
D
RA
FT

ADAMS

Advanced Data mining And Machine learning System

Module: adams-core

Peter Reutemann

February 3, 2012

c©2009-2012

Contents

I Using ADAMS 7

1 Introduction 9

2 Flows 11

2.1 Actors . 11

2.2 Creating flows . 13

2.2.1 Hello World . 14

2.2.2 Processing data . 22

2.2.3 Control actors . 26

2.2.3.1 Have some Tee 26

2.2.3.2 Pull the Trigger 27

2.2.3.3 Branching – or how to grow your flow 28

2.2.3.4 Further control actors 29

2.3 Global actors . 31

2.4 External actors . 32

2.5 Templates . 33

2.5.1 Static use . 33

2.5.2 Dynamic use . 33

2.6 Variables . 35

2.7 Temporary storage . 39

2.8 Debugging your flow . 42

3 Visualization 45

3.1 Image viewer . 45

3.2 Preview browser . 46

4 Tools 49

4.1 Flow editor . 49

4.2 Flow runner . 49

4.3 Flow control center . 49

4.4 Text editor . 49

5 Maintenance 51

5.1 Placeholder management . 51

5.2 Named setup management . 51

5.3 Variable management . 51

5.4 Favorites management . 51

3

4 CONTENTS

6 Customizing ADAMS 53
6.1 Main menu . 53
6.2 Properties files . 53

II Developing with ADAMS 55

7 Tools 57
7.1 Subversion . 57
7.2 Maven . 57

7.2.1 Nexus repository manager 57
7.2.2 Configuring Maven . 58
7.2.3 Common commands . 59
7.2.4 3rd-party libraries . 59

7.2.4.1 Installing locally 59
7.2.4.2 Uploading to Nexus 60

7.3 Eclipse . 61
7.3.1 Plug-ins . 61
7.3.2 Setting up ADAMS . 61

8 Using the API 63
8.1 Flow . 63

8.1.1 Life-cycle of an actor . 63

9 Extending ADAMS 65
9.1 Dynamic class discovery . 65

9.1.1 Additional package . 65
9.1.2 Additional class hierarchy 66
9.1.3 Blacklisting classes . 66

9.2 Creating a new actor . 66
9.2.1 Creating a new class . 67
9.2.2 Option handling . 68

9.2.2.1 Example . 68
9.2.3 Variable side-effects . 69
9.2.4 Graphical output . 69
9.2.5 Textual output . 69
9.2.6 Creating an icon . 69
9.2.7 Creating a JUnit test . 69

9.3 Creating a new module or project 70
9.3.1 Module . 70
9.3.2 Project . 71

9.4 Main menu . 71

Bibliography 73

List of Figures

2.1 Flow editor with an empty new flow (File → New → Flow) . . . 13
2.2 Popup menu for adding a new actor 14
2.3 Selecting a different actor . 15
2.4 Searching for StringConstants actor 16
2.5 Help dialog for the StringConstants actor 16
2.6 Tab displaying help for the StringConstants actor 17
2.7 Tab displaying the non-default options for the StringConstants

actor . 18
2.8 Adding the Hello World! string 18
2.9 Flow after adding the StringConstants actor 19
2.10 Adding another actor after the current one 19
2.11 Searching for the Display actor 20
2.12 The complete Hello World flow 20
2.13 The output of Hello World flow 21
2.14 Adding an additional actor . 22
2.15 Adding the Convert transformer 23
2.16 Configuring the Convert transformer 23
2.17 Extended Hello World flow . 24
2.18 Output of the extended Hello World flow 24
2.19 Customizing the StringReplace transformer 24
2.20 Output of further extended Hello World flow 25
2.21 The Hello World flow with Tee actors. 26
2.22 The log file generated by the Tee actors. 27
2.23 A customized ConditionalTee actor. 27
2.24 The Hello World flow with an additional Trigger actor. 28
2.25 The modified log file generated with the additional Trigger actor. 28
2.26 The Hello World flow using a Branch actor. 29
2.27 Outputting parallel processed strings in a single global Display

actor. 31
2.28 Adding a sub-flow generated from a template to an existing flow. 33
2.29 The options of the UpdateVariable template. 34
2.30 The added sub-flow. 35
2.31 The asterisk (“∗”) next to an option indicates that a variable is

attached. 36
2.32 Using a variable to control what file to load and display. 36
2.33 Using a variable to control what external flow to execute (flow). . 37
2.34 Using a variable to control what external flow to execute (output). 37
2.35 Flow demonstrating the temporary storage functionality. 39

5

6 LIST OF FIGURES

2.36 Output of flow demonstrating the temporary storage functionality. 40
2.37 Flow demonstrating the LRU cache storage functionality. 40
2.38 Display of the temporary storage during execution. 41
2.39 Output of flow demonstrating the LRU cache storage functionality. 41
2.40 The control panel of the Breakpoint actor. 42
2.41 Example flow with Breakpoint actor. 43
2.42 The Expression watch dialog of the Breakpoint actor. 43
2.43 The Inspection dialog of the Breakpoint actor for the current token. 43
2.44 The Inspection dialog of the Breakpoint actor for the current flow. 44

3.1 Displaying a fractal in the Image viewer. 45
3.2 Preview browser displaying an image. 46
3.3 Preview browser displaying a flow. 46
3.4 Preview browser displaying an plain text file. 47

7.1 texlipse configuration for the adams-core module. 62

Part I

Using ADAMS

7

Chapter 1

Introduction

ADAMS is the result of a research project processing spectral data that required
extensive preprocessing and parallelism. The workflow approach seemed the
best way of dealing with this problem. A system was required, that was easy to
extend and make it easy for the user in setting up workflows quickly.

Initially, the workflow engine of choice was Kepler [1], being both written in
Java and designed for the science community. In order to bring machine learning
to Kepler, the KeplerWeka project [2] was started. Over time we realized that
we spent a lot of time rearranging actors (i.e., the nodes in the workflow) on
the workflow canvas, whenever we needed to add more preprocessing or another
layer of complexity to it. Even with Kepler’s support for sub-workflows (which
are opened up in separate windows), it soon became apparent that this was not
an optimal solution.

Since most of the processing merely was loading data from the database and
then preprocessing it (forking as well and different preprocessing in parallel), we
decided to implement a very basic workflow engine ourselves, with a tree-like
structure (1-to-1 and 1-to-n connections). Using a simple JTree for representing
the structure of the flow, implied the relationship between the actors and no
time was spent on rearranging them anymore. We could finally concentrate on
setting up the flow to process the data.

Over time, ADAMS grew and more and more actors for various domains
(machine learning, scripting, office, etc.) were added. Not all projects that use
ADAMS as base-platform needed all the available functionality. This initiated
the modularization of ADAMS and represents the current state of the platform.
Derived projects now merely have to add dependencies to existing modules in
order to gain additional functionality – without hassle.

Have fun – The ADAMS team

9

10 CHAPTER 1. INTRODUCTION

Chapter 2

Flows

Workflows, or flows for short, are at the center of ADAMS. Most activities can
be expressed in a series of steps. Using a flow to define them is just logical. The
advantage of using flows to describe activities is they document all the steps that
are happening, making it easy to reproduce results. For instance for machine
learning experiments, reproducibility is very important. Therefore, capturing
every step, from the preprocessing of the raw data to the actual running of
experiments and evaluating them, is essential.

The following section introduces the basic concepts of flows in the ADAMS
context and how to set them up. Advanced topics are covered as well, like global
actors and variable support.

2.1 Actors

A single step or node in a flow is called actor. There are various kinds of actors:

• standalone – no input, no output

• source – only generates output

• transformer – accepts input and generates output

• sink – only accepts input

A special kind of actor is the control actor, which controls the flow execution
in some way. This can be a simple Stop actor, which merely stops the whole
flow when executed. Or, it can be a Branch actor, which forwards the input it
receives to all its sub-branches.

An actor that accepts input, like a transformer or sink is called an Input-
Consumer. An actor that generates output, like a transformer or a source, is
called OutputProducer.

Each InputConsumer returns what types of data it does accept and is able
to process. For some actors, this changes based on the parameters. The same
applies to OutputProducer ones, which also return what type of data they are
generating. Once again, the type of output data can change, depending on
parametrization.

