ADAMS
Advanced Data mining And Machine learning System

Module: adams-weka

The University
of Waikato

Peter Reutemann

February 3, 2012



©2009-2012




Contents

|2 Classification and Regression

2.1.1 Loading datal] . . .. ... .. .. ....
[2.1.2 Building models| . . . .. .. ... ...

[2.1.3 Preprocessing| . . . . .. ... ......
214 FEvaluation] . . . ... ... .......

[2.2.1 Learning curves|. . . . . . .. ... ...
[2.2.2 Experiments . . ... ..........
[2.2.3  Optimization| . . . ... ... ... ...

3 Clustering

3.1 Building models|. . . . ... ... ... ... ..
3.2 ustering data] . . . . . . ... ...

10
10
12
12
15
19
20
20
20
20
20

21
21
22

23



CONTENTS



List of Figures

2.1 Flow for loading a local dataset| . . .. ... ... ... .. ... 10
2.2 The dataset that got loaded from disk.|. . . . .. ... ... ... 10
[2.3 _Flow for loading a local dataset| . . ... ... .......... 11
2. e dataset that got loaded from disk.|. . . . . . .. .. ... .. 11
25 Flow for generating and displaying an artificial dataset. . . . . . 11
2.6 Flow tor building J48 model on a dataset and outputting the model.| 12
2.7 J48 model output.| . . . . ... 12
2.8 Flow for comparing results generated from original and prepro- |

cessed “slug” data [4].| . . .. .. ... Lo L 13
2.9 Evaluation summary on “slug” dataset (original).|. . . . ... .. 13
2.10 Evaluation summary on “slug” dataset (log-transformed).| . . .. 13
P11 Classifier errors on ‘slug’ dataset (origmal)]. . . . . . . . . . . . 14
2.12 Classifier errors on “slug” dataset (log-transformed).| . . . . . .. 14
2.13 Cross-validating a classifier and outputting the summary| . . .. 15
2.14 Summary output of a cross-validated classifier.| . . . .. .. ... 15
.15 Text file with command-lines of various classifiers] . . . . . . .. 16
[2.16 Cross-validating classifier set ups read from a text file and dis- |

playing the evaluation summaries.| . . . .. .. ... .. ... .. 16
[2.17_Summary outputs of cross-validated classifiers.| . . . .. ... .. 16

|2.18 E !ow for evaluating built classifier on a separate test set|. . . . . 16
|2.19 Summary output of classifier evaluated on separate test set) . . . 16

[2.20 Flow for building/evaluating classifier on a random split.|. . . . . 17
2.21 Summary output of classifier built/evaluated on random split.|. . 17
2.22 Flow for evaluating classifier on separate train/test set.| . . . . . 18

2.23 Summary output of classifier evaluated on separate train/test set.| 18

2.24 Flow for displaying the “accumulated error” of a two classifiers|. 18

2.25 e “accumulated error” of LinearRegression an aussianPro-

77 < 18
12.26 Flow for classitying new data and outputting the class distributions.| 19
[2.27 The generated class distributions for the new data. . . . . . . .. 19
8.1 Building a clusterer and outputting the model| . . . . . . . . .. 21
8.2 Cluster model output.| . . . .. .. ... ... .. ... 21
3.3 Building a clusterer incrementally and outputting the model.| . . 22
[3:4Cluster model outputs, generated every 25 instances]. . . . . . . 22
[35 Flow for clustering new data. . . . . . . . . . v v ... 22
B.6 Generated cluster] . . ... ... ... ... ... ... ... 22



LIST OF FIGURES



Chapter 1

Introduction

The adams-weka module offers most of the functionality found in WEKA [2):
pre-processing, classification and regression, clustering, attribute selection, data
visualization and visualization of results/models. But it does not stop there:
the module also contains other features for optimization, experiment generation
that are not available from WEKA, be it Explorer or KnowledgeFlow. It is
assumed that you are familiar with WEKA EI and machine learning in general,
as common terms are not explained again.

If you have used WEKA’s KnowledgeFlow before, then you will have to
forget (mostly) everything that you know about setting up workflows. ADAMS
does things quite differently in comparison to the WEKA. Additionally, ADAMS
offers a range of general purpose actors that allow you to go further.

