Package weka.classifiers.functions
Class SimpleLinearRegressionWithAccess
- java.lang.Object
-
- weka.classifiers.AbstractClassifier
-
- weka.classifiers.functions.SimpleLinearRegressionWithAccess
-
- All Implemented Interfaces:
Serializable
,Cloneable
,weka.classifiers.Classifier
,weka.core.BatchPredictor
,weka.core.CapabilitiesHandler
,weka.core.CapabilitiesIgnorer
,weka.core.CommandlineRunnable
,weka.core.OptionHandler
,weka.core.RevisionHandler
,weka.core.WeightedInstancesHandler
- Direct Known Subclasses:
SimpleLinearRegressionIntervalEstimator
public class SimpleLinearRegressionWithAccess extends weka.classifiers.AbstractClassifier implements weka.core.WeightedInstancesHandler
Learns a simple linear regression model. Picks the attribute that results in the lowest squared error. Can only deal with numeric attributes.
Makes standard errors available. Valid options are:-additional-stats Output additional statistics.
-output-debug-info If set, classifier is run in debug mode and may output additional info to the console
-do-not-check-capabilities If set, classifier capabilities are not checked before classifier is built (use with caution).
- Version:
- $Revision: 11130 $
- Author:
- Eibe Frank ([email protected])
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description protected weka.core.Attribute
m_attribute
The chosen attributeprotected int
m_attributeIndex
The index of the chosen attributeprotected double
m_classMeanForMissing
The class mean for missing valuesprotected int
m_df
Degrees of freedom, used in statistical calculationsprotected double
m_fstat
F-statistic for the regressionprotected double
m_intercept
The interceptprotected boolean
m_outputAdditionalStats
Whether to output additional statistics such as std.protected double
m_rsquared
R^2 value for the regressionprotected double
m_rsquaredAdj
Adjusted R^2 value for the regressionprotected double
m_seIntercept
standard error of the interceptprotected double
m_seSlope
standard error of the slopeprotected double
m_slope
The slopeprotected boolean
m_suppressErrorMessage
If true, suppress error message if no useful attribute was foundprotected double
m_tstatIntercept
t-statistic of the interceptprotected double
m_tstatSlope
t-statistic of the slope
-
Constructor Summary
Constructors Constructor Description SimpleLinearRegressionWithAccess()
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description void
buildClassifier(weka.core.Instances insts)
Builds a simple linear regression model given the supplied training data.double
classifyInstance(weka.core.Instance inst)
Generate a prediction for the supplied instance.boolean
foundUsefulAttribute()
Returns true if a usable attribute was found.int
getAttributeIndex()
Returns the index of the attribute used in the regression.weka.core.Capabilities
getCapabilities()
Returns default capabilities of the classifier.double
getIntercept()
Returns the intercept of the function.double
getInterceptSE()
Returns the standard error intercept of the function.String[]
getOptions()
Gets the current settings of the classifier.boolean
getOutputAdditionalStats()
Get whether to output additional statistics (such as std.String
getRevision()
Returns the revision string.double
getSlope()
Returns the slope of the function.double
getSlopeSE()
Returns the standard error of slope of the function.String
globalInfo()
Returns a string describing this classifierEnumeration<weka.core.Option>
listOptions()
Returns an enumeration describing the available options.static void
main(String[] argv)
Main method for testing this classString
outputAdditionalStatsTipText()
Returns the tip text for this property.void
setOptions(String[] options)
Parses a given list of options.void
setOutputAdditionalStats(boolean additional)
Set whether to output additional statistics (such as std.void
setSuppressErrorMessage(boolean s)
Turn off the error message that is reported when no useful attribute is found.String
toString()
Returns a description of this classifier as a string-
Methods inherited from class weka.classifiers.AbstractClassifier
batchSizeTipText, debugTipText, distributionForInstance, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, postExecution, preExecution, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
-
-
-
-
Field Detail
-
m_attribute
protected weka.core.Attribute m_attribute
The chosen attribute
-
m_attributeIndex
protected int m_attributeIndex
The index of the chosen attribute
-
m_slope
protected double m_slope
The slope
-
m_intercept
protected double m_intercept
The intercept
-
m_classMeanForMissing
protected double m_classMeanForMissing
The class mean for missing values
-
m_outputAdditionalStats
protected boolean m_outputAdditionalStats
Whether to output additional statistics such as std. dev. of coefficients and t-stats
-
m_df
protected int m_df
Degrees of freedom, used in statistical calculations
-
m_seSlope
protected double m_seSlope
standard error of the slope
-
m_seIntercept
protected double m_seIntercept
standard error of the intercept
-
m_tstatSlope
protected double m_tstatSlope
t-statistic of the slope
-
m_tstatIntercept
protected double m_tstatIntercept
t-statistic of the intercept
-
m_rsquared
protected double m_rsquared
R^2 value for the regression
-
m_rsquaredAdj
protected double m_rsquaredAdj
Adjusted R^2 value for the regression
-
m_fstat
protected double m_fstat
F-statistic for the regression
-
m_suppressErrorMessage
protected boolean m_suppressErrorMessage
If true, suppress error message if no useful attribute was found
-
-
Method Detail
-
globalInfo
public String globalInfo()
Returns a string describing this classifier- Returns:
- a description of the classifier suitable for displaying in the explorer/experimenter gui
-
listOptions
public Enumeration<weka.core.Option> listOptions()
Returns an enumeration describing the available options.- Specified by:
listOptions
in interfaceweka.core.OptionHandler
- Overrides:
listOptions
in classweka.classifiers.AbstractClassifier
- Returns:
- an enumeration of all the available options.