Before a flow is being executed, the compatibility of the actors is checked.
This includes basic checks like the one that no InputConsumer can come after
a sink, since that one doesn’t generate any output. Additionally, the types of

11

12 CHAPTER 2. FLOWS

output generated and the types of generated input are checked whether they
are compatible. If one transformer generates floating point data, but the next
transformer only accepts strings, this will result in an error.

There are two special types of data that an actor can return for accepted
input or output:

• object – which can be any type, but not an array.

• unknown – which can be any type, even an array.

Data itself is not being passed around directly, but in a container called Token.
This container allows additional storage, like provenance information. Actors
that support provenance – ProvenanceHandler – update the provenance infor-
mation in the container before forwarding it.

2.2. CREATING FLOWS 13

2.2 Creating flows

The basic flow layout is as follows:

• [optional] standalone(s) - for static checks or static operations when the
flow is started

• source – for generating tokens that will get processed by subsequent actors.

• [optional] transformer(s) – for processing the tokens.

• [optional] sink – for displaying or storing the processed tokens.

The tool for creating – and also running – flows is the Flow editor. Figure 2.1
shows the default view of the editor when starting it up. Actors can be added
to a flow by either dragging them from the Actors tab on the right-hand side
onto the flow or by using the right-click menu of the left-hand side pane.

The Search box of the Actors tab on the right-hand side allows to search in
the actor names and their description.

Figure 2.1: Flow editor with an empty new flow (File → New → Flow)

You can edit as many flows in parallel as you want, e.g., for copy/pasting
actors or other setups between them. Also, you can run them in parallel as well.

14 CHAPTER 2. FLOWS

2.2.1 Hello World

The first flow 1 that we will be setting up now is very simple: a source will
output the string Hello World! and a sink will display it then. For simplicity,
we will just use the right-click menu for adding the actors to this flow.

Since this is our first flow, we want the display to be as verbose as possi-
ble. Hence make sure to check Show input/output from the View menu. This
will display what types of inputs and outputs the various actors accept and/or
generate. Once you are familiar with the actors, you might want to turn this
feature off again, especially when the flows become larger.

First, we need to add the source that outputs the string. The StringCon-
stants source can output an arbitrary number of strings that the user defined.
We will use this actor in this simple example.

Select the actor that you want to add an actor before, after or below. In
this case, starting with an empty flow, this is the Flow actor. Now right-click
and select Add beneath. . . from the menu, as shown in Figure 2.2.

Figure 2.2: Popup menu for adding a new actor

ADAMS tries to suggest an actor depending on the context where the actor
will get placed. But due to the large amount of actors, most of the time you
will choose a different one. You can do this by simply clicking on the button
– showing an icon of a hierarchical structure - in the top-right corner of the
current dialog. A new popup will be displayed right next to the button (see
Figure 2.3).

Due to the large amount of available actors 2, most of the time it is quicker

1adams-core-hello world1.flow
2ADAMS automatically filters actors that won’t fit where you want to place a new actor.

Using the strict mode, you can also filter the actors that might only be compatible, like general
purpose ones. Each module can define such rules. Also, the initial actors that ADAMS sug-
gests are based on pre-defined rules of what actors are commonly placed in certain situations.
If there are more than one suggestions, a combobox with all the class names is displayed in

2.2. CREATING FLOWS 15

Figure 2.3: Selecting a different actor

to use the search facility of the popup displaying the class tree. Either click in
the search box or use the shortcut Alt+S to jump there. As soon as you type,
the display filters out all the class names that don’t match the entered string.
After entering str you will see a result similar to Figure 2.4.

Now click on the StringConstants actor to select it. The About description
only displays some of the information about an actor (normally only the first
sentence of the general description). If you want to know more about an actor
and its options, just click on on the button in the About box. For the
StringConstants actor this opens a dialog like shown in Figure 2.5. For quick
info on options, you simply hover with your mouse over one of the options and
a tool tip will come up with the description.

The Flow editor offers help also through the tabs on the right hand side.
The Help tab (Figure 2.6) displays the same information as the aforementioned
dialog, but without the need of opening a new dialog. You merely have to
select an actor on the left hand side in order to display its help screen. The
Parameters tab is a shortcut to see all the options of the currently selected
actor which differ from the default options (2.7). This can be quite handy when
quickly going through multiple actors, checking their values. Especially actors
with lots of options.

The strings property holds all the user-specified strings that this source actor
will output. In our case, we just want to output Hello World!. Open up the
array editor for the strings property, by clicking on the ... button for this
property. In order to enter a string value in this dialog, just click on the . . .
button again and enter the value as shown in Figure 2.8 and click on OK.

So far, you have only configured an object (a simple string in this case). Now
you have to add the string object to the list, in order to use it. Just click on
the button on the right-hand side (a red plus sign inidicates a recent

the GenericObjectEditor instead of a simple label.

16 CHAPTER 2. FLOWS

Figure 2.4: Searching for StringConstants actor

change, green indicates that nothing has changed). If you wanted to output
more than just one string, for each of them you would bring up the dialog
again, enter the value and add it to the list. After adding all the necessary
items, confirm the dialog by clicking on the OK button.

This finishes our set up of the StringConstants actor and you can confirm
the dialog with OK button. Figure 2.9 shows the resulting flow.

For our simple Hello World example, we don’t need an data processing using
transformer actors, only a sink that will display our data. The Display actor can
be used for displaying textual data. This actor adds the string representation
of each token that it receives as a new line in its text area.

For adding the Display actor, right-click on the previously added StringCon-
stants actor and select Add after. . . as shown in Figure 2.10.

Figure 2.5: Help dialog for the StringConstants actor

2.2. CREATING FLOWS 17

Figure 2.6: Tab displaying help for the StringConstants actor

Once again, bring up the class tree dialog with all the actors by clicking
on the button in the top-right corner of the actor dialog. This time, you have
to search for Display. As soon as you have entered dis you will see the dialog
showing a filtered class tree as shown in Figure 2.11.

Select the Display actor, just like you did with the StringConstants actor.
Since we don’t have to configure anything for this actor – it merely displays our
data – you can just confirm it by clicking on OK again.

This completes our flow for this simple example and you can save the set
up. The final flow is shown in Figure 2.12.

With the flow finished, we can now execute it. In the Flow editor menu,
select Execution → Run. Or use the keyboard shortcut Ctrl+R. Figure 2.13
shows the result output.

Well done, your first flow is set up and produces output!

18 CHAPTER 2. FLOWS

Figure 2.7: Tab displaying the non-default options for the StringConstants actor

Figure 2.8: Adding the Hello World! string

2.2. CREATING FLOWS 19

Figure 2.9: Flow after adding the StringConstants actor

Figure 2.10: Adding another actor after the current one

20 CHAPTER 2. FLOWS

Figure 2.11: Searching for the Display actor

Figure 2.12: The complete Hello World flow

2.2. CREATING FLOWS 21

Figure 2.13: The output of Hello World flow

22 CHAPTER 2. FLOWS

2.2.2 Processing data

Of course, for simply outputting some string, you don’t need a workflow engine.
The idea of a workflow is to be able to define all steps for processing the data,
not just simply loading and displaying it.

The following steps extend our flow 3 with some string processing: first,
turning the initial string into upper case and, second, appending some text at
the end.

Basic string processing can be performed with the Convert transformer.
This actor allows you to choose a conversion class that performs the actual
transformation.

Since our flow only consists of a source and a sink, we need to insert the
transformer in between the two of them. In our example we right-click on the
sink actor and then choose Add here. . . , as you can see in Figure 2.14. But you
can also right-click on the source and then choose Add after. . . .

The Add here. . . action always moves the actor on which you clicked one
further down and adds the chosen one at the current position. The Add after. . . ,
adds the chosen actor after the one that you clicked on.

Figure 2.14: Adding an additional actor

Now choose the Convert transformer from the class tree, e.g., by searching
for it, as displayed in Figure 2.15.

Change the type of conversion to UpperCase (Figure 2.16).
The flow should now look like Figure 2.17 and, when you execute it, produce

output as shown in Figure 2.18. This concludes our first string processing step.
The second string processing step 4 requires adding a custom string at the

end of the actor outputting HELLO WORLD!. We can achieve this by using
the StringReplace actor, which allows us to perform string replacements using

3adams-core-hello world2.flow
4adams-core-hello world3.flow

2.2. CREATING FLOWS 23

Figure 2.15: Adding the Convert transformer

regular expressions 5. In this case, the replacement is very simple: replacing the
end of the string (“$”) with the string that we want to append “ How are you
today!” (see Figure 2.19).

