Package weka.classifiers.functions
Class GeneticAlgorithm
- java.lang.Object
-
- weka.classifiers.AbstractClassifier
-
- weka.classifiers.functions.GeneticAlgorithm
-
- All Implemented Interfaces:
Serializable,Cloneable,weka.classifiers.Classifier,weka.core.BatchPredictor,weka.core.CapabilitiesHandler,weka.core.CapabilitiesIgnorer,weka.core.CommandlineRunnable,weka.core.OptionHandler,weka.core.RevisionHandler
public class GeneticAlgorithm extends weka.classifiers.AbstractClassifierApplies the specified genetic algorithm to the training data and uses the best setup for the final model. Valid options are:-algorithm <classname + options> The genetic algorithm. (default: adams.genetic.Hermione)
-output-debug-info If set, classifier is run in debug mode and may output additional info to the console
-do-not-check-capabilities If set, classifier capabilities are not checked before classifier is built (use with caution).
- Version:
- $Revision$
- Author:
- fracpete (fracpete at waikato dot ac dot nz)
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description protected AbstractClassifierBasedGeneticAlgorithmm_Algorithmthe genetic algorithm.protected weka.classifiers.Classifierm_Modelthe final model.
-
Constructor Summary
Constructors Constructor Description GeneticAlgorithm()
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description StringalgorithmTipText()Returns the tip text for this property.voidbuildClassifier(weka.core.Instances data)Generates a classifier.doubleclassifyInstance(weka.core.Instance instance)Classifies the given test instance.double[]distributionForInstance(weka.core.Instance instance)Predicts the class memberships for a given instance.AbstractClassifierBasedGeneticAlgorithmgetAlgorithm()Returns the seed value for the random values.weka.core.CapabilitiesgetCapabilities()Returns the Capabilities of this classifier.String[]getOptions()returns the options of the current setupStringgetRevision()Returns the revision string.StringglobalInfo()Returns a string describing classifierEnumerationlistOptions()Gets an enumeration describing the available options.static voidmain(String[] args)Main method for running this class.voidsetAlgorithm(AbstractClassifierBasedGeneticAlgorithm value)Sets the genetic algorithm to use.voidsetOptions(String[] options)Parses the options for this object.StringtoString()Returns a string representation of the built model.-
Methods inherited from class weka.classifiers.AbstractClassifier
batchSizeTipText, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
-
-
-
-
Field Detail
-
m_Algorithm
protected AbstractClassifierBasedGeneticAlgorithm m_Algorithm
the genetic algorithm.
-
m_Model
protected weka.classifiers.Classifier m_Model
the final model.
-
-
Method Detail
-
globalInfo
public String globalInfo()
Returns a string describing classifier- Returns:
- a description suitable for displaying in the explorer/experimenter gui
-
listOptions
public Enumeration listOptions()
Gets an enumeration describing the available options.- Specified by:
listOptionsin interfaceweka.core.OptionHandler- Overrides:
listOptionsin classweka.classifiers.AbstractClassifier- Returns:
- an enumeration of all the available options.
-
getOptions
public String[] getOptions()
returns the options of the current setup- Specified by:
getOptionsin interfaceweka.core.OptionHandler- Overrides:
getOptionsin classweka.classifiers.AbstractClassifier- Returns:
- the current options
-
setOptions
public void setOptions(String[] options) throws Exception
Parses the options for this object.- Specified by:
setOptionsin interfaceweka.core.OptionHandler- Overrides:
setOptionsin classweka.classifiers.AbstractClassifier- Parameters:
options- the options to use- Throws:
Exception- if setting of options fails
-
setAlgorithm
public void setAlgorithm(AbstractClassifierBasedGeneticAlgorithm value)
Sets the genetic algorithm to use.- Parameters:
value- the algorithm
-
getAlgorithm
public AbstractClassifierBasedGeneticAlgorithm getAlgorithm()
Returns the seed value for the random values.- Returns:
- the seed
-
algorithmTipText
public String algorithmTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
getCapabilities
public weka.core.Capabilities getCapabilities()
Returns the Capabilities of this classifier. Maximally permissive capabilities are allowed by default. Derived classifiers should override this method and first disable all capabilities and then enable just those capabilities that make sense for the scheme.- Specified by:
getCapabilitiesin interfaceweka.core.CapabilitiesHandler- Specified by:
getCapabilitiesin interfaceweka.classifiers.Classifier- Overrides:
getCapabilitiesin classweka.classifiers.AbstractClassifier- Returns:
- the capabilities of this object
- See Also:
Capabilities
-
buildClassifier
public void buildClassifier(weka.core.Instances data) throws ExceptionGenerates a classifier.- Parameters:
data- set of instances serving as training data- Throws:
Exception- if the classifier has not been generated successfully
-
classifyInstance
public double classifyInstance(weka.core.Instance instance) throws ExceptionClassifies the given test instance. The instance has to belong to a dataset when it's being classified.- Specified by:
classifyInstancein interfaceweka.classifiers.Classifier- Overrides:
classifyInstancein classweka.classifiers.AbstractClassifier- Parameters:
instance- the instance to be classified- Returns:
- the predicted most likely class for the instance or Instance.missingValue() if no prediction is made
- Throws:
Exception- if an error occurred during the prediction
-
distributionForInstance
public double[] distributionForInstance(weka.core.Instance instance) throws ExceptionPredicts the class memberships for a given instance. If an instance is unclassified, the returned array elements must be all zero. If the class is numeric, the array must consist of only one element, which contains the predicted value.- Specified by:
distributionForInstancein interfaceweka.classifiers.Classifier- Overrides:
distributionForInstancein classweka.classifiers.AbstractClassifier- Parameters:
instance- the instance to be classified- Returns:
- an array containing the estimated membership probabilities of the test instance in each class or the numeric prediction
- Throws:
Exception- if distribution could not be computed successfully
-
getRevision
public String getRevision()
Returns the revision string.- Specified by:
getRevisionin interfaceweka.core.RevisionHandler- Overrides:
getRevisionin classweka.classifiers.AbstractClassifier- Returns:
- the revision
-
toString
public String toString()
Returns a string representation of the built model.
-
main
public static void main(String[] args)
Main method for running this class.- Parameters:
args- the commandline parameters
-
-