethe predictions to use.protected adams.data.io.input.SpreadSheetReaderm_Readerthe spreadsheet reader to use.protected adams.data.spreadsheet.SpreadSheetColumnIndexm_Weightthe column with the error values (optional).protected intm_WeightIndexthe weight column index.
-
Constructor Summary
Constructors Constructor Description FromPredictions()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description StringactualTipText()Returns the tip text for this property.StringadditionalTipText()Returns the tip text for this property.voidbuildClassifier(weka.core.Instances data)Just loads the predictions.StringclassDistributionTipText()Returns the tip text for this property.doubleclassifyInstance(weka.core.Instance instance)Always returns 0.voiddefineOptions()Adds options to the internal list of options.adams.data.spreadsheet.SpreadSheetColumnIndexgetActual()Returns the column with the actual values.intgetActualIndex()Returns the actual 0-based index.adams.data.spreadsheet.SpreadSheetColumnRangegetAdditional()Returns the additional columns to add to the plot containers.int[]getAdditionalIndices()Returns the 0-based indices of the additional columns.adams.data.spreadsheet.SpreadSheetUnorderedColumnRangegetClassDistribution()Returns the class distribution columns.int[]getClassDistributionIndices()Returns the 0-based indices of the class distribution columns.adams.data.spreadsheet.SpreadSheetColumnIndexgetPredicted()Returns the column with the predicted values.intgetPredictedIndex()Returns the predicted 0-based index.adams.data.spreadsheet.SpreadSheetgetPredictions()Returns the predictions that were loaded.adams.core.io.PlaceholderFilegetPredictionsFile()Returns the file with the predictions.adams.data.io.input.SpreadSheetReadergetReader()Returns the spreadsheet reader to use.adams.data.spreadsheet.SpreadSheetColumnIndexgetWeight()Returns the column with the weight values.intgetWeightIndex()Returns the weight 0-based index.StringglobalInfo()Returns a string describing the object.StringpredictedTipText()Returns the tip text for this property.StringpredictionsFileTipText()Returns the tip text for this property.StringreaderTipText()Returns the tip text for this property.voidsetActual(adams.data.spreadsheet.SpreadSheetColumnIndex value)Sets the column with the actual values.voidsetAdditional(adams.data.spreadsheet.SpreadSheetColumnRange value)Sets the additional columns to add to the plot containers.voidsetClassDistribution(adams.data.spreadsheet.SpreadSheetUnorderedColumnRange value)Sets the class distribution columns.voidsetPredicted(adams.data.spreadsheet.SpreadSheetColumnIndex value)Sets the column with the predicted values.voidsetPredictionsFile(adams.core.io.PlaceholderFile value)Sets the file with the predictions.voidsetReader(adams.data.io.input.SpreadSheetReader value)Sets the spreadsheet reader to use.voidsetWeight(adams.data.spreadsheet.SpreadSheetColumnIndex value)Sets the column with the weight values.StringweightTipText()Returns the tip text for this property.-
Methods inherited from class weka.classifiers.simple.AbstractSimpleClassifier
distributionForInstance, getCapabilities, runClassifier
-
Methods inherited from class weka.core.AbstractSimpleOptionHandler
getOptions, listOptions, setOptions
-
Methods inherited from class adams.core.option.AbstractOptionHandler
cleanUpOptions, destroy, finishInit, getDefaultLoggingLevel, getOptionManager, initialize, loggingLevelTipText, newOptionManager, reset, setLoggingLevel, toCommandLine, toString
-
Methods inherited from class adams.core.logging.LoggingObject
configureLogger, getLogger, getLoggingLevel, initializeLogging, isLoggingEnabled, sizeOf
-
-
-
-
Field Detail
-
m_PredictionsFile
protected adams.core.io.PlaceholderFile m_PredictionsFile
the predictions to use.
-
m_Reader
protected adams.data.io.input.SpreadSheetReader m_Reader
the spreadsheet reader to use.
-
m_Actual
protected adams.data.spreadsheet.SpreadSheetColumnIndex m_Actual
the column with the actual values.
-
m_ActualIndex
protected int m_ActualIndex
the actual column index.
-
m_Predicted
protected adams.data.spreadsheet.SpreadSheetColumnIndex m_Predicted
the column with the predicted values.
-
m_PredictedIndex
protected int m_PredictedIndex
the predicted column index.
-
m_Weight
protected adams.data.spreadsheet.SpreadSheetColumnIndex m_Weight
the column with the error values (optional).
-
m_WeightIndex
protected int m_WeightIndex
the weight column index.
-
m_ClassDistribution
protected adams.data.spreadsheet.SpreadSheetUnorderedColumnRange m_ClassDistribution
the class distribution columns (if any).
-
m_ClassDistributionIndices
protected int[] m_ClassDistributionIndices
the class distribution column indices.