Executing the flow now will produce output as seen in Figure 2.20.

5For more information see http://en.wikipedia.org/wiki/Regular_expressions.

Figure 2.16: Configuring the Convert transformer

http://en.wikipedia.org/wiki/Regular_expressions

24 CHAPTER 2. FLOWS

Figure 2.17: Extended Hello World flow

Figure 2.18: Output of the extended Hello World flow

Figure 2.19: Customizing the StringReplace transformer

2.2. CREATING FLOWS 25

Figure 2.20: Output of further extended Hello World flow

26 CHAPTER 2. FLOWS

2.2.3 Control actors

So far, we have only covered linear execution of actors, where one actor is
executed after the other. For this linear approach, a workflow still seems like
overkill. In the following sections we will introduced control actors, which control
the flow of data within the flow in some way or another.

2.2.3.1 Have some Tee

The Tee actor, like the Unix/Linux tee command, allows you to fork off the
data that is being passed through and re-use it for something else. For example
for debugging purposes, when you need to investigate the data generation at
various stages throughout the flow.

In the following example 6 we will use the Tee actor to document the various
stages of transformation that the Hello World! string goes through. Three Tee
actors will be placed in the flow: one right after the StringConstants source,
the next after the Convert transformer, and the last after the StringReplace
transformer. Each time, a DumpFile sink will be added beneath the Tee actor,
pointing to the same log file. In our example, we are using /tmp/out.txt -
adjust it to fit your system. By default, the DumpFile actor overwrites the
content of the file if it already exists. This is fine for the first occurrence, but
for the second and third one we need to check the append option. Otherwise we
will lose the previous transformation steps. The fully expanded flow is shown
in Figure 2.21. Figure 2.22 shows the generated log file in a text editor.

Figure 2.21: The Hello World flow with Tee actors.

The ConditionalTee control actor is an extended version of the simple Tee
actor. This actor keeps track of the number of data tokens passing through. This
allows you to specify rules for when to fork off the data tokens. For instance,

6adams-core-hello world4.flow

2.2. CREATING FLOWS 27

Figure 2.22: The log file generated by the Tee actors.

you can configure it that only every third token gets forked off, starting with
the 100th one and stopping with the 200th token (to be precise, the first token
output is the 102nd and the last one the 198th one). See Figure 2.23 for an
example of this set up.

Figure 2.23: A customized ConditionalTee actor.

A close cousin to the ConditionalTee actor is the Count actor. This actor
offers the same conditions as the ConditionalTee for the tee output, but instead
of forking off the current data token, it forks off the number of tokens it has
encountered so far. Very useful when trying to keep track of how much data
has been processed.

2.2.3.2 Pull the Trigger

The Trigger control actor is used to initiate the execution of a sub-flow. In
contrast to the Tee actor, the Trigger does not fork off any token, it merely
triggers the execution of the actors defined below it. Since no data is being
forked off, a source actor is required in the sub-flow to kick off the other actors.
Using a trigger 7 we can inject another string into the log file that was generated
in the previous example, as Figure 2.24. Figure 2.25 shows the modified log file
in a text editor. The Trigger actor is also the only other control, besides the
Flow control actor, that allows standalone actors to be added to it.

7adams-core-hello world5.flow

28 CHAPTER 2. FLOWS

Figure 2.24: The Hello World flow with an additional Trigger actor.

Figure 2.25: The modified log file generated with the additional Trigger actor.

2.2.3.3 Branching – or how to grow your flow

So far, we have only processed data in a sequential way. The Branch actor
allows the parallel processing of the same token. Each sub-branch receives the
same token for further processing. In Figure 2.26, we re-use our simple example,
outputting Hello World in parallel, displaying the results in two different Display
actors 8. The second sub-branch processes the original string further. As you
can see from this example, as soon as you have more than one actor, you need
to encapsulate the actors in a Sequence control actor. The default setting of
the Branch actor is to process the branches in separate threads, taking the
maximum number of cores/CPUs of the underlying architecture into account.
But it is also possible to enforce a sequential execution of the sub-branches, by
setting the number of threads to 0. There are two reasons fro this:

1. Resources – If the branch is located deeper in the flow with other parallel
execution happening, spawning too many threads can slow down the sys-

8adams-core-hello world6.flow

2.2. CREATING FLOWS 29

Figure 2.26: The Hello World flow using a Branch actor.

tem more than it could help in the optimal case. In such a scenario, it is
advised to turn off parallel execution.

2. Ordering – In certain cases, the same data needs to be processed several
times, but the order of the in which this occurs is important. For instance,
an integer token could be used to create a sub-directory in which to store
the value of the integer token in a file. These two sub-branches need to
get executed one after the other, of course.

2.2.3.4 Further control actors

The Branch, Tee and Trigger control actors are just some of the more commonly
used ones. ADAMS comes already with a wide variety of control actors. In the
following a short introduction to the others:

• ArrayProcess – instead of unraveling an array with ArrayToSequence and
then packaging again with SequenceToArray, this actor allows to perform
an arbitrary number of sub-steps on an incoming array.

• Breakpoint – Used for debugging a flow. See 2.8 for more details.

• ClearGlobalDisplay – Can be used to clear globally defined graphical ac-
tors, e.g., a SequencePlotter. See 2.3 for more information on global actors.

• ConditionalTee – Basically like the Tee actor, but it allows you to impose
constraints on when to tee off the tokens.

• ContainerValuePicker – Since ADAMS only allows 1-to-1 and 1-to-n con-
nections, multiple outputs are usually packaged in containers. The values
in the container can be accessed by their name (check the specific actor’s
documentation on what the names are) using this actor.

• CopyToClipboard – Places the string representation of the current token
passing through onto the system’s clipboard.

30 CHAPTER 2. FLOWS

• Count – In contrast to ConditionalTee, this actor tees off the number of
tokens it has encountered so far. Useful for lengthy processes, if you want
to keep track of how many tokens you have processed so far.

• GC – For explicitly executing the Java garbage collection.

• GlobalActorScreenshot – For taking screenshots of a globally defined (graph-
ical) actor, whenever a token passes through this control actor. See 2.3
for more information on global actors.

• IfStorageValue – An if-then-else source that executes the then branch if
the specified storage value exists. Otherwise it executes the else branch,
which needs to have a source actor for generating actual data.

• IfThenElse – A control statement, which evaluates a boolean condition in
order to decide in which branch to pass on the incoming token.

• Injector – Allows you to inject tokens into the stream of tokens.

• JMap – If available, i.e., using a JDK instead of JRE, you can output
information on what objects are currently present in the JVM. Useful for
hunting down memory leaks.

• LoadBalancer – Spawns off threads for incoming tokens to process the
tokens independently in the sub-flow defined below this actor.

• Once – A tee actor that only tees off the first token it encounters. A
simplified ConditionalTee so to speak.

• PlotContainerUpdater – Allows one to update the name, x or y value
stored in a plot container. Useful for post-processing of plot containers,
e.g., for scaling.

• Rejector – Rejects tokens container data containers that have error mes-
sages attached.

• Sequence – Allows to specify multiple actors that get exectued one after
the other, with the output of one actor being the input of the next.

• Sinkhole – Does not pass on tokens if the specified boolean expression
evaluates to true.

• Sleep – Suspends the flow execution for the specified number of millisec-
onds.

• Stop – If executed, stops the flow execution.

• SubProcess – Like Sequence actor, but the last actor definitely has to
produce output, i.e., cannot be a sink.

• ConditionalSubProcess – Basically like the SubProcess actor, but it al-
lows you to impose constraints on when to process the tokens with actors
defined in the sub-process.

• Switch – Allows an arbitrary number of branches, which get forwarded
the token if the corresponding condition evaluates to true.

• UpdateContainerValue – Applies all defined sub-actors to the specified
element of the container that is passing through.

• UpdateProperties – Updates multiple properties of an actor wrapping a
non-ADAMS object, using current variable values.

• WhileLoop – Executes the sub-flow as long as the boolean condition eval-
uates to true.

2.3. GLOBAL ACTORS 31

2.3 Global actors

ADAMS uses a tree structure to represent the nested actor structure. This
enforces a 1-to-n relationship on how the actors can forward data. In the ex-
ample flow shown in Figure 2.26, two separate Display actors get displayed.
The more branches, the more windows will pop up. This gets very confusing
rather quickly. ADAMS offers a remedy for this: global actors. With this
mechanism, multiple data streams can once again be channeled into a single
actor again, simulating a n-to-1 relationship. And here is what to do:

• Add the GlobalActors standalone actor at the start of the flow.