The manual is split into two parts: classification and regression comprising
the first one and clustering the second.

LIf you haven’t used WEKA before, check out the Data Mining book [3], which gives you
a good introduction to machine learning, data mining and WEKA.

7



CHAPTER 1. INTRODUCTION



Chapter 2

Classification and
Regression

WEKA’s main strength lies in its large number of classification and regression
schemes. Most of the documentation will cover this functionality therefore.

We start out with some basic WEKA functionality, like loading and prepro-
cessing data, building models and evaluating them. That includes visualization
of the results and models as well. After that we will cover more advanced fea-
tures like learning curves, experiment generation and evaluation, optimization
of classifiers and also the current provenance support in ADAMS.



10 CHAPTER 2. CLASSIFICATION AND REGRESSION

2.1 Basic

In this section we describe how to perform basic WEKA functionality that you
are used to perform with the Explorer, but in the workflow context. Instead of
having to repeat the same steps, like loading and preprocessing data, whenever
you update your data, a flow allows you to define the steps apriori and then
merely re-execute them time and time again. Also, flows make it very easy to
document all the steps that you perform, not just merely recording what you
are doing.

2.1.1 Loading data

Before we can build any models, we have to have data at hand, of course. So
the first step will be to obtain data from somewhere, whether that is by loading
a local dataset or by downloading a remote dataset.

To start, we will be loading files that are stored locally. The actor used
for loading datasets is the WekaFileReader transformer. This actor does not
have an option for the file to load. Instead, it expects a file name, string or
URL object to arrive at its input port. In order to supply a local file, we use
the SingleFileSupplier source, which allows us to specify a single file that gets
forwarded in the flow. If required, one can also use the MultiFileSupplier or
DirectoryLister sources [} which can forward multiple file names instead of just
one. The latter one is especially handy, if the files are not known in advance,
e.g., generated on the fly. In order to display the loaded data, we use the
WekalnstancesDisplay sink actor, which displays the data in a nice tabular
format. Figure shows the flow for loading the dataset and Figure the
generated output.

o]
2
%]

BE0

I
it

product-type|3: stesl4: carbon|S: hardness|6: tamper_ralling|7: condition|&: form

Flow finished. I T

Figure 2.1: Flow for loading a local Figure 2.2: The dataset that got loaded
dataset. from disk.

In this example EI we let the WekaFileReader determine the correct file
loader automatically, based on the file extension. If this automatic determi-
nation should fail, you can always check the “useCustomLoader” checkbox and
then configure the appropriate loader yourself.

Another feature of this actor is the ability to output the dataset row by row
(option “incremental”). This is very handy in case of very large files, where load-
ing into memory could pose a problem. Even though the incremental feature

ladams-weka-crossvalidate_classifier_multiple_datasets.flow
2adams-weka-load_dataset.flow



2.1. BASIC 11

works for any file type that WEKA can read, truly incremental, i.e., memory-
efficient, loading is only possible if the underlying loader also supports incre-
mental loading. In any other case, the dataset gets loaded fully into memory
before being forwarded row by row.

Nowadays, a lot of data is available online. Instead of relying on local files,
one can use the flow also to download remote files. Some of the WEKA file
loaders, like the ArffLoader, natively support the download via a URL. Figure
shows a flow El that downloads (and displays) an ARFF file available from
a URL that was supplied by the SingleURLSupplier. If the required dataset
is encapsulated in an archive, e.g., a ZIP file and not just compressed with
GZIP, then one has to download the archive first and extract the correct file
before working with it. The ﬂowg in Figure downloads an archive from
WEKA’s sourceforge.net web site [°| using the DownloadFile sink and extracts
all the datasets which filename fit a regular expression. The extracted files are
then displayed in a HistoryDisplay sink.

[B[EI=]

Figure 2.3: Flow for loading a local Figure 2.4: The dataset that got loaded

dataset. from disk.

Finally, artificial data can be generated within ADAMS as well. Using the
WekaDataGenerator source, any WEKA data generator can be used to output
data. The flow [f] depicted in Figure generates a small dataset using the
“Agrawal” data generator.

Flow.SingleURLSupplier

Figure 2.5: Flow for generating and displaying an artificial dataset.

