Class SIMPLSMatrixFilter
- java.lang.Object
-
- weka.filters.Filter
-
- weka.filters.SimpleFilter
-
- weka.filters.SimpleBatchFilter
-
- weka.filters.supervised.attribute.PLSFilter
-
- weka.filters.supervised.attribute.SIMPLSMatrixFilter
-
- All Implemented Interfaces:
Serializable
,weka.core.CapabilitiesHandler
,weka.core.CapabilitiesIgnorer
,weka.core.CommandlineRunnable
,weka.core.OptionHandler
,weka.core.RevisionHandler
,weka.core.TechnicalInformationHandler
,weka.filters.SupervisedFilter
public class SIMPLSMatrixFilter extends weka.filters.supervised.attribute.PLSFilter
Runs Partial Least Square Regression over the given instances and computes the resulting beta matrix for prediction.
By default it replaces missing values and centers the data.
Allows access to the internal matrices.
For more information see:
Tormod Naes, Tomas Isaksson, Tom Fearn, Tony Davies (2002). A User Friendly Guide to Multivariate Calibration and Classification. NIR Publications.
StatSoft, Inc.. Partial Least Squares (PLS).
Bent Jorgensen, Yuri Goegebeur. Module 7: Partial least squares regression I.
S. de Jong (1993). SIMPLS: an alternative approach to partial least squares regression. Chemometrics and Intelligent Laboratory Systems. 18:251-263.
BibTeX:@book{Naes2002, author = {Tormod Naes and Tomas Isaksson and Tom Fearn and Tony Davies}, publisher = {NIR Publications}, title = {A User Friendly Guide to Multivariate Calibration and Classification}, year = {2002}, ISBN = {0-9528666-2-5} } @misc{missing_id, author = {StatSoft, Inc.}, booktitle = {Electronic Textbook StatSoft}, title = {Partial Least Squares (PLS)}, HTTP = {http://www.statsoft.com/textbook/stpls.html} } @misc{missing_id, author = {Bent Jorgensen and Yuri Goegebeur}, booktitle = {ST02: Multivariate Data Analysis and Chemometrics}, title = {Module 7: Partial least squares regression I}, HTTP = {http://statmaster.sdu.dk/courses/ST02/module07/} } @article{Jong1993, author = {S. de Jong}, journal = {Chemometrics and Intelligent Laboratory Systems}, pages = {251-263}, title = {SIMPLS: an alternative approach to partial least squares regression}, volume = {18}, year = {1993} }
Valid options are:
-D Turns on output of debugging information.
-C <num> The number of components to compute. (default: 20)
-U Updates the class attribute as well. (default: off)
-M Turns replacing of missing values on. (default: off)
-A <SIMPLS|PLS1> The algorithm to use. (default: PLS1)
-P <none|center|standardize> The type of preprocessing that is applied to the data. (default: center)
- Version:
- $Revision: 10824 $
- Author:
- FracPete (fracpete at waikato dot ac dot nz)
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description protected weka.core.matrix.Matrix
m_SIMPLS_MATRIX_LOCAL
-
Fields inherited from class weka.filters.supervised.attribute.PLSFilter
ALGORITHM_PLS1, ALGORITHM_SIMPLS, m_Algorithm, m_ClassMean, m_ClassStdDev, m_Filter, m_Missing, m_NumComponents, m_PerformPrediction, m_PLS1_b_hat, m_PLS1_P, m_PLS1_RegVector, m_PLS1_W, m_Preprocessing, m_ReplaceMissing, m_SIMPLS_B, m_SIMPLS_W, PREPROCESSING_CENTER, PREPROCESSING_NONE, PREPROCESSING_STANDARDIZE, TAGS_ALGORITHM, TAGS_PREPROCESSING
-
-
Constructor Summary
Constructors Constructor Description SIMPLSMatrixFilter()
-
Method Summary
All Methods Static Methods Instance Methods Concrete Methods Modifier and Type Method Description weka.core.matrix.Matrix
getMatrix()
String
globalInfo()
Returns a string describing this classifier.void
initialiseW(weka.core.Instances ins)
void
initialiseWeights()
static void
main(String[] args)
runs the filter with the given arguments.protected weka.core.Instances
processSIMPLS(weka.core.Instances instances)
void
setMatrix(weka.core.matrix.Matrix m)
-
Methods inherited from class weka.filters.supervised.attribute.PLSFilter
algorithmTipText, columnAsVector, determineOutputFormat, getAlgorithm, getCapabilities, getDominantEigenVector, getNumComponents, getOptions, getPerformPrediction, getPreprocessing, getReplaceMissing, getRevision, getTechnicalInformation, getVector, getX, getX, getY, getY, listOptions, normalizeVector, numComponentsTipText, performPredictionTipText, preprocessingTipText, process, processPLS1, replaceMissingTipText, setAlgorithm, setNumComponents, setOptions, setPerformPrediction, setPreprocessing, setReplaceMissing, setVector, toInstances
-
Methods inherited from class weka.filters.SimpleBatchFilter
allowAccessToFullInputFormat, batchFinished, hasImmediateOutputFormat, input
-
Methods inherited from class weka.filters.Filter
batchFilterFile, bufferInput, copyValues, copyValues, debugTipText, doNotCheckCapabilitiesTipText, filterFile, flushInput, getCapabilities, getDebug, getDoNotCheckCapabilities, getInputFormat, getOutputFormat, initInputLocators, initOutputLocators, inputFormatPeek, isFirstBatchDone, isNewBatch, isOutputFormatDefined, makeCopies, makeCopy, mayRemoveInstanceAfterFirstBatchDone, numPendingOutput, output, outputFormatPeek, outputPeek, postExecution, preExecution, push, push, resetQueue, run, runFilter, setDebug, setDoNotCheckCapabilities, setOutputFormat, testInputFormat, toString, useFilter, wekaStaticWrapper
-
-
-
-
Method Detail
-
initialiseWeights
public void initialiseWeights()
-
setMatrix
public void setMatrix(weka.core.matrix.Matrix m)
-
getMatrix
public weka.core.matrix.Matrix getMatrix()
-
processSIMPLS
protected weka.core.Instances processSIMPLS(weka.core.Instances instances) throws Exception
- Overrides:
processSIMPLS
in classweka.filters.supervised.attribute.PLSFilter
- Throws:
Exception
-
globalInfo
public String globalInfo()
Returns a string describing this classifier.- Overrides:
globalInfo
in classweka.filters.supervised.attribute.PLSFilter
- Returns:
- a description of the classifier suitable for displaying in the explorer/experimenter gui
-
main
public static void main(String[] args)
runs the filter with the given arguments.- Parameters:
args
- the commandline arguments
-
-