• Add the actor that you want to channel the data into below the Glob-
alActors actor that you just added. In our example, this is the Display
actor.

• Replace each occurence of the actor that you just added below the Global-
Actors actor with a GlobalSink sink actor. Enter as value for the param-
eter globalName the name of the actor that you added below the Global-
Actors actor. In this example this is simply Display.

Figure 2.27 shows the modified flow 9, using a single global Display actor and
multiple GlobalSink actors. In addition to the GlobalSink actor, there are also

Figure 2.27: Outputting parallel processed strings in a single global Display
actor.

the GlobalSource actor (for using the same source multiple times in a flow)
and the GlobalTransformer actor (for instance for using the same preprocessing
multiple times). They are used in the same fashion as the GlobalSink actor that
we just introduced.

9adams-core-hello world7.flow

32 CHAPTER 2. FLOWS

2.4 External actors

Flows can quickly become large and complex, with lots of preprocessing happen-
ing in multiple locations. Pretty soon you will realize that certain preprocessing
steps are always the same. The same applies to loading data (e.g., various
benchmark data sets) or writing results back to disk.

To avoid unnecessary duplication of functionality, ADAMS allows you to ex-
ternalize parts of your flow to be externalized, i.e., stored on disk. Externalizing
an existing sub-flow is very easy, you merely have to right-click on the actor that
you want to save to disk and select Externalize. . . from the popup menu. A
new Flow editor window will pop up with the currently selected sub-flow copied
into, ready to be saved to disk 10. Once you saved the sub-flow to a file, you
have to go back into the original flow and update the file name of the flow in
the external meta actor that replaced the sub-flow.

Here are the available meta actors:

• ExternalStandalone – for using externalized standalones.

• ExternalSource – for incorporating an external source.

• ExternalTransformer – for applying an external transformer.

• ExternalSink – for processing data in an external sink.

10Only actors that implement the InstantiatableActor interface can be externalized directly.
All others need to be enclosed in the appropriate InstantiatableXYZ wrapper. Using the
Externalize. . . menu item automatically wraps the actor if required,

2.5. TEMPLATES 33

2.5 Templates

ADAMS comes with a powerful templating mechanism, that either speeds up
the inception of new flows or dynamic parametrization at runtime. The following
two sections explain these two approaches in detail.

2.5.1 Static use

The static use of templates occurs at design time. Here, templates can speed
up the generation of flows by allowing you to insert complete sub-flows that are
generated by a template class. Therefore, commonly occurring sub-flows can be
encapsulated in a template class with optional parameters. A fairly common
sub-flow, encapsulated by a Trigger control actor, is the updating of a variable.
The UpdateVariable template inserts such a sub-flow, consisting of a Variable
source and a SetVariable transformer, enclosed by a Trigger. You only need to
supply the variable name that needs updating to generate the sub-flow and then
add the required transformers that take the current variable value and process
is some way or the other. Figures 2.28 to 2.30 show the use of this mechanism.

Figure 2.28: Adding a sub-flow generated from a template to an existing flow.

2.5.2 Dynamic use

The templating mechanism can be used at runtime as well, using one or more
of the following actors:

• TemplateStandalone – for templates that generate standalones

• TemplateSource – for templates that generate sources

• TemplateTransformer – for templates that generate transforming sub-
flows

• TemplateSink – for templates that generate sinks

34 CHAPTER 2. FLOWS

Figure 2.29: The options of the UpdateVariable template.

The sub-flow generation is done in a lazy way, i.e., only when the aforementioned
template actor is executed, the template is generated. The sub-flow is used till
either the end of the flow execution or if a variable changes that is attached to
the template itself. In the latter case, the sub-flow gets re-generated the next
time the template actor gets executed. This dynamic sub-flow generation in
conjunction with variable use, allows to adapt and change the flow at runtime.
The example adams-core-template.flow demonstrates this.

2.6. VARIABLES 35

Figure 2.30: The added sub-flow.

2.6 Variables

A flow is very useful for documenting all the steps involved in loading, processing
and evaluating of data. But setting up a new flow, whenever you are merely
varying a parameter is not very efficient. In order to make flows more flexible
and dynamic, ADAMS offers the concept of variables. The idea of variables is to
attach them to options of the object that you want to vary. Actors keep track of
what variables have been attached to themselves or nested objects. Whenever
an actor gets executed, it checks first whether any of the variables that it is
monitoring has been modified. If that is the case, the actor re-initializes itself
before the execution takes place. This guarantees that the correct set up has
been applied. At the time of writing, the scope of variables is restricted to Flow
actors. Running the same flow in two concurrent Flow editor windows does not
result in those two flows interfering with each other.

In the following example 11, we are using a ForLoop source to generate the
index of a file to load. In a Tee actor we first convert the integer token to a
string using the Convert transformer and the AnyToString conversion scheme.
Then we add, first the path and then the file extension, to generate the full file
name using StringReplace transformers. Finally, we associate the generated file
name with the variable filename using the SetVariable transformer.

In order to display the content of the files, we need to set up a sub-flow
that consists of a SingleFileSupplier source, the TextFileReader transformer for
reading in the content and a HistoryDisplay sink for displaying the file contents.
The sub-flow gets enclosed by a Trigger control actor, which will get executed
whenever an integer token from the ForLoop passes through.

To make use of the variable filename, we need to attach it to the file option
of the SingleFileSupplier. You can attach a variable by simply bringing up the

11adams-core-variables1.flow

36 CHAPTER 2. FLOWS

properties editor of an actor (or other ADAMS object), right-click on the name
of the option and then entering the name of the variable (without “@{” and
“}”). The properties editor indicates whether a variable has been attached to
an option by appending an asterisk (“∗”) to the name of the option, as can be
seen in Figure 2.31.

Figure 2.31: The asterisk (“∗”) next to an option indicates that a variable is
attached.

The complete flow is displayed in Figure 2.32. With “quick info” enabled, the
SingleFileSupplier now also hints that the file it is forwarding is variable-based:
@{filename}.

Figure 2.32: Using a variable to control what file to load and display.

The variable mechanism can also be used to dynamically execute another
external actor at runtime (see section 2.4 on external actors).

In Figure 2.33 you can see a flow that uses a ForLoop to execute three

2.6. VARIABLES 37

external flows using a variable attached to the actorFile option.

Figure 2.33: Using a variable to control what external flow to execute (flow).

The output generated by the three sub-flows is shown on screen in the same
Display actor. A screenshot of the output is displayed in Figure 2.34.

Figure 2.34: Using a variable to control what external flow to execute (output).

Overview of actors
The following actors are available to handle variables:

• Variable – source actor for outputting the value associated with the vari-
able.

• SetVariable – updates the value of a variable (transformer).

• IncVariable – increments the value of the variable by either an integer or
double increment (transformer).

• DeleteVariable – removes a variable and its associated value from internal
memory (transformer).

38 CHAPTER 2. FLOWS

Non-ADAMS objects
The Variable functionality is only available for objects within the ADAMS
framework, as it requires special option handling. 3rd-party libraries do not
benefit from this functionality directly. But thanks to Java Introspection 12 you
can use property paths to access nested properties and update their values. A
property path is simply the names of the various properties concatenated and
separated by dots (“.”). In case of arrays, you simply have to append “[x]” to
the property with “x” being the 0-based index of the array element that you
want to access.

The following actors allow the updating of properties:

• SetProperty – transformer that modifies a single property of a global actor
based on the current value of the specified variable.

• UpdateProperties – allows you to update multiple properties (each prop-
erty is associated with a particular variable) of the actor that this actor
manages.

12See http://download.oracle.com/javase/tutorial/javabeans/introspection/ for
more information on Java Introspection.

http://download.oracle.com/javase/tutorial/javabeans/introspection/

2.7. TEMPORARY STORAGE 39

2.7 Temporary storage

Variable handling within ADAMS is a very convenient way of changing param-
eters on-the-fly, but it comes at a cost. Values for variables are merely stored as
strings internally and each time an options gets updated this string needs to get
parsed and interpreted. Furthermore, each time the whole actor gets reinitial-
ized if one its own options or an option of its dependent objects gets updated.
It is strongly advised against using the variables functionality if they are not
actually attached to any options, but only used for keeping track of values like
loop variables.