3adams-weka-dataset_download.flow
4adams-weka-dataset_download2.flow

SWEKA on sourceforge.net: http://sourceforge.net/projects/weka/
6adams-weka-data_generator.flow


http://sourceforge.net/projects/weka/

12 CHAPTER 2. CLASSIFICATION AND REGRESSION

2.1.2 Building models

After having sorted out the loading of the data, it is time to check out how to
build models. Since we are using supervised algorithms, we have to make sure
that the datasets have a class attribute set. The WekaClassSelector actor allows
the setting of the class attribute, in the default setting it simply uses the last
attribute as the class attribute. With the WekaClassifier actor you can choose
a classifier to be built. By default, the WekaClassifier actor outputs a container
that comprises the built model and the header of the training set. In order to
extract either of the container items, you need to use the ContainerValuePicker
control actor. Figure 2.6 demonstrates how to train a J48 classifier on dataset
and then displaying the built model (see Figure m

[© o ERERYETS 088

BEE

File Edit Debug Execution View Windo Ei
D@ - @ v 4

B
3 (68.0/1.0)

75: 3 (5.0)

2.501: 2 (81.0/1.0)
501: 3 (2.0)

(0.0)
3 (55.0)

Figure 2.6: Flow for building J48 model Figure 2.7: J48 model output.
on a dataset and outputting the model.

A built model can be saved to disk (and then re-used later) using the
WekaModelWriter. The file generated can also be loaded in the WEKA Ex-
plorer again and applied to another test set there EL

2.1.3 Preprocessing

A very important, but often underrated step is preprocessing. Unless your
data is properly cleaned up and in the right format, your models will not be
very meaningful. Preprocessing steps can be done within the flow using the
WekaFilter transformer, which wraps around a single WEKA filter. One either
chains multiple actors together or uses the weka.filters. MultiFilter meta-filter
to executed several filter sequentially in a single actor.

In Figure we are investigating the impact of preprocessing on the “slug”
dataset [4]. The flow E| cross-validates LinearRegression on the original and
log-transformed data. The log-transformed data is generated by applying the
AddFEzxpression filter on each of the two attributes of the dataset and then delet-
ing the original ones. In each case, original or preprocessed, it displays the
evaluation summary and classifier errors.

Figures [2.9] and show the evaluation summary, for the original and
the log-transformed data. The log-transformed dataset gets not only a better
correlation coefficient, but also smaller errors.

7adams-weka-build_classifier-output_only_model.flow
8 adams-weka-build_classifier-save_model.flow
9adams-weka-filter_data.flow



2.1. BASIC 13

2068
9 (6 Globalactors
{FFWekaClassifier functions LinesrRegression
9 (Jevaluate
8 wekaClassSelector lsst

(D Tool Wekacmss\/ahdalmnEva\uatur WeksClazsiier, 10 folde
o @ unziP 9 ([SHBranch parslel, threa:
o ) Uniqued ¢ Esummary
o (i WekaAccumulatedError @wakasva\uauunsummaw

o (%) WekaCapabilities
o [¥8) WekaClassSelector
o (T) WekaClassifier

istoryDisplay xlef Yitop, W40, H.420
£8 DisplayPanelManager xright, v-top. w60, 420

o (&) WekaClassifierOptimizer SingleFileSupplier s{exaMPLE_FLOWS}/dataislug-original arff
o (fF) wekaClassifierRanker (F5) WekaFileReader automatic
& () wekadlassifyng ? Eranch sequertis
o (&) WekaClusterer
o (&) WekaClustering ¢ {&no preprocessing
o ({j) WekaCrossValidationEvaluator 59 GlobalSink evaluate
o ({if) WekaCrosswalidationSplit 9 {8Hog transform
o~ 8 Wekakvaluationsummary WekaFitter (log length) un=
> (i) WekaEvaluationValuePicker 88 wekaFier (log weight) uns
search[ ] i) wekaFitter (remove old atts) u
63) GlobalSink svsluste
il 1 [ D
Fl luate. WekaCi

Figure 2.8: Flow for comparing results generated from original and preprocessed
“slug” data [4].

