Package weka.classifiers.meta
Class ClassificationViaRegressionD
- java.lang.Object
-
- weka.classifiers.AbstractClassifier
-
- weka.classifiers.SingleClassifierEnhancer
-
- weka.classifiers.meta.ClassificationViaRegressionD
-
- All Implemented Interfaces:
Serializable
,Cloneable
,weka.classifiers.Classifier
,weka.core.BatchPredictor
,weka.core.CapabilitiesHandler
,weka.core.CapabilitiesIgnorer
,weka.core.CommandlineRunnable
,weka.core.OptionHandler
,weka.core.RevisionHandler
,weka.core.TechnicalInformationHandler
public class ClassificationViaRegressionD extends weka.classifiers.SingleClassifierEnhancer implements weka.core.TechnicalInformationHandler
Class for doing classification using regression methods. Class is binarized and one regression model is built for each class value. For more information, see, for example
E. Frank, Y. Wang, S. Inglis, G. Holmes, I.H. Witten (1998). Using model trees for classification. Machine Learning. 32(1):63-76.
BibTeX:@article{Frank1998, author = {E. Frank and Y. Wang and S. Inglis and G. Holmes and I.H. Witten}, journal = {Machine Learning}, number = {1}, pages = {63-76}, title = {Using model trees for classification}, volume = {32}, year = {1998} }
Valid options are:
-D If set, classifier is run in debug mode and may output additional info to the console
-W Full name of base classifier. (default: weka.classifiers.trees.M5P)
Options specific to classifier weka.classifiers.trees.M5P:
-N Use unpruned tree/rules
-U Use unsmoothed predictions
-R Build regression tree/rule rather than a model tree/rule
-M <minimum number of instances> Set minimum number of instances per leaf (default 4)
-L Save instances at the nodes in the tree (for visualization purposes)
- Author:
- Eibe Frank ([email protected]), Len Trigg ([email protected]), Dale Fletcher (dale at waikato dot ac dot nz)
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description protected weka.filters.unsupervised.attribute.MakeIndicator[]
m_ClassFilters
The filters used to transform the class.protected weka.classifiers.Classifier[]
m_Classifiers
The classifiers.
-
Constructor Summary
Constructors Constructor Description ClassificationViaRegressionD()
Default constructor.
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description void
buildClassifier(weka.core.Instances insts)
Builds the classifiers.protected String
defaultClassifierString()
String describing default classifier.double[]
distributionForInstance(weka.core.Instance inst)
Returns the distribution for an instance.weka.core.Capabilities
getCapabilities()
Returns default capabilities of the classifier.weka.classifiers.Classifier
getClassifier(int index)
Returns the classifier for the specified label index (0-based).String
getRevision()
Returns the revision string.weka.core.TechnicalInformation
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.String
globalInfo()
Returns a string describing classifierstatic void
main(String[] args)
Main method for running this class.String
toString()
Prints the classifiers.-
Methods inherited from class weka.classifiers.SingleClassifierEnhancer
classifierTipText, defaultClassifierOptions, getClassifier, getClassifierSpec, getOptions, listOptions, postExecution, preExecution, setClassifier, setOptions
-
Methods inherited from class weka.classifiers.AbstractClassifier
batchSizeTipText, classifyInstance, debugTipText, distributionsForInstances, doNotCheckCapabilitiesTipText, forName, getBatchSize, getDebug, getDoNotCheckCapabilities, getNumDecimalPlaces, implementsMoreEfficientBatchPrediction, makeCopies, makeCopy, numDecimalPlacesTipText, run, runClassifier, setBatchSize, setDebug, setDoNotCheckCapabilities, setNumDecimalPlaces
-
-
-
-
Method Detail
-
globalInfo
public String globalInfo()
Returns a string describing classifier- Returns:
- a description suitable for displaying in the explorer/experimenter gui
-
getTechnicalInformation
public weka.core.TechnicalInformation getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.- Specified by:
getTechnicalInformation
in interfaceweka.core.TechnicalInformationHandler
- Returns:
- the technical information about this class
-
defaultClassifierString
protected String defaultClassifierString()
String describing default classifier.- Overrides:
defaultClassifierString
in classweka.classifiers.SingleClassifierEnhancer
- Returns:
- the default classifier classname
-
getCapabilities
public weka.core.Capabilities getCapabilities()
Returns default capabilities of the classifier.- Specified by:
getCapabilities
in interfaceweka.core.CapabilitiesHandler
- Specified by:
getCapabilities
in interfaceweka.classifiers.Classifier
- Overrides:
getCapabilities
in classweka.classifiers.SingleClassifierEnhancer
- Returns:
- the capabilities of this classifier
-
buildClassifier
public void buildClassifier(weka.core.Instances insts) throws Exception
Builds the classifiers.- Specified by:
buildClassifier
in interfaceweka.classifiers.Classifier
- Parameters:
insts
- the training data.- Throws:
Exception
- if a classifier can't be built
-
distributionForInstance
public double[] distributionForInstance(weka.core.Instance inst) throws Exception
Returns the distribution for an instance.- Specified by:
distributionForInstance
in interfaceweka.classifiers.Classifier
- Overrides:
distributionForInstance
in classweka.classifiers.AbstractClassifier
- Parameters:
inst
- the instance to get the distribution for- Returns:
- the computed distribution
- Throws:
Exception
- if the distribution can't be computed successfully
-
getClassifier
public weka.classifiers.Classifier getClassifier(int index)
Returns the classifier for the specified label index (0-based).- Parameters:
index
- the index of the classifier to retrieve- Returns:
- the classifier
-
toString
public String toString()
Prints the classifiers.
-
getRevision
public String getRevision()
Returns the revision string.- Specified by:
getRevision
in interfaceweka.core.RevisionHandler
- Overrides:
getRevision
in classweka.classifiers.AbstractClassifier
- Returns:
- the revision
-
main
public static void main(String[] args)
Main method for running this class.- Parameters:
args
- the options for the learner
-
-