Instead, ADAMS offers an alternative framework for managing values at
runtime: temporary storage. In contrast to variables, values are stored inter-
nally as Java objects, referenced by a unique name. Just like with variables,
the scope of these objects is restricted to Flow actors at the time of writing.
Additionally, the values don’t need to be parsed again when used, since they
are stored as is, resulting in a more efficient storage/retrieval. Finally, arbitrary
objects can be stored, not just objects for which a string representation can be
generated/parsed. The latter aspect combined with fast storage/retrieval en-
courages multiple read/write accesses of the same object in various locations of
the flow. An example would be accessing a data set or spreadsheet, retrieving,
setting or updating values. Figure 2.35 shows a flow that takes the number gen-
erated by the random number generator and stores it, before re-using it in the
sub-flow below the Trigger actor. The resulting output is displayed in Figure
2.36.

Figure 2.35: Flow demonstrating the temporary storage functionality.

By default, the storage system is unlimited which can quickly result in mem-
ory problems when not used wisely. In order to restrict memory usage and
encourage re-generation of values on demand, the storage system also offers

40 CHAPTER 2. FLOWS

Figure 2.36: Output of flow demonstrating the temporary storage functionality.

least-recently-used (LRU) caches 13. Instead of simply setting a value with a
name, you can specify the name of a particular LRU cache as well. The cache
needs to be initialized first, of course, using the InitStorageCache standalone ac-
tor. Figure 2.37 shows the use of the LRU cache functionality, with Figure 2.38
displaying a snapshot in time of the storage inspection panel available through
the Breakpoint control actor. Finally, Figure 2.39 shows the final output of the
flow.

Figure 2.37: Flow demonstrating the LRU cache storage functionality.

Overview of actors
The following actors are available to handle variables:

• InitStorageCache – standalone actor for initializing a named LRU cache
with a specific size.

13See http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used for more
information on LRU caches.

http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used

2.7. TEMPORARY STORAGE 41

Figure 2.38: Display of the temporary storage during execution.

Figure 2.39: Output of flow demonstrating the LRU cache storage functionality.

• StorageValue – source actor for outputting the storage value associated
with the specified name.

• SetStorageValue – updates the specified storage value (transformer).

• IncStorageValue – increments the value of the stored integer or double
object by either an integer or double increment (transformer).

• DeleteStorageValue – removes a storage value from internal memory (trans-
former), freeing up memory.

42 CHAPTER 2. FLOWS

2.8 Debugging your flow

The more complex a flow gets, the harder it becomes to track down problems.
With all its general purpose actors and control actors (loops, switch, if-then-
else, . . .), ADAMS is basically a basic graphical programming language. A
programming language without at least some basic debugging support is very
inconvenient. Therefore, ADAMS allows you to set breakpoints in your flow.
These breakpoints are merely instances of the Breakpoint control actor. This
actor allows you to specify a breakpoint condition on when to stop. The default
condition is true, i.e., the execution gets paused whenever the actor gets reached.
This boolean condition can also evaluate the value of variables. Just surround
the name of the variable with “@{” and “}” in order to use its value within
the expression. For more information on what the expression can comprise of,
check the online help of the Breakpoint actor.

Whenever the Breakpoint actor is reached and the condition evalutes to true,
the control panel of the actor will get displayed (see Figure 2.40).

Figure 2.40: The control panel of the Breakpoint actor.

The functionality of the control panel is best explained with an example.
The flow 14 in Figure 2.41 simply outputs integer values, ranging from 1 to 10.
This value gets stored in the variable loop var which is also part of the condition
of the Breakpoint actor. Finally, these values get displayed in a Display sink.

When the breakpoint gets triggered, the flow gets paused and the aforemen-
tioned control panel is displayed.

• The buttons in the Execution group allow you to continue with the flow
execution, you can stop the flow or you can simply disable the breakpoint
(which resumes the execution immediately).

• It is possible to update the breakpoint condition whenever the breakpoint
is reached, by simply changing the condition string and clicking on the
Update button.

• In the Runtime information group you can view the source code of the
fully expanded flow (i.e., all external actors are inserted completely and
variables are expanded to their current value), you can define watch ex-
pressions (variables, boolean and numeric expressions; Figure 2.42), dis-
play an overview of all the variables and their current values, inspect the
current storage items, you can inspect the current token that is being

14adams-core-breakpoint.flow

2.8. DEBUGGING YOUR FLOW 43

Figure 2.41: Example flow with Breakpoint actor.

passed through the breakpoint (Figure 2.43) and also inspect the current
flow object (Figure 2.44).

Figure 2.42: The Expression watch dialog of the Breakpoint actor.

Figure 2.43: The Inspection dialog of the Breakpoint actor for the current token.

44 CHAPTER 2. FLOWS

Figure 2.44: The Inspection dialog of the Breakpoint actor for the current flow.

Chapter 3

Visualization

Visualization is very important in data analysis. The core module of ADAMS
comes with some basic support.

• Image viewer – For displaying images of type PNG, JPEG, BMP, GIF.

• Preview browser – Generic preview browser, any ADAMS module can
register new preview handlers for various file types.

3.1 Image viewer

The Image viewer is a basic viewer for graphic files (PNG, JPEG, BMP, GIF).
Figure 3.1 shows the viewer with a single image loaded. It is possible to copy
images to the system’s clipboard, export or save them in a different file format
or print them.

Figure 3.1: Displaying a fractal in the Image viewer.

45

46 CHAPTER 3. VISUALIZATION

3.2 Preview browser

The preview browser is a generic preview framework within in ADAMS and
each module can register new handlers for various file or archive types. In its
basic functionality, the preview browser can view images (see 3.2), properties
files, flows (see 3.3) and plain text files (see 3.4). If no handler is registered for
a file type, i.e., a certain file extension, then the plain text handler is used by
default. If more than one handler is registered for a file type, then you can select
from the combobox at the bottom of the dialog, which handler is the preferred
for this type of file.

Figure 3.2: Preview browser displaying an image.

Figure 3.3: Preview browser displaying a flow.

3.2. PREVIEW BROWSER 47

Figure 3.4: Preview browser displaying an plain text file.

48 CHAPTER 3. VISUALIZATION

Chapter 4

Tools

4.1 Flow editor

The Flow editor is the central tool in ADAMS, allowing you the definition of
powerful workflows for a multitude of purposes. See chapter 2 for a comprehen-
sive introduction.

4.2 Flow runner

TODO

4.3 Flow control center

TODO

4.4 Text editor

TODO

49

50 CHAPTER 4. TOOLS

Chapter 5

Maintenance

The Maintenance menu is only available, if the application has been started
as a user labeled as expert or developer. By default, the user is assumed to
be a basic user, not needing the more advanced features, requiring more care
and consideration. If access to maintenance tools is required, you can add the
following to the command-line for starting up ADAMS:

-user-mode EXPERT

or

-user-mode DEVELOPER

5.1 Placeholder management

TODO

5.2 Named setup management

TODO

5.3 Variable management

TODO

5.4 Favorites management

TODO

51

52 CHAPTER 5. MAINTENANCE

Chapter 6

Customizing ADAMS

TODO

6.1 Main menu

TODO

6.2 Properties files

TODO

53

54 CHAPTER 6. CUSTOMIZING ADAMS

Part II

Developing with ADAMS

55

Chapter 7

Tools

ADAMS, like any other complex project, is using a revision control system to
keep track of changes in the code and a build system to turn the source code
into executable code.

The following sections cover the various tools and environments that are
used when developing for/with ADAMS.

7.1 Subversion

The revision control system that ADAMS uses as backend is Apache Subversion
[4]. The ADAMS repository is accessible via the following URL:

https://svn.scms.waikato.ac.nz/svn/adams/

You can check out the code in the console using the following command, provided
you have subversion command-line tools installed:

svn checkout https://svn.scms.waikato.ac.nz/svn/adams/trunk adams

There are lots of graphical clients for subversion available, open-source and
closed-source ones alike. A good overview is accesible through WikiPedia, Com-
parison of Subversion clients:

http://en.wikipedia.org/wiki/Comparison_of_Subversion_clients

7.2 Maven

ADAMS was designed to be a modular framework, but not only multi-module
but multi-project and each of the projects consisting of multiple modules. In
order to manage such a complex setup, a build system that can handle all this
was necessary. Apache Maven [5] fits the bill quite well, coming with a huge
variety of available plug-ins that perform many of the tasks that are necessary for
build management, e.g., generating binary and source code archives, automatic
generation of documentation.