= (=[B]X) [= BE6E)
File Edit Vi File Edit View
— Sumnary === : = Sunnary —
Icorrelation coefficient 0.9056 Correlation coefficient 0.9685
lHean absolute error 0.5059 lean absolute error 0.2505
[Root mean squared error 1.2725 Root mean squared error 0.4225
[Relative absolute error 38.3999 % Relative absolute error 17.0982 %

Root relative squared error 24,6932 %

[Root relative squared error 41,6248 %
[Total Nunber of Tnstances

[Total Number of Instances

Figure 2.9: Evaluation summary on Figure 2.10: Evaluation summary on
“slug” dataset (original). “slug” dataset (log-transformed).

Figures[2.11]and 2.12] display the classifier errors. It is obvious from the funy
log-shaped curve, that LinearRegression built on the original data is not a very
good model. Something that is not so obvious by just looking at the correlation
coefficient: 0.9056 is not bad.

This flow can be quickly extended to accommodate other preprocessing tech-
niques, all very easily comparable in the graphical output.

In this example the preprocessing was rather specific. On the other hand, if
your are working mainly in a particular data domain, like spectral analysis of
some kind, then certain preprocessing steps will always be same. In this case,
it makes sense to store these externally in a preprocessing library which you
then link to using external actors (see manual for the adams-core module for
more details). This reduces duplication and you will only have to update the
preprocessing step in a single location.



14

Filow GlobalActors evaluate BranchDisplayPaneiManager’

CHAPTER 2. CLASSIFICATION AND REGRESSION

- ‘v: predictedweight (N|

x: weight (Num)

|select instance

Reset | clear | open [ save | jper |

Plot: slug-classifier_errors

3

HKXx
P
*
He T
.21 X
w
w7
1.4
0.62 562

Class colour

0.62

i I

Figure 2.11: Classifier errors on “slug”

dataset (original).

Fiow: GlobalActors. evaluate BranchDisplayPaneiManager

X: In_weight (Num) ~|[¥: predictedin_weight|

[
| ||select nstance

Reset | clear | open [ save | jrter

Plot: slug-weka.filt ttribut
2.3
.76
X xS
. X
3.74
3.0

Figure 2.12: Classifier errors on “slug”
dataset (log-transformed).



2.1. BASIC 15

2.1.4 Evaluation

Knowing how to build a model is good, but how can you tell whether the
model that you built is any good? Evaluation is the key to unlock this mystery.
ADAMS offers several types of evaluations:

e (Cross-validation — if you only have a single dataset.

o Test set evaluation — evaluating an already trained classifier with a sepa-
rate dataset.

e Train/test set evaluation — training and evaluating a classifier with a train-
ing and test set. This can be either achieved using a RandomSplit actor
or reading two separate files from disk.

Cross-validation

We start with cross-validation, which is probably the most used type of evalua-
tion. The WekaCrossValidationEvaluator transformer is used for cross-validation.
In order to get around ADAMS’ limitation of allowing only one input, the
WekaCrossValidationEvaluator actor takes a dataset as input and obtains the
classifier to evaluate from a global actor. This approach hides how the classifier
is obtained, whether it is a simple WekaClassifier definition or a more com-
plex scheme for outputting a Classifier object (e.g., loading it from a serialized
model file). Figure shows a flow IT_Ul with simple cross-validation using a
global WekaClassifier to obtain the classifier object from.

20EE) BEE

.44l %
1559 %

o

YTy

a1l F-Measure

ROC Area C
0.931

ass

1
0.994

g 0.99%
5 0.995

Search[ | Meighted Avg

Flow. WekaCrossValidationEvaluator

Figure 2.13: Cross-validating a classifier Figure 2.14: Summary output of a
and outputting the summary. cross-validated classifier.

Most of the time, you don’t just want to test a single classifier, but several
ones. With ADAMS you can, for instance, load classifier command-lines from a
text file and then evaluate them one after the afterlr_rl Reading the text file (see
Figure is fairly straight-forward, using the TeztFileReader transformer.

For updating the global classifier’s set up, we need to attach a variable to
the global WekaClassifier actor’s “classifier” option and update this variable
with each set up that we are reading from the text file using the SetVariable
transformer. This update of the classifier set up has to happen before we are
triggering the cross-validation. Figures[2.16]and [2.17 show the full flow and the
generated output, when reading in three set ups from a text file (J48, filtered
J48, SMO).