-
setOptions
public void setOptions(String[] options) throws Exception
Parses a given list of options. Valid options are:-additional-stats Output additional statistics.
-output-debug-info If set, classifier is run in debug mode and may output additional info to the console
-do-not-check-capabilities If set, classifier capabilities are not checked before classifier is built (use with caution).
- Specified by:
setOptions
in interfaceweka.core.OptionHandler
- Overrides:
setOptions
in classweka.classifiers.AbstractClassifier
- Parameters:
options
- the list of options as an array of strings- Throws:
Exception
- if an option is not supported
-
getOptions
public String[] getOptions()
Gets the current settings of the classifier.- Specified by:
getOptions
in interfaceweka.core.OptionHandler
- Overrides:
getOptions
in classweka.classifiers.AbstractClassifier
- Returns:
- an array of strings suitable for passing to setOptions
-
outputAdditionalStatsTipText
public String outputAdditionalStatsTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the explorer/experimenter gui
-
setOutputAdditionalStats
public void setOutputAdditionalStats(boolean additional)
Set whether to output additional statistics (such as std. deviation of coefficients and t-statistics- Parameters:
additional
- true if additional stats are to be output
-
getOutputAdditionalStats
public boolean getOutputAdditionalStats()
Get whether to output additional statistics (such as std. deviation of coefficients and t-statistics- Returns:
- true if additional stats are to be output
-
classifyInstance
public double classifyInstance(weka.core.Instance inst) throws Exception
Generate a prediction for the supplied instance.- Specified by:
classifyInstance
in interfaceweka.classifiers.Classifier
- Overrides:
classifyInstance
in classweka.classifiers.AbstractClassifier
- Parameters:
inst
- the instance to predict.- Returns:
- the prediction
- Throws:
Exception
- if an error occurs
-
getCapabilities
public weka.core.Capabilities getCapabilities()
Returns default capabilities of the classifier.- Specified by:
getCapabilities
in interfaceweka.core.CapabilitiesHandler
- Specified by:
getCapabilities
in interfaceweka.classifiers.Classifier
- Overrides:
getCapabilities
in classweka.classifiers.AbstractClassifier
- Returns:
- the capabilities of this classifier
-
buildClassifier
public void buildClassifier(weka.core.Instances insts) throws Exception
Builds a simple linear regression model given the supplied training data.- Specified by:
buildClassifier
in interfaceweka.classifiers.Classifier
- Parameters:
insts
- the training data.- Throws:
Exception
- if an error occurs
-
foundUsefulAttribute
public boolean foundUsefulAttribute()
Returns true if a usable attribute was found.- Returns:
- true if a usable attribute was found.
-
getAttributeIndex
public int getAttributeIndex()
Returns the index of the attribute used in the regression.- Returns:
- the index of the attribute.
-
getSlope
public double getSlope()
Returns the slope of the function.- Returns:
- the slope.
-
getSlopeSE
public double getSlopeSE()
Returns the standard error of slope of the function.- Returns:
- the SE of the slope.
-
getIntercept
public double getIntercept()
Returns the intercept of the function.- Returns:
- the intercept.
-
getInterceptSE
public double getInterceptSE()
Returns the standard error intercept of the function.- Returns:
- the standard error of the intercept.
-
setSuppressErrorMessage
public void setSuppressErrorMessage(boolean s)
Turn off the error message that is reported when no useful attribute is found.- Parameters:
s
- if set to true turns off the error message
-
toString
public String toString()
Returns a description of this classifier as a string
-
getRevision
public String getRevision()
Returns the revision string.- Specified by:
getRevision
in interfaceweka.core.RevisionHandler
- Overrides:
getRevision
in classweka.classifiers.AbstractClassifier
- Returns:
- the revision
-
main
public static void main(String[] argv)
Main method for testing this class- Parameters:
argv
- options
-
-