
D
RA
FT

ADAMS

Advanced Data mining And Machine learning System

Module: adams-imaging

Peter Reutemann

March 30, 2012



c©2009-2012



Contents

1 Java Advanced Imaging 7

2 ImageJ 9

3 ImageMagick 11

4 Object conversion 13

5 Interaction 15

6 WEKA output 19

Bibliography 21

3



4 CONTENTS



List of Figures

1.1 JAI flow for blurring images stored in a directory. . . . . . . . . . 8
1.2 The original image. . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 The blurred image. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 ImageJ flow for turning images stored in a directory into greyscale
ones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The original image. . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 The greyscale image. . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 ImageMagick flow for processing (resizing) a single image. . . . . 12
3.2 ImageMagick commands to resizing. . . . . . . . . . . . . . . . . 12
3.3 The original image. . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 The resized image. . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.1 Flow for generating ARFF file from user-labelled pixels. . . . . . 16
5.2 User interface for labelling pixels, displaying some pixels labelled

already. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Example dataset generated using the PixelSelector. . . . . . . . . 17

6.1 Generating an ARFF file using ImageJ. . . . . . . . . . . . . . . 19
6.2 The ImageJ generated ARFF file. . . . . . . . . . . . . . . . . . . 20

5



6 LIST OF FIGURES



Chapter 1

Java Advanced Imaging

Java Advanced Imaging (JAI) is an API to provide a simple, high-level program-
ming model which allows developers to create their own image manipulation
routines 1.

There are four JAI actors available:

• transformer.JAIReader – for reading any image file that JAI supports 2

and forwarding a BufferedImageContainer object.

• transformer.JAITransformer – performs a transformation using an ex-
isting JAI transformer class on the incoming image and outputs another
image again.

• transformer.JAIFlattener – turns a BufferedImageContainer into an
weka.core.Instance object to be used in WEKA. The attaced meta-data
in form of a report can be added to the output object as well.

• sink.JAIWriter – for writing a BufferedImageContainer to a file format
that JAI supports. If the image type cannot be determined based on the
extension, you can also specify which type to generate.

Figure 1.1 shows a flow for reading images, blurring them using a gaussian
blur transformer and displaying them side-by-side. Figures 1.2 and 1.3 show
original and blurred image.

1http://en.wikipedia.org/wiki/Java_Advanced_Imaging
2http://java.sun.com/products/java-media/jai/iio.html

7

http://en.wikipedia.org/wiki/Java_Advanced_Imaging
http://java.sun.com/products/java-media/jai/iio.html


8 CHAPTER 1. JAVA ADVANCED IMAGING

Figure 1.1: JAI flow for blurring images stored in a directory.

Figure 1.2: The original image. Figure 1.3: The blurred image.



Chapter 2

ImageJ

ImageJ is a public domain software suite written in Java (using AWT, opposed
to Swing which ADAMS uses) for image processing, developed at National In-
stitutes of Health ([3]).

There are four ImageJ actors available:

• transformer.ImageJReader – for reading any image file that JAI sup-
ports 1 and forwarding an ImagePlusContainer object.

• transformer.ImageJTransformer – performs a transformation using an
existing ImageJ transformer class on the incoming image and outputs
another image again. ImageJ plugin filters, commands and pre-recorded
macros can be used to perform transformations.

• transformer.ImageJFlattener – turns an ImagePlusContainer into an
weka.core.Instance object to be used in WEKA. The attaced meta-data
in form of a report can be added to the output object as well.

• sink.ImageJWriter – for writing an ImagePlusContainer to a file format
that ImageJ supports. If the image type cannot be determined based on
the extension, you can also specify which type to generate.

Figure 2.1 shows a flow for reading images, turning them into greyscale
using a transformer and displaying them side-by-side. Figures 2.2 and 2.3 show
original and greyscale image.

1http://imagejdocu.tudor.lu/doku.php?id=faq:general:which_file_formats_are_

supported_by_imagej

9

http://imagejdocu.tudor.lu/doku.php?id=faq:general:which_file_formats_are_supported_by_imagej
http://imagejdocu.tudor.lu/doku.php?id=faq:general:which_file_formats_are_supported_by_imagej


10 CHAPTER 2. IMAGEJ

Figure 2.1: ImageJ flow for turning images stored in a directory into greyscale
ones.

Figure 2.2: The original image. Figure 2.3: The greyscale image.



Chapter 3

ImageMagick

ImageMagick R© is a software suite to create, edit, compose, or convert bitmap
images ([4]). In order to process images with ImageMagick, the tools need to
be present in the system’s path.

There are three ImageMagick actors available:

• transformer.ImageMagickReader – for reading any image file that ImageMagick
supports and forwarding a BufferedImageContainer object.

• transformer.ImageMagickTransformer – performs any ImageMagick com-
mand on the incoming image that the convert tool 1 supports and outputs
another image again.

• sink.ImageMagickWriter – for writing a BufferedImageContainer to
a file format that ImageMagick supports. If the image type cannot be
determined based on the extension, you can also specify which type to
generate.