10 adams-weka-crossvalidate_classifier.flow
11adams-weka-crossvalidate_classifier_setups_from_text_file.flow



16 CHAPTER 2. CLASSIFICATION AND REGRESSION

‘Wekaclassifier_setups.tat (~/development, projects/adamsfamily/ad...ms-weka/src/main/resou (=

File Edit View Seach Tools Documents Help
[ Bom v @ @] Qaq

| wekaelassifier_setups.bxt 3¢

1 fueka.classifiers.trees. 348 -C .25 H 2
2 weka.classifiers.meta.FilteredClassifier -F “weka.filters.unsupervised.attribute. Remove -
1-3° W weka.classifiers.trees.]48 -- -C B.25 -M 2
3 weka.classifiers.functions.SM0 -C 1.0 -L 0.0610 P 1.0E-12 -N & M -V -1 W 1 K
“weka.classifiers. functions. supportVector.REFKernel -C 250007 -G 8.01"

PlainText ¥ Tab Width: 8% Ln1, Col 1 INS.

Figure 2.15: Text file with command-lines of various classifiers.

Eile Edit View
.q [Conment: weka classifiers. functions.SHO -C 1.0 -L 0,0010 -P 1.06-12
244 [Relation: anneal
|== Summary ===
- ¥
Ele Edit Debug Exccution View Window lcorrectly Classified Instances 853 94,9889 %
[al [Tncorrectly Classified Instances s 50111 %
- »
nfelal =] )[4} [] Karps stetistic 5,078
T Namedseon f Iean absolute error 0.0253
o [Root mean squared error 01121
) Reportie [Relative absolute error 18,8108 %
& [d Round Root relative squared error 43.3974 %
@ [Coverage of cases (0.95 level) 98,6637 %
& lHean rel. region size (0.95 level) 20,1002 %
b [Total Number of Instances
|-== Detailed Accuracy By Class ===
TP Rate PP Rate Precision Recall F-Measure
0875  0.004  0.63%  0.875  0.737
Duescssan 0.8  0.01 0903  0.848  0.875
0978 0126 091  0.978  0.97
) wekacrossvalidationEvaluater B B B B B
& Vekosialvationsummary 1 e 1 1 1
£ HstoryDisplay xit.viop e .65 0006 083 065 0732
Meighted avg.  0.95 068 0948 0.9 0,949
i
Flow.Setvariable <1 L INDIE K L [ D

Figure 2.16: Cross-validating classifier Figure 2.17: Summary outputs of cross-
set ups read from a text file and dis- validated classifiers.
playing the evaluation summaries.

Test set evaluation

Simply testing a built classifier on a test set is useful when you are always
intending to save the generated model to a file, but also want to keep an eye
on the performance. In this case, you can very easily extend your current flow
for building and saving the model. First, add a global actor that loads the
separate training set from disk. Second, add a Tee control actor that performs
the evaluation using the WekaTestSetEvaluator and WekaFvaluationSummary
transformers and a Display sink for showing the results |T_2'l The full flow and
the generated output are shown in Figures [2.18 and 2.19]

IS[ele]|
Eile Edit Debug Execution View Window
D@ @l o @ [v]»
T . i Fow
& Daamtsncapmier + @i AT O 28]
actar “test”, - File Edit View
- + @ iobalactors [F= sumnary —=
T ® Etest . (Correctly Classified Instances 202 99.0164 %
r (79 SingleFlesupplier (EianPLE FLOWS) it atsmes et ncorracity claseified metances 2 ety
T Buesierosse Keppa statistic 0.9747
T of 79 wekaclasssslactor Hean absolute error 0.0047
o (@ WekaNewinstance (FJ SingleFileSupplier ${EXaMPLE FLOWS]/detalannesl train T [Root mean squared error 0.0562
IS predictionsToinstances| | # wekarien: 3 Relative absolute error 3.6361 %
- Randompit (9 wekaclasssele oot relative squared error 2285 %
o (3 WeksRegexTonange 'l - [Coverage of cases (0.95 level) 99,0164 %
o (i) wekaRelationName.  wekaClassifer. Mean rel. region size (9.95 level) 16.6667 %
o (&) WekaRenameRelation ¢ ([Drevaluation [Total Number of Instances 305
o @ WekaSatinstancevalue %) WiskaTestSetEvaluator ik

WekaTrainTestSetEvaluator

search ] =

£l ———O

Flow finished.