7.2.1 Nexus repository manager

By default, maven merely uses a remote site that one copies archives via scp

or sftp. This approach does not offer a fine-grained access control, you either

57

https://svn.scms.waikato.ac.nz/svn/adams/
http://en.wikipedia.org/wiki/Comparison_of_Subversion_clients

58 CHAPTER 7. TOOLS

have access or you don’t. Also, if you are deploying snapshots on a constant
basis, these will start to clutter your server hosting the archives, since none of
them will ever get removed - even if they are completely obsolete. For better
management of the maven repository, Sonatype’s Nexus repository manager [6]
is used.

In addition to hosting the ADAMS artifacts, Nexus also functions as a proxy
to common maven repositories like Maven Central, JBoss Public, java.net, Code-
haus, Apache and Google Code.

The manager instance for ADAMS is accessible under the following URL:
http://adams.cms.waikato.ac.nz:8081/nexus/

7.2.2 Configuring Maven

In order to gain access to the repositories hosted by the Nexus repository man-
ager, maven needs to be configured properly. The following steps guide you
through the process:

Create maven home directory
First, you need to create maven’s home directory, if it doesn’t exist already.
The directory is usually located in your home directory and is called .m2. The
full path, on *nix systems, is as follows:

$HOME/.m2

Set up authentication
In your maven home directory, you have to configure the following two files:

• settings-security.xml – stores the master password

• settings.xml – stores user/password credentials and URLs for the ADAMS
repositories.

Next, download the templates of these files from the following web pages
and place them in your maven home directory:

• http://adams.cms.waikato.ac.nz/pg/file/fracpete/read/156/maven-settingssecurityxml

• http://adams.cms.waikato.ac.nz/pg/file/fracpete/read/157/maven-settingsxml

The Password Encryption page 1 on the maven homepage explains how
to generate the master password and the passwords for the repositories using
the maven command-line tools. Since you will be entering your password in
plain text in the console, it is recommended that you turn off command history
temporarily. For *nix systems that use bash as the their interpreter, see the
following link as how to disable the history:

http://forums.fedoraforum.org/showpost.php?p=321365&postcount=2

In each of the template files that you downloaded, you have to replace the
PASSWORD string with the actual encrypted password that was generated,
including the curly brackets. In the settings.xml template, you also have to
replace the USERNAME string with your user name that you use for accessing
the Nexus repository manager.

NB: replacements have to be performed case-sensitive, otherwise you will
corrupt the tags in the XML file.

1http://maven.apache.org/guides/mini/guide-encryption.html

http://adams.cms.waikato.ac.nz:8081/nexus/
http://adams.cms.waikato.ac.nz/pg/file/fracpete/read/156/maven-settingssecurityxml
http://adams.cms.waikato.ac.nz/pg/file/fracpete/read/157/maven-settingsxml
http://forums.fedoraforum.org/showpost.php?p=321365&postcount=2
http://maven.apache.org/guides/mini/guide-encryption.html

7.2. MAVEN 59

7.2.3 Common commands

Here are a few common maven commands, if you obtained ADAMS from sub-
version:

• Removing all previously generated output:
mvn clean

• Compiling the code:
mvn compile

• Executing the junit tests:
mvn test

• Executing a specific junit test:
mvn test -Dtest=<class.name.of.test>

• Packaging up everything:
mvn package

• Installing the ADAMS jars in your local maven repository (that will also
run the tests):
mvn install

• You can skip the junit test execution (when packaging or installing) by
adding the following option to the maven command-line:
-DskipTests=true

7.2.4 3rd-party libraries

Sometimes, required libraries are not available through public maven reposito-
ries (http://mvnrepository.com/ is a good place to search for them).

The following sections explain how to install new libraries, either in your
local Maven repository (does not require write access to the Nexus repository
manager) or uploading them to the Nexus repository manager.

7.2.4.1 Installing locally

Installing a library in your local Maven repository is very simple, using the
Maven install plugin.

The following example installs version 1.2.3 of the funky-lib.jar in the group
adams.thirdparty.misc and as artifact funky-lib under Linux:

mvn install:install-file \

-DgroupId=adams.thirdparty.misc \

-DartifactId=funky-lib \

-Dversion=1.2.3 \

-Dpackaging=jar \

-Dfile=/some/where/funky-lib.jar

And the same under Windows:

mvn install:install-file \

-DgroupId=adams.thirdparty.misc ^

-DartifactId=funky-lib ^

-Dversion=1.2.3 ^

-Dpackaging=jar ^

-Dfile=C:\some\where\funky-lib.jar

http://mvnrepository.com/

60 CHAPTER 7. TOOLS

You can then reference this library in your pom.xml file as follows:

<dependency>

<groupId>adams.thirdparty.misc</groupId>

<artifactId>funky-lib</artifactId>

<version>1.2.3</version>

</dependency>

7.2.4.2 Uploading to Nexus

If your Nexus user has the appropriate rights, you can easily upload 3rd-party
libraries to Nexus and make them available to ADAMS. Maven allows the de-
ployment of files with the following command:

mvn deploy:deploy-file <parameters>

But in order to keep track on the libraries being added to Nexus - and be-
ing able to restore them in case of a Nexus problem - this command is not
issued directly by users. Instead the bash script deploy.sh in the sub-directory
adams-thirdparty is used. This script and the associated libraries are kept under
subversion control to keep track of them.

Updating a library
The most common case will be updating an existing library to a newer version.
This is the easiest and involves the following steps:

1. Overwrite existing library with the new version in the adams-thirdparty
directory.

2. Update the version in the deploy.sh script for the library (the -Dversion=...
parameter).

3. Execute the deploy.sh script (don’t worry about error messages for other
libraries, only new libraries or updated versions will succeed).

4. Commit the changes in adams-thirdparty to subversion.

Now you can update the dependency in the appropriate pom.xml files.

Adding a library
Adding a new library involves a little bit more work than merely updating an
existing one. Here are the necessary steps:

1. Copy the new library in the adams-thirdparty directory.

2. Either find an existing group (e.g., adams.thirdparty.graphics) that the
new library fits in, or create a new group by adding a block at the end,
starting with the GROUP=adams.thirdparty.yourgroup statement.

3. Copy another mvn deploy:deploy-file ... block and update the fol-
lowing parameters:

• -DartifactId=...

• -Dversion=...

• -Dfile=...

7.3. ECLIPSE 61

• -DgeneratePom.description=...

4. Execute the deploy.sh script (don’t worry about error messages for other
libraries, only new libraries or updated versions will succeed).

5. Put the new library under subversion control and commit the changes in
adams-thirdparty.

Now you can add the dependency in the appropriate pom.xml files.

7.3 Eclipse

The choice of integrated development environment (IDE) is Eclipse [7]. It is not
only a very good IDE for Java development, but also for maven and LaTeX -
provided you install the proper plug-ins.

7.3.1 Plug-ins

In order to get the most out of developing with Eclipse, it is recommended to
install the following plug-ins:

• m2eclipse – adds proper maven support
http://m2eclipse.sonatype.org/

• texlipse – turns Eclipse into a type-setting environment with syntax high-
lighting, previewing, etc. This allows you to program and document with
the same application.
http://texlipse.sourceforge.net/

7.3.2 Setting up ADAMS

After installing the recommended plug-ins, you can proceed to import the
ADAMS source code that you checked out earlier using subversion. Import-
ing maven projects is extremely easy:

• right-click in the Navigator or Project Explorer and select Import...

• select Maven → Existing Maven projects

• choose the top-level directory of your ADAMS source code tree (the one
that contains all the modules and the system-wide pom.xml)

• select all the projects that you want to work with and hit Finish

For projects that have LaTeX documentation, you have to make sure that the
texlipse plugin is configured correctly, otherwise you might end up losing files.
Figure 7.1 shows an example setup for the manual of the adams-core module.
This module has the adams-core-manual sub-directory below the latex directory,
with a LaTeX file of the same name, i.e., adams-core-manual.tex. This LaTeX
file is listed as the main TeX file in the setup. Since the documentation is gen-
erated using pdflatex, the output format is pdf and the build command pdflatex.
It is very important not to place any temporary files in the source directory,
as they might get deleted during an Eclipse clean project operation. Instead,
the output directory should be target/latex/<documentation sub-dir> (e.g.,
target/latex/adams-core-manual), and the output file target/latex/<documentation
sub-dir>/<documentation sub-dir>.pdf (e.g., target/latex/adams-core-manual/adams-
core-manual.pdf).

http://m2eclipse.sonatype.org/
http://texlipse.sourceforge.net/

62 CHAPTER 7. TOOLS

Figure 7.1: texlipse configuration for the adams-core module.