There is no separate transformer for generating a WEKA instance, since the
ImageMagick actors process and output BufferedImageContainer objects as
well, just like the JAI actors. You can use the JAIFlattener for generating
WEKA output.

The example flow in Figure 3.1 loads a single photo from disk and then uses
ImageMagick to resize it to 90 by 90 pixels and scaling it by 200% (see 3.2).
Finally, the modified image is displayed in the image viewer.

1http://www.imagemagick.org/script/convert.php

11

http://www.imagemagick.org/script/convert.php


12 CHAPTER 3. IMAGEMAGICK

Figure 3.1: ImageMagick flow for processing (resizing) a single image.

# resizing image

-resize 90x90

# scaling it up again

-scale 200%

Figure 3.2: ImageMagick commands to resizing.

Figure 3.3: The original image. Figure 3.4: The resized image.



Chapter 4

Object conversion

JAI and ImageMagick actors generate and accept a different type of token,
BufferedImageContainer namely, which cannot be processed by ImageJ actors.
Vice versa, the tokens generated by ImageJ actors, of type ImagePlusContainer,
are not accepted by JAI/ImagMagick actors. In order to exchange data between
the two domains, the Convert transformer can once again be used.

The following conversions are available to convert from one format into an-
other:

• BufferedImageToImageJ – for JAI/ImageMagick to ImageJ conversion.

• ImageJToBufferedImage – converting from ImageJ to JAI/ImageMagick.

13



14 CHAPTER 4. OBJECT CONVERSION



Chapter 5

Interaction

The PixelSelector transformer allows the user to interact with the flow. The
interaction with the user works as follows: an image viewer instance is displayed
when the PixelSelector transformer receives an image token as input. The use
then right-clicks on a pixel that he wants to process, e.g., labelling for WEKA
data generation. After all the pixels have been selected and processed, the user
then hits the OK button to close the dialog. The PixelSelector then forwards
the image container with the attached, enriched report for further processing.

The PixelSelector transformer is very generic, which means the actor is re-
sponsible for the actions that the user can select from the right-click menu. This
is done by selecting the appropriate actions from the list of available ones, e.g.,
AddClassification (package adams.flow.transformer.pixelselector), which
is used for attaching classification labels to pixels. In order to make these se-
lections visible not just in the report that is displayed on the right-hand side
in the dialog, appropriate overlays can be selected as well, e.g., the Classi-
ficationOverlay (package adams.flow.transformer.pixelselector) overlay,
which displays the pixels with the associated labels on the screen.

Figure 5.1 shows a flow that lets the user hand-label all JPG images in a
directory and generated WEKA data from it. It uses a cropped region of 5x5
pixels around the selected pixels for the data generation. The user interface for
selecting the pixels is shown in Figure 5.2 and a resulting dataset in Figure 5.3.

15



16 CHAPTER 5. INTERACTION

Figure 5.1: Flow for generating ARFF file from user-labelled pixels.

Figure 5.2: User interface for labelling pixels, displaying some pixels labelled
already.



17

Figure 5.3: Example dataset generated using the PixelSelector.



18 CHAPTER 5. INTERACTION



Chapter 6

WEKA output

Of course, the data can be turned into a format that is suitable for WEKA ([5]).
For JAI and ImageMagick transformers, both generating BufferedImageCon-
tainer tokens, the JAIFlattener can be used to generate WEKA output in the
form of weka.core.Instance objects. For ImageJ generated tokens, outputting
ImagePlusContainer tokens, you have to use the ImageJFlattener instead. This
transformer also outputs weka.core.Instance objects. These Instance objects can
then be processed further or simply dumped into a file. Figure 6.1 shows a flow
that generates an ARFF file from images using ImageJ. The resulting dataset,
as displayed in the Instance Explorer, is shown in Figure 6.2.

Figure 6.1: Generating an ARFF file using ImageJ.

19



20 CHAPTER 6. WEKA OUTPUT

Figure 6.2: The ImageJ generated ARFF file.



Bibliography

[1] ADAMS – Advanced Data mining and Machine learning System
http://adams.cms.waikato.ac.nz/

[2] JAI – Java Advanced Imaging API
http://java.sun.com/javase/technologies/desktop/media/jai/

[3] ImageJ – Image Processing and Analysis in Java
http://rsbweb.nih.gov/ij/

[4] ImageMagick – Software suite to Convert, Edit, and Compose Images
http://www.imagemagick.org/

[5] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, Ian H. Witten (2009); The WEKA Data Mining Software:
An Update; SIGKDD Explorations, Volume 11, Issue 1.
http://www.cs.waikato.ac.nz/ml/weka/

21

http://adams.cms.waikato.ac.nz/
http://java.sun.com/javase/technologies/desktop/media/jai/
http://rsbweb.nih.gov/ij/
http://www.imagemagick.org/
http://www.cs.waikato.ac.nz/ml/weka/

	Java Advanced Imaging
	ImageJ
	ImageMagick
	Object conversion
	Interaction
	WEKA output
	Bibliography