Figure 2.18: Flow for evaluating built Figure 2.19: Summary output of classi-
classifier on a separate test set. fier evaluated on separate test set.

123dams-weka-build_classifier_evaluate_on_testset.flow



2.1. BASIC 17

Train/test set evaluation

An evaluation using separate train and test set can be used, if you don’t want to
keep the evaluated model, but you are only interested in the evaluation output.
The evaluation actor in this case is the Weka Train TestSetEvaluator transformer.
This actor accepts WekaTrainTestSetContainer data tokens. To generate this
container you have several options:

o WekaRandomSplit — splits a single dataset into a train and test set, based
on the percentage supplied by the user.

o WekaCrossValidationSplit — Generates train/test splits like they occur in
cross-validation. Useful, if you want to inspect the various models built
during cross-validation, not just the summary.

e MakeContainer — manually generating a container from two individually
loaded datasets.

Figures and show how to use the RandomSplit actor in the evalua-
tion proces For simulating cross-validation, simply exchange the WekaRan-
domSplit actor with a WekaCrossValidationSplit one (you might also want to
change from Display to HistoryDisplay, to keep better track of the various eval-
uations).

[=[E]x=]

E

Eile Edit View
o cior ” o Relation: anneal
Eile Edit Debug Erecution View Window

=== sumary ===

NECIRE n (v

(Correctly Classified Instances 24 96.3934 %
Incorrectly Classified Instances u 3.6066 %
Kappa statistic 0.0116

Mean absolute error 0.0127

Root mean squared error 0.103

Relative absolute error 9.439 %

Root relative squared error 39,7443 %
Coverage of cases (0,95 level) 96,6885 %
Mean_rel. region size (0.95 level) 17.9781 %
otal Number of Instances 305

== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0 0 0 0 o 0.887

0.969  0.029 0.795  0.99  0.873 0.98
0.078  0.027 0.091 0978  0.985 0.982

1
0.9%
0.982

et
o2

Weighted Avg 964

Figure 2.20: Flow for build- Figure 2.21: Summary output of classi-
ing/evaluating classifier on a random fier built/evaluated on random split.
split.

Figures and display the flow [4] for manually creating a container
using the general purpose MakeContainer source actor. In order to assemble a
container, you need to know what type of container you want to create (the
type is normally listed in the “Help” of an actor), where to obtain the data
from (i.e., the global actors) and how to store the data (i.e., under which name
in the container).

Visualization

You have already encountered the display of the classifier errors (in Figure
. The sink for displaying these errors is WekaClassifierErrors, which takes
an Fwvaluation object as input. If you want to evaluate and display multiple
classifiers then you have to use the DisplayPanelManager with the WekaClas-
sifierErrors actor as “panelProvider”. The DisplayPanelManager actor offers a
history of generated panels, like the HistoryDisplay does for plain text.

13adams-weka-evaluate_classifier_randomsplit.flow
143dams-weka-assemble_traintestset_container_and_evaluate_classifier.flow



18 CHAPTER 2. CLASSIFICATION AND REGRESSION

288
i =)
File Edit View
== Summary ===
lCorrectly Classified Instances 302 99,0164 %
lIncorrectly Classified Instances 3 0.9836 %
¥ WekaClassselector s Mean absolute error 0.0047
7 (otest [Root mean squared error 0.0562
(F) SingleFileSupplier s{SXAMPLE FLOWS}idataismesl test arff Relative absolute error 3.5448 %
o Root relative squared error 22,2506 %
(Coverage of cases (.95 level) 99.0164 %
Mean rel. region size (0.95 level) 16.6667 %
[Total Number of Instances 305
Figure 2.22: Flow for evaluating classi- Figure 2.23: Summary output of classi-
fier on separate train/test set. fier evaluated on separate train/test set.

