ADAMS
Advanced Data mining And Machine learning System

Module: adams-jython

¢

2 Jython

Peter Reutemann

February 8, 2012

©2009-2012

Contents

[2__Writing actors|
1 Superclass and wrapper]

10
11

13

15

CONTENTS

List of Figures

LIST OF FIGURES

Chapter 1

Introduction

Developing a new actor for ADAMS is not hard. But it can take too long, if
you simply want to test something: writing the code, compiling, packaging and,
finally, executing it. Dynamic languages that run in the Java Virtual Machine
(JVM), like Jython ([2]), come in handy. Here, you simply have to write the
code and then execute it. There is no need to compile or package anything.

Jython’s syntax is quite different from the Java one. Here is an example,
the following Java class:

import java.util.Vector;
public class FunkyVector extends Vector {
public String toString() {
String result = "Funky output: ";
result += super.toString();
return result;
3
X

Looks like this as a Jython script:

import java.util.Vector as Vector
class FunkyVector(Vector):
def toString(self):
result = "Funky output: "
result.join(Vector.toString(self))
return result

For more details, you might want to check out the Jython E] and Python E]
tutorials.

Thttp://www.jython.org/docs/tutorial/
%http://docs.python.org/tutorial/

http://www.jython.org/docs/tutorial/
http://docs.python.org/tutorial/

CHAPTER 1. INTRODUCTION

Chapter 2

Writing actors

Writing a Jython actor works similar to writing a regular ADAMS actor in Java.

2.1 Superclass and wrapper

First, you create an empty text file for you new actor. Second, you choose what
superclass you want to derive it from:

Standalone — adams.flow.standalone.AbstractScript
Source — adams.flow.source.AbstractScript
Transformer — adams.flow.transformer.AbstractScript
Sink — adams.flow.sink.AbstractScript

This also determines, which ADAMS wrapper actor you need to use for execut-
ing your external script:

Standalone — adams.flow.standalone.Jython
Source — adams.flow.source.Jython
Transformer — adams.flow.transformer. Jython

Sink — adams.flow.sink.Jython

You simply use your script file as the scriptFile property and now you only
have to write the actual code.

10 CHAPTER 2. WRITING ACTORS

2.2 Implementation

As for writing your code, you merely have to implement all the abstract methods
from your AbstractScript superclass. The following code shows a minimalistic
transformer, which accepts and generates Integer objects. In the doExecute ()
method, as it stands, it does not do anything with the incoming data, it merely
forwards a new Token with the data it received.

import adams.flow.core.Token as Token
import adams.flow.transformer.AbstractScript as AbstractScript
import java.lang.Class as Class

class SimpleTransformer (AbstractScript):
def __init__(self):
AbstractScript.__init__(self)

def globallnfo(self):
return "My simple transformer"

def accepts(self):
return [Class.forName("java.lang.Integer")]

def generates(self):
return [Class.forName("java.lang.Integer")]

def doExecute(self):
self .m_OutputToken = Token(self.m_InputToken.getPayload())
return None

A slightly more complex version computes the square of the incoming integer:

def doExecute(self):
input = self.m_InputToken.getPayload()
self .m_OutputToken = Token(input * input)
return None

2.3. PARAMETERS 11

2.3 Parameters

Of course, most of the actors that you will write, will require some form of
parametrization. Instead of defining options in the script itself, the ADAMS
wrapper actor takes on the role of providing parameters. Each of the Groovy
wrapper actors has a property called scriptOptions which takes a blank-
separated list of key-value pairs (“key=value”).
These options are available in the Groovy script via the getAdditionalOptions ()

method, returning an adams.flow.core.AdditionalOptions container object.
This container object offers retrieval of the options via their key:

getBoolean(String) and getBoolean(String,Boolean)
getInteger(String) and getInteger(String, Integer)
getDouble(String) and getDouble(String,Double)
getString(String) and getString(String,String)

The second method listed allows you to specify a default value, in case the
option was not supplied.

Assuming that we require an additional option called add, we can use this
parameter to add to our incoming integer value in order to generate output:

def doExecute(self):
input = self.m_InputToken.getPayload()
self.m_OutputToken = Token(input + self.getAdditionalOptions().getInteger("add", 1))
return None

12

CHAPTER 2. WRITING ACTORS

Chapter 3

Throubleshooting

e Problem: Unit tests fail with "AttributeError: ’...py’ object has
no attribute ’...°"
Solution: Create a file called ’. jython’ in your home directory and add
the following content to it:

python.security.respectJavaAccessibility=false

13

14

CHAPTER 3. THROUBLESHOOTING

Bibliography

[1] ADAMS — Advanced Data mining and Machine learning System
http://adams.cms.waikato.ac.nz/

[2] Jython — Python for the Java Platform
http://www.jython.org/

15

http://adams.cms.waikato.ac.nz/
http://www.jython.org/

	Introduction
	Writing actors
	Superclass and wrapper
	Implementation
	Parameters

	Throubleshooting
	Bibliography