Chapter 8

Using the API

Using the graphical user interface may be sufficient for most users, but as soon
as you want to embed one framework in another, you need to get down and
dirty with the API. This chapter addresses some core elements of the ADAMS
API, mainly the flow related APIs.

8.1 Flow

TODO

8.1.1 Life-cycle of an actor

Any actor, whether a simple one like the Display actor or a control actor like
Branch, has the following lifecycle of method calls:

• setUp() – performs initializations and checks, ensuring that the actor can
be executed

• execute() – executes the actor, i.e., transformers process the input data
and generate output data

• wrapUp() – finishes the execution, frees up some memory that was allo-
cated during execution

• cleanUp() – removal of graphical output, like dialogs/frame and destruc-
tion of internal data structures

The setUp() and execute() methods return null if everything was OK, otherwise
the reason (or error message) why the method didn’t succeed. The execute()
method is executed as long as finished() returns false.

OutputProducer
As long as the hasPendingOutput() method of an actor implementing Output-
Producer returns true, output tokens will get collected and passed on to the
next InputConsumer.

63

64 CHAPTER 8. USING THE API

Chapter 9

Extending ADAMS

The overarching goal of ADAMS was to develop a plug-in framework, which
makes extending it very easy. The built-in dynamic class discovery is at the
heart of it. The following sections cover various aspects of extending ADAMS,
from merely adding a subclass to creating a new project built on top of ADAMS.

9.1 Dynamic class discovery

ADAMS is a flexible plug-in framework thanks to the dynamic class discovery
that is offered through the adams.core.ClassLocator class. But merely locat-
ing classes is just half of the story, you also have to organize them. This is where
the adams.core.ClassLister class and its properties file ClassLister.props

(located in the adams.core package) come into play. The ClassLister class
iterates through the keys in the properties file, which are names of superclasses,
and locates all the derived classes in the listed packages, the comma-separated
list which represents the value of the property.

Here is an example for the conversion schemes that can be used with the
Convert transformer:

adams.data.conversion.AbstractConversion=\

adams.data.conversion

The superclass in this case is adams.data.conversion.AbstractConversion

and only one package is listed for exploration, adams.data.conversion.
Instead of adding new keys and packages to this central properties file, when-

ever a new modules requires additional class discovery, the developer can just
simply add an extra file in their module. The only restriction is that it has to
be located in the adams.core package.

This works for adding new keys, i.e., new superclasses, as well as for merely
adding additional packages to existing superclasses. In the latter case, only the
additional packages have to be specified, since ADAMS will automatically merge
keys across multiple properties files.

9.1.1 Additional package

Coming back to the previous example of the conversion schemes, module funky-
module, package org.funky.conversion contains additional conversion schemes.

65

66 CHAPTER 9. EXTENDING ADAMS

These are all derived from AbstractConversion. In that case, the ClassLister.props
file would contain the following entry:

adams.data.conversion.AbstractConversion=\

org.funky.conversion

When starting up, ADAMS will merge the two props files and the key will look
like this, listing both packages:

adams.data.conversion.AbstractConversion=\

adams.data.conversion,\

org.funky.conversion

9.1.2 Additional class hierarchy

Adding a new class hierarchy works just the same. You merely have to use
the superclass that all other classes are derived from as key in the props file
and list all the packages to look for derived classes. Here is an example for a
class hierarchy derived from org.funky.AbstractFunkiness, which has derived
classes in the packages org.funky and org.notsofunky:

org.funky.AbstractFunkiness=\

org.funky,\

org.notsofunky

9.1.3 Blacklisting classes

In production environments it might not always be wise to list all the classes
that are available, e.g., experimental classes. ADAMS provides a mechanism
to exclude certain classes, using pattern matching (using regular expressions).
These patterns are listed in the ClassLister.blacklist properties file. The
format for this file is similar to the ClassLister.props file, with the key be-
ing the superclass and the value a comma-separated list of patterns. In the
following an example that excludes a specified data conversion class called
SuperExperimentalConversion from being listed:

adams.data.conversion.AbstractConversion=\

org\.funky\.conversion\.SuperExperimentalConversion

If you want to exclude all conversions of the og.funk.conversion package that
contain the word Experimental, then use the following pattern:

adams.data.conversion.AbstractConversion=\

org\.funky\.conversion\..*Experimental.*

9.2 Creating a new actor

Being a workflow-centric application, it is most likely the case that a new module
will contain new actors and not just newly derived subclasses of already existing
superclasses. For this reason, the development of new actors is explained in
detail.

Developing a new actor is fairly easy, you only need to do the following:

9.2. CREATING A NEW ACTOR 67

• create a new class

• create an icon, which is displayed in the flow editor

• [optional, but recommended] create a JUnit test for the actor

9.2.1 Creating a new class

Any actor has to be derived from adams.flow.core.AbstractActor. Depending
on whether the actor consumes or produces data, there are two more interfaces
available:

• adams.flow.core.InputConsumer – for actors that process data that they
receive at their input

• adams.flow.core.OutputProducer – for actors that generate data of some
form

In general, four types of actors can be distinguished, based on the combina-
tions of these two interfaces:

• standalone – no input, no output

• source – only output

• transformer – input and output

• sink – only input

In order to make development of new actors easier and to avoid duplicate code
as much as possible, there are already a bunch of abstract classes in ADAMS
that implement these interfaces:

• adams.flow.standalone.AbstractStandalone – for standalones

• adams.flow.source.AbstractSource – for data producing source actors

• adams.flow.transformer.AbstractTransformer – for simple transformers that
take one input token and generate at most one output token.

• adams.flow.sink.AbstractSink – the ancestor of all sinks, actors that only
consume data

There are plenty more abstract super classes, since there are actors that perform
similar tasks. Some of them are listed below:

• adams.flow.sink.AbstractDisplay – for actors displaying data in a frame or
dialog

• adams.flow.sink.AbstractGraphicalDisplay – for actors that display graph-
ical data, e.g., a graph, which can be saved to an image file automatically

• adams.flow.sink.AbstractTextualDisplay – for actors that display text

A special interface, adams.flow.core.ControlActor, is an indicator interface for
actors that control the flow or the flow of data somehow. For instance, a Branch
actor controls the flow of data, since it provides each sub-branch with the same
data token that it received.

Actors that manage sub-actors, need to implement the adams.flow.core.ActorHandler
interface.

The special superclass adams.flow.control.AbstractControlActor already im-
plements the ActorHandler and ControlActor interfaces and implements some of

68 CHAPTER 9. EXTENDING ADAMS

the functionality. The AbstractConnectorControlActor class in the same pack-
age, is used for control actors which sub-actors are connected, like the Sequence
actor. The sub-actors in the Branch actor, on the other hand, are not connected,
but treated individually.

The following methods you will usually have to implement:

• globalInfo() – The general help text for the actor.

• doExecute() – Here the actual execution code is located, the pre- and
post- methods, you usually won’t have to touch. All three methods are
called in the execute() method.

9.2.2 Option handling

Option handling in ADAMS is available through classes implementing the OptionHandler
interface (package adams.core.option). Most classes or class hierarchies, that
includes the actors, are simply derived from AbstractOptionHandler, which
implements this interface and all the required methods. For adding a new op-
tion, there are usually only three things to do:

1. add the (protected) field

2. add the get-, set- and tiptext-methods that make up the new property
of this class

3. add an option definition

9.2.2.1 Example

The following shows how to implement a new option for an integer field volume
that only allows values from 1 to 11. For clarity’s sake, Javadoc comments have
been left out.
First of all, we define the (serializable) field:

protected int m_Volume;

Then we add the required methods1:

public void setVolume(int value) {

if ((value >= 1) && (value <= 11)) {

m_Volume = value;

reset(); // notify object that the settings have changed

}

}

public int getVolume() {

return m_Volume;

}

public String volumeTipText() {

return "The volume to crank up the speakers to.";

}

And finally, we define the option, by overriding the defineOptions() method.
Otherwise, the option won’t show up in the GUI and you won’t be able to set
the value via a command-line string.