Another interesting visualization is the WekaAccumulatedError transformer.
This transformer takes also an Fvaluation object and then turns it into a special
sequence of plot containers: it creates a sequence of the prediction errors that
were obtained during an evaluation and outputs them sorted, from smallest to
largest [P} The Figures and show the flow and the generated output
respectively. As you can see from the graph, GaussianProcesses generates con-
sistently larger errors than LinearRegression, which only seems to have a few
big outliers (steep increase at the end).

260,

File Edit Debug Execution View Window
(o] ]~ [a] [«]r
@ =i+ @row

3 @ Globalactors
Bhtincarmegression
Bcaussianbracesses

Eile

(@ Tool 10 fok Accumulated error

(18) uniquein = / ¥

@ Wekaccomulatadeis] B feasarbrocssses
i .

48 ClassiferErrors (LngarRegression) g vtas 64 Fiéz0 /
 Densarrces T -
i o P
7 Esea 7.7 grzai
//
(65 Globalsink LT
{2 Classfierrrors 0.0 =i

Figure 2.24: Flow for displaying the Figure 2.25: The “accumulated error”
“accumulated error” of a two classifiers. of LinearRegression and GaussianPro-
cesses.

15 adams-weka-accumulated_error_display.flow



2.1. BASIC 19

2.1.5 Making predictions

Of course, building models is only part of the picture. You will want to use this
model as well and make predictions with it. The actor for making predictions
on incoming data (i.e., single instance objects) is the WekaClassifying actor.
This actor can either use a serialized model or a global actor that generates a
trained classifier. The flow E in Figure uses the global actor approach,
training a classifier on a training set and then performing classifications on a
test set, with the class distributions shown on screen (see Figure [2.27).

m

b
3
°
°
°
0
8
@
8
b
£
IS
3
2
&
3
3
3
8
°
°
°
°
°
°
[ [»

i
File Edt_Debug. Execution viow iindow
[p]z[@] [~]~ [#] ][]

Uniqueld =
otec

og

1234567901 2345678, 0.0,0.0,0.0
9852941176470589,0.0,0.0.0.0

o (iclasstier
(1 sngeriesuppie
WekaFiReader

({9 wekaclasssalects

() wekaClassiier easjiz

T —
59) Nl

ssvaldationEvaluator
o ) WekaCrossvalidationsplt

£ ®
@wm;uemw «

stparLe, testatt

- = (% WekaClassifying
o~ [ WekaFileReader @ containervalusric
o @) Wekafiter @ conve

 oispla

Soaren |

e e

Flow.Wekaclassifying

Figure 2.26: Flow for classifying new Figure 2.27: The generated class distri-
data and outputting the class distribu- butions for the new data.
tions.

16 adams-weka-classifying_data.flow



20 CHAPTER 2. CLASSIFICATION AND REGRESSION

2.2 Advanced

2.2.1 Learning curves

incremental |T_7| and non-incremental @

2.2.2 Experiments

experiment generation |E|, execution and evaluation m

2.2.3 Optimization
setup generators E ranker @ optimizer |§|

2.2.4 Provenance

provenance display E|

17 adams-weka-build_classifier_incrementally.flow

18 adams-weka-classifier_learning_curve.flow
19adams-weka-experiment_generation.flow

20 adams-weka-experiment.flow

21 adams-weka-classifier_setup_generation.flow
22adams-weka-classifier_setup_ranking.flow

23 adams-weka-classifier_optimizer.flow
243dams-weka-crossvalidate_classifier-display_provenance.flow



Chapter 3

Clustering

Clustering behaves very much like Classification/Regression, the only difference
being that it is an unsupervised learning process. This means that the flows
won’t contain a WekaClassSelector actor to set the class attribute in the loaded
data. Due to the similarity, the section here will cover only the basics of clus-
tering.

3.1 Building models

Building clustering models is as easy as building classification /regression models.
Instead of the WekaClassifier transformer, you use the WekaClusterer one.

Figures and show a ﬁowEI that builds a SimpleKMeans clusterer on
a dataset (the class attribute gets removed using a WekaFilter actor) and the
generated model gets displayed.