-
m_Additional
protected adams.data.spreadsheet.SpreadSheetColumnRange m_Additional
the additional columns in the spreadsheet to add to the plot containers.
-
m_AdditionalIndices
protected int[] m_AdditionalIndices
the additional column indices.
-
m_Predictions
protected adams.data.spreadsheet.SpreadSheet m_Predictions
the actual predictions.
-
-
Method Detail
-
globalInfo
public String globalInfo()
Returns a string describing the object.- Specified by:
globalInfoin interfaceadams.core.GlobalInfoSupporter- Specified by:
globalInfoin classadams.core.option.AbstractOptionHandler- Returns:
- a description suitable for displaying in the gui
-
defineOptions
public void defineOptions()
Adds options to the internal list of options.- Specified by:
defineOptionsin interfaceadams.core.option.OptionHandler- Overrides:
defineOptionsin classadams.core.option.AbstractOptionHandler
-
setPredictionsFile
public void setPredictionsFile(adams.core.io.PlaceholderFile value)
Sets the file with the predictions.- Parameters:
value- the file
-
getPredictionsFile
public adams.core.io.PlaceholderFile getPredictionsFile()
Returns the file with the predictions.- Returns:
- the file
-
predictionsFileTipText
public String predictionsFileTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
setReader
public void setReader(adams.data.io.input.SpreadSheetReader value)
Sets the spreadsheet reader to use.- Parameters:
value- the reader
-
getReader
public adams.data.io.input.SpreadSheetReader getReader()
Returns the spreadsheet reader to use.- Returns:
- the reader
-
readerTipText
public String readerTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
setActual
public void setActual(adams.data.spreadsheet.SpreadSheetColumnIndex value)
Sets the column with the actual values.- Parameters:
value- the column
-
getActual
public adams.data.spreadsheet.SpreadSheetColumnIndex getActual()
Returns the column with the actual values.- Returns:
- the range
-
actualTipText
public String actualTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
setPredicted
public void setPredicted(adams.data.spreadsheet.SpreadSheetColumnIndex value)
Sets the column with the predicted values.- Parameters:
value- the column
-
getPredicted
public adams.data.spreadsheet.SpreadSheetColumnIndex getPredicted()
Returns the column with the predicted values.- Returns:
- the range
-
predictedTipText
public String predictedTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
setWeight
public void setWeight(adams.data.spreadsheet.SpreadSheetColumnIndex value)
Sets the column with the weight values.- Parameters:
value- the column
-
getWeight
public adams.data.spreadsheet.SpreadSheetColumnIndex getWeight()
Returns the column with the weight values.- Returns:
- the column
-
weightTipText
public String weightTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
setClassDistribution
public void setClassDistribution(adams.data.spreadsheet.SpreadSheetUnorderedColumnRange value)
Sets the class distribution columns.- Parameters:
value- the columns
-
getClassDistribution
public adams.data.spreadsheet.SpreadSheetUnorderedColumnRange getClassDistribution()
Returns the class distribution columns.- Returns:
- the columns
-
classDistributionTipText
public String classDistributionTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
setAdditional
public void setAdditional(adams.data.spreadsheet.SpreadSheetColumnRange value)
Sets the additional columns to add to the plot containers.- Parameters:
value- the columns
-
getAdditional
public adams.data.spreadsheet.SpreadSheetColumnRange getAdditional()
Returns the additional columns to add to the plot containers.- Returns:
- the columns
-
additionalTipText
public String additionalTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
getPredictions
public adams.data.spreadsheet.SpreadSheet getPredictions()
Returns the predictions that were loaded.- Returns:
- the predictions, null if not available
-
getActualIndex
public int getActualIndex()
Returns the actual 0-based index.- Returns:
- the index, -1 if not initialized
-
getPredictedIndex
public int getPredictedIndex()
Returns the predicted 0-based index.- Returns:
- the index, -1 if not initialized
-
getWeightIndex
public int getWeightIndex()
Returns the weight 0-based index.- Returns:
- the index, -1 if not initialized
-
getClassDistributionIndices
public int[] getClassDistributionIndices()
Returns the 0-based indices of the class distribution columns.- Returns:
- the indices, 0-length array if not initialized or not used
-
getAdditionalIndices
public int[] getAdditionalIndices()
Returns the 0-based indices of the additional columns.- Returns:
- the indices, 0-length array if not initialized or not used
-
buildClassifier
public void buildClassifier(weka.core.Instances data) throws ExceptionJust loads the predictions.- Parameters:
data- ignored- Throws:
Exception- if loading of predictions failed
-
classifyInstance
public double classifyInstance(weka.core.Instance instance) throws ExceptionAlways returns 0.- Specified by:
classifyInstancein interfaceweka.classifiers.Classifier- Overrides:
classifyInstancein classAbstractSimpleClassifier- Parameters:
instance- the instance to be classified- Returns:
- always 0
- Throws:
Exception- never thrown
-
-