1The tiptext method generates the help text in the GUI and command-line, so you should
never omit this.

9.2. CREATING A NEW ACTOR 69

public void defineOptions() {

super.defineOptions();

m_OptionManager.add(

"volume", // flag on the command-line without the leading "-"

"volume", // the Java Bean property for getting/setting the value

1, // the default volume

1, // the minimum value

11); // the maximum value

}

For numeric values, like integers and doubles, you can specify the lower and
upper bounds, if that makes sense, like in our example here. If one of them is
to be unbounded, simply use null. If both are unbounded, then simply omit
the last two parameters.

9.2.3 Variable side-effects

TODO

9.2.4 Graphical output

TODO

9.2.5 Textual output

TODO

9.2.6 Creating an icon

The icon has to be placed in the adams.gui.images package with the same name
as the class, but with a GIF or PNG extension. E.g., the Display actor’s full
class name is adams.flow.sink.Display. This means that ADAMS expects an
image called adams.flow.sink.Display.gif or adams.flow.sink.Display.png in the
adams.gui.images package.

There are already some templates available for new icons:

• adams.flow.standalone.Unknown.gif – red outline

• adams.flow.source.Unknown.gif – orange outline

• adams.flow.transformer.Unknown.gif – green outline

• adams.flow.sink.Unknown.gif – grey outline

• adams.flow.control.Unknown.gif – blue outline

Just create a copy of one of these icons and modify it to make your actor
distinguishable from all the others in the flow editor.

9.2.7 Creating a JUnit test

JUnit 3.8.x [8] is used as basis for the unit tests. Test classes are placed in
src/test/java and have to be suffixed with Test. E.g., the Display actor has a
test class called DisplayTest in package adams.flow.sink.

A flow unit test needs to be derived from adams.flow.AbstractFlowTest and
only the getActor() method needs to be implemented by default. This method

70 CHAPTER 9. EXTENDING ADAMS

typically returns a Flow actor which is set up and executed. If any step in the
lifecycle of the actor returns an error, the unit test will fail.

If required, a regression test can be performed. For this, you merely need
to implement a method called testRegression(), which calls the performRe-
gressionTest(File) or performRegressionTest(File[]) method. These methods
record the content of the specified files in a special reference file (found be-
low src/test/resources/regression) and the next time the test is run the newly
generated output is compared against the stored reference data. If the data dif-
fers, the regression test will fail. Please note, that you should remove temporary
files that you use for regression tests in the setUp() and tearDown() methods of
the unit test, to provide a clean environment to this and other tests.

9.3 Creating a new module or project

9.3.1 Module

First, you have to make sure that your local repository catalog is up-to-date:

mvn archetype:update-local-catalog

Second, run the following command to create a new module called adams-funky :

mvn archetype:generate \

-DarchetypeCatalog=local \

-DinteractiveMode=false \

-DarchetypeGroupId=adams \

-DarchetypeArtifactId=adams-archetype-module \

-DarchetypeVersion=0.3.8 \

-DgroupId=adams \

-DartifactId=adams-funky \

-Dversion=0.0.1-SNAPSHOT

This command will base the module on the latest ADAMS release, using the
0.3.8 release of the template (or archetype, to use the correct maven term).
The version number of the newly created module will be 0.0.1-SNAPSHOT.

After the command has finished, you have to update the Module.props file in
the src/main/java/adams/env directory. The minimal change that you have to
perform is to set the correct module name, specified under the Name key. Apart
from the name, this properties file contains information about your module,
which gets displayed automatically in the About dialog in the GUI.

Official modules
If you run the above command within the top-level directory that hosts all
the other ADAMS modules, then it will automatically add this module to the
pom.xml configuration file as a new dependent module. This means that each
time you issue a command in this directory (e.g., mvn package), your module
will be processed accordingly. This is the preferred approach when adding a
new module to be added to the ADAMS subversion repository.

Other modules
Otherwise, if you created that module outside the ADAMS module hierarchy,
it will use the artifacts that you have installed in your local repository (of

9.4. MAIN MENU 71

course, maven will occasionally check the Nexus repository manager for up-
dates). Use this approach if there is no intention on adding the module to the
official ADAMS subversion repository.

9.3.2 Project

TODO

9.4 Main menu

The main menu of ADAMS can use a pre-defined menu structure, as defined in
the adams/gui/Main.props properties file. But it also offers dynamic addition
of other menu items at runtime.

In order for new menu items being picked up at runtime, you need to derive
a new menu item definition from the following class (or one of the appropriate
abstract classes derived from it):

adams.gui.application.AbstractMenuItemDefinition

For instance, if you merely want the menu item to open a browser with a specific
URL (displaying the homepage or some help page), then you can derive the menu
item from the following class:

adams.gui.application.AbstractURLMenuItemDefinition

If you don’t want to modify the dynamic class discovery (ClassLister.props),
then you have to place your newly created menu item definition in the following
package:

adams.gui.menu

In order to get implement a menu item, derived from AbstractMenuItemDefinition,
you need to implement or override the following methods:

• getTitle() – The text of the menu item.

• getIconName() – By default, the menu item won’t have an icon, specify
the filename (without path) of the icon that you would like to use. The
icon is expected to reside in the adams/gui/images directory.

• getCategory() – This string defines the menu the item will get added to.
Existing ones are, e.g., Tools or Maintenance. You don’t have to use an
existing one, new categories get automatically added as new menus.

• isSingleton() – If your menu item can be launched multiple times, then
return false, otherwise true.

• getUserMode() – This defines the visibility of your menu item. Whether
it is intended for regular users, experts or developers. What level is being
displayed is defined – normally – by the application’s –user-mode <mode>
command-line option when starting the application.

• launch() – This method finally launches your custom code. More details
below.

The launch() method
For the best integration within ADAMS, the launch() will create a java.swingx.JPanel
derived panel and create an internal frame using the following call:

72 CHAPTER 9. EXTENDING ADAMS

JPanel panel = new MyFunkyPanel();

ChildFrame frame = createChildFrame(panel);

Using this approach, your panel with show up in the Windows menu of the main
menu of ADAMS.

Menu items derived from AbstractURLMenuItemDefinition don’t need to
implement this method, they merely need to supply a URL string with the
getURL() method. Their launch() method uses this URL to open a browser
with.

Bibliography

[1] Kepler – A free and open source, scientific workflow application.
https://kepler-project.org/

[2] KeplerWeka – A module for the Kepler workflow engine, which adds
WEKA functionality.
http://keplerweka.sourceforge.net/

[3] ADAMS – Advanced Data mining and Machine learning System. The
community homepage is available at the following URL:
http://adams.cms.waikato.ac.nz/

[4] Apache Subversion – An open-source, centralized version control system.
http://subversion.apache.org/

[5] Apache Maven – Software project management and comprehension tool.
http://maven.apache.org/

[6] Nexus – Repository manager for Apache Maven.
http://nexus.sonatype.org/

[7] Eclipse – An open development platform comprised of extensible frame-
works, tools and runtimes for building, deploying and managing software
across the lifecycle.
http://eclipse.org/

[8] JUnit – JUnit is a unit testing framework for the Java programming lan-
guage.
http://junit.org/

73

https://kepler-project.org/
http://keplerweka.sourceforge.net/
http://adams.cms.waikato.ac.nz/
http://subversion.apache.org/
http://maven.apache.org/
http://nexus.sonatype.org/
http://eclipse.org/
http://junit.org/

	I Using ADAMS
	Introduction
	Flows
	Actors
	Creating flows
	Hello World
	Processing data
	Control actors
	Have some Tee
	Pull the Trigger
	Branching – or how to grow your flow
	Further control actors

	Global actors
	External actors
	Templates
	Static use
	Dynamic use

	Variables
	Temporary storage
	Debugging your flow

	Visualization
	Image viewer
	Preview browser

	Tools
	Flow editor
	Flow runner
	Flow control center
	Text editor

	Maintenance
	Placeholder management
	Named setup management
	Variable management
	Favorites management

	Customizing ADAMS
	Main menu
	Properties files

	II Developing with ADAMS
	Tools
	Subversion
	Maven
	Nexus repository manager
	Configuring Maven
	Common commands
	3rd-party libraries
	Installing locally
	Uploading to Nexus

	Eclipse
	Plug-ins
	Setting up ADAMS

	Using the API
	Flow
	Life-cycle of an actor