I [

ile Edit View
Vo e s v z EE] 5
Fle £t Dobug_ becution View Window

NECIRE n (v —

Number of iterations: 4
Within cluster sum of squared errors: 3321.4072394823033
Missing values globally replaced with nean/node

Cluster centroids
Clusters
Attribute Full Data 0 1
(898) (484) (414) il

family ? ? ?
product-type 4 c [
steel A R 4
carbon 36347 0.0868  7.7826
hardness 11.7762  1.5806  23.6957
temper_rolling 2 ? 2
condition s s 2
formability 2 2 ?
strength 30.6682 1.6331  65.314
non-ageing ? ? ?
surface-finish ? ? ?
surface-quality E E [ ~

Figure 3.1: Building a clusterer and out- Figure 3.2: Cluster model output.
putting the model.

If the base cluster algorithm is an incremental one, i.e., one that implements
the weka.clusterers. UpdateableClusterer interface, you can build your clustering
model incrementally as well. The ﬂowElin Figurebuilds the CobWeb cluster
algorithm incrementally and outputs the generated models every 25 instances

(see Figure [3.4)).

Ladams-weka-build_clusterer.flow
2adams-weka-build_clusterer_incrementally.flow

21



22 CHAPTER 3. CLUSTERING

T T | 4 Rneir &1 B 1 £
= = E=XSS lNumber of clusters: 764
[o]e/al |- a v : o o
:'m:liff:’” i et g node 1 [327]
- node 2 [42]
£ o e
IS e WekarleReader | leaf 4 (1]
- edError node 3 [8]
- G we | node 5 [4]
[ weka |1 leaf 6 (2]
- | node 5 [4]
- jeh I | leaf 7 111
- r | node 5 [4]
T I | leaf 8 [1]
: lust node 3 [8]
b R [ ros's
S |1 leaflo (2]
- | node 9 [3]
L - |1 leaf1l 01l
o [l wekaEvaluationvalues node 2 [42]
o (E) wekaExperiment. node 12 [34]
o [ wekaExperimentevaluation = | node 13 [1(
y | 1 node 14 (7]
P | Il 1 leafis (2
- | | node 14 (7]
Flow. WekaClusterer |[=T m D P leaf 16 12 S
Figure 3.3: Building a clusterer incre- Figure 3.4: Cluster model outputs, gen-
mentally and outputting the model. erated every 25 instances.

3.2 Clustering data

Clustering new data is done using the WekaClustering transformer, which takes
a single instance as input and outputs the generated clustering information
in form of a container (WekaClusteringContainer). You can either specify a
serialized clusterer model to use or a global actor to obtain the clusterer from.
The flow P in Figure shows how to build a clusterer and use it to cluster
new data, outputting the cluster distributions (see Figure for the generated
output).

Execution View Window

ﬁi Vel

dit View

- B

(79 SingleFiesupplier s
WekaFleRgader aomstc

FOGCrOOFROFRONFORRoREG R
PPPOPPOOODPO0000E0000

Flow.wekaClustering

Figure 3.5: Flow for clustering new Figure 3.6: Generated cluster.
data.

3adams-weka-clustering_data.flow



Bibliography

[1]

2]

ADAMS — Advanced Data mining and Machine learning System
http://adams.cms.waikato.ac.nz/

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, Ian H. Witten (2009); The WEKA Data Mining Software:
An Update; SIGKDD Explorations, Volume 11, Issue 1.
http://www.cs.waikato.ac.nz/ml/weka/

Ian H. Witten, Eibe Frank, Mark A. Hall (2011); Data Mining: Practical
Machine Learning Tools and Techniques; Third Edition; Morgan Kauf-
mann; ISBN 978-0-12-374856-0
http://www.cs.waikato.ac.nz/ml/weka/book.html

Barker, G, and McGhie, R (1984) The Biology of Introduced Slugs (Pul-
monata) in New Zealand: Introduction and Notes on Limax Maximus, NZ
Entomologist 8, pp 106-111

23


http://adams.cms.waikato.ac.nz/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/book.html

	Introduction
	Classification and Regression
	Basic
	Loading data
	Building models
	Preprocessing
	Evaluation
	Making predictions

	Advanced
	Learning curves
	Experiments
	Optimization
	Provenance


	Clustering
	Building models
	Clustering data

	Bibliography

