Package weka.core
Class SAXDistance
- java.lang.Object
-
- weka.core.NormalizableDistance
-
- weka.core.SAXDistance
-
- All Implemented Interfaces:
Serializable
,Cloneable
,weka.core.DistanceFunction
,weka.core.OptionHandler
,weka.core.RevisionHandler
,weka.core.TechnicalInformationHandler
public class SAXDistance extends weka.core.NormalizableDistance implements Cloneable, weka.core.TechnicalInformationHandler
Implementing Euclidean distance (or similarity) function.
One object defines not one distance but the data model in which the distances between objects of that data model can be computed.
Attention: For efficiency reasons the use of consistency checks (like are the data models of the two instances exactly the same), is low.
For more information, see:
Wikipedia. Euclidean distance. URL http://en.wikipedia.org/wiki/Euclidean_distance.
BibTeX:@misc{missing_id, author = {Wikipedia}, title = {Euclidean distance}, URL = {http://en.wikipedia.org/wiki/Euclidean_distance} }
Valid options are:
-D Turns off the normalization of attribute values in distance calculation.
-R <col1,col2-col4,...> Specifies list of columns to used in the calculation of the distance. 'first' and 'last' are valid indices. (default: first-last)
-V Invert matching sense of column indices.
- Version:
- $Revision$
- Author:
- dale (dale at waikato dot ac dot nz)
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description protected int
m_bins
number of gaussian bins.protected double[][]
m_distMatrix
protected int
m_n
pre-sax number of attributes.protected weka.filters.unsupervised.attribute.Normalize
m_norm
suid.
-
Constructor Summary
Constructors Constructor Description SAXDistance()
Constructs an Euclidean Distance object, Instances must be still set.SAXDistance(weka.core.Instances data)
Constructs an Euclidean Distance object and automatically initializes the ranges.
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description String
binsPointTipText()
Returns the tip text for this property.protected double
difference(int index, double val1, double val2)
Computes the difference between two given attribute values.double
distance(weka.core.Instance first, weka.core.Instance second)
Calculates the distance between two instances.double
distance(weka.core.Instance first, weka.core.Instance second, weka.core.neighboursearch.PerformanceStats stats)
Calculates the distance (or similarity) between two instances.int
getBins()
Returns the nth point setting.double
getMiddle(double[] ranges)
Returns value in the middle of the two parameter values.int
getN()
Returns the nth point setting.String[]
getOptions()
Gets the current settings of the filter.String
getRevision()
Returns the revision string.weka.core.TechnicalInformation
getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.String
globalInfo()
Returns a string describing this object.protected void
initialize()
initializes the ranges and the attributes being used.Enumeration
listOptions()
Returns an enumeration describing the available options.String
nPointTipText()
Returns the tip text for this property.void
postProcessDistances(double[] distances)
Does post processing of the distances (if necessary) returned by distance(distance(Instance first, Instance second, double cutOffValue).void
setBins(int value)
Sets the nth point setting.void
setN(int value)
Sets the nth point setting.void
setOptions(String[] options)
Parses a list of options for this object.double
sqDifference(int index, double val1, double val2)
Returns the squared difference of two values of an attribute.protected weka.core.Instance
transform(weka.core.Instance i)
protected double
updateDistance(double currDist, double diff)
Updates the current distance calculated so far with the new difference between two attributes.boolean
valueIsSmallerEqual(weka.core.Instance instance, int dim, double value)
Returns true if the value of the given dimension is smaller or equal the value to be compared with.-
Methods inherited from class weka.core.NormalizableDistance
attributeIndicesTipText, clean, distance, distance, dontNormalizeTipText, getAttributeIndices, getDontNormalize, getInstances, getInvertSelection, getRanges, initializeAttributeIndices, initializeRanges, initializeRanges, initializeRanges, initializeRangesEmpty, inRanges, invalidate, invertSelectionTipText, norm, rangesSet, setAttributeIndices, setDontNormalize, setInstances, setInvertSelection, toString, update, updateRanges, updateRanges, updateRanges, updateRangesFirst, validate
-
-
-
-
Constructor Detail
-
SAXDistance
public SAXDistance()
Constructs an Euclidean Distance object, Instances must be still set.
-
SAXDistance
public SAXDistance(weka.core.Instances data)
Constructs an Euclidean Distance object and automatically initializes the ranges.- Parameters:
data
- the instances the distance function should work on
-
-
Method Detail
-
initialize
protected void initialize()
initializes the ranges and the attributes being used.- Overrides:
initialize
in classweka.core.NormalizableDistance
-
globalInfo
public String globalInfo()
Returns a string describing this object.- Specified by:
globalInfo
in classweka.core.NormalizableDistance
- Returns:
- a description of the evaluator suitable for displaying in the explorer/experimenter gui
-
listOptions
public Enumeration listOptions()
Returns an enumeration describing the available options.- Specified by:
listOptions
in interfaceweka.core.OptionHandler
- Overrides:
listOptions
in classweka.core.NormalizableDistance
- Returns:
- an enumeration of all the available options.
-
setOptions
public void setOptions(String[] options) throws Exception
Parses a list of options for this object. Also resets the state of the filter (this reset doesn't affect the options).- Specified by:
setOptions
in interfaceweka.core.OptionHandler
- Overrides:
setOptions
in classweka.core.NormalizableDistance
- Parameters:
options
- the list of options as an array of strings- Throws:
Exception
- if an option is not supported- See Also:
#reset()
-
getOptions
public String[] getOptions()
Gets the current settings of the filter.- Specified by:
getOptions
in interfaceweka.core.OptionHandler
- Overrides:
getOptions
in classweka.core.NormalizableDistance
- Returns:
- an array of strings suitable for passing to setOptions
-
setBins
public void setBins(int value)
Sets the nth point setting.- Parameters:
value
- the nth point
-
setN
public void setN(int value)
Sets the nth point setting.- Parameters:
value
- the nth point
-
getBins
public int getBins()
Returns the nth point setting.- Returns:
- the order
-
getN
public int getN()
Returns the nth point setting.- Returns:
- the order
-
binsPointTipText
public String binsPointTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
nPointTipText
public String nPointTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
getTechnicalInformation
public weka.core.TechnicalInformation getTechnicalInformation()
Returns an instance of a TechnicalInformation object, containing detailed information about the technical background of this class, e.g., paper reference or book this class is based on.- Specified by:
getTechnicalInformation
in interfaceweka.core.TechnicalInformationHandler
- Returns:
- the technical information about this class
-
distance
public double distance(weka.core.Instance first, weka.core.Instance second)
Calculates the distance between two instances.- Specified by:
distance
in interfaceweka.core.DistanceFunction
- Overrides:
distance
in classweka.core.NormalizableDistance
- Parameters:
first
- the first instancesecond
- the second instance- Returns:
- the distance between the two given instances
-
distance
public double distance(weka.core.Instance first, weka.core.Instance second, weka.core.neighboursearch.PerformanceStats stats)
Calculates the distance (or similarity) between two instances. Need to pass this returned distance later on to postprocess method to set it on correct scale.
P.S.: Please don't mix the use of this function with distance(Instance first, Instance second), as that already does post processing. Please consider passing Double.POSITIVE_INFINITY as the cutOffValue to this function and then later on do the post processing on all the distances.- Specified by:
distance
in interfaceweka.core.DistanceFunction
- Overrides:
distance
in classweka.core.NormalizableDistance
- Parameters:
first
- the first instancesecond
- the second instancestats
- the structure for storing performance statistics.- Returns:
- the distance between the two given instances or Double.POSITIVE_INFINITY.
-
updateDistance
protected double updateDistance(double currDist, double diff)
Updates the current distance calculated so far with the new difference between two attributes. The difference between the attributes was calculated with the difference(int,double,double) method.- Specified by:
updateDistance
in classweka.core.NormalizableDistance
- Parameters:
currDist
- the current distance calculated so fardiff
- the difference between two new attributes- Returns:
- the update distance
- See Also:
difference(int, double, double)
-
difference
protected double difference(int index, double val1, double val2)
Computes the difference between two given attribute values.- Overrides:
difference
in classweka.core.NormalizableDistance
- Parameters:
index
- the attribute indexval1
- the first valueval2
- the second value- Returns:
- the difference
-
postProcessDistances
public void postProcessDistances(double[] distances)
Does post processing of the distances (if necessary) returned by distance(distance(Instance first, Instance second, double cutOffValue). It is necessary to do so to get the correct distances if distance(distance(Instance first, Instance second, double cutOffValue) is used. This is because that function actually returns the squared distance to avoid inaccuracies arising from floating point comparison.- Specified by:
postProcessDistances
in interfaceweka.core.DistanceFunction
- Overrides:
postProcessDistances
in classweka.core.NormalizableDistance
- Parameters:
distances
- the distances to post-process
-
sqDifference
public double sqDifference(int index, double val1, double val2)
Returns the squared difference of two values of an attribute.- Parameters:
index
- the attribute indexval1
- the first valueval2
- the second value- Returns:
- the squared difference
-
getMiddle
public double getMiddle(double[] ranges)
Returns value in the middle of the two parameter values.- Parameters:
ranges
- the ranges to this dimension- Returns:
- the middle value
-
transform
protected weka.core.Instance transform(weka.core.Instance i)
-
valueIsSmallerEqual
public boolean valueIsSmallerEqual(weka.core.Instance instance, int dim, double value)
Returns true if the value of the given dimension is smaller or equal the value to be compared with.- Parameters:
instance
- the instance where the value should be taken ofdim
- the dimension of the valuevalue
- the value to compare with- Returns:
- true if value of instance is smaller or equal value
-
getRevision
public String getRevision()
Returns the revision string.- Specified by:
getRevision
in interfaceweka.core.RevisionHandler
- Returns:
- the revision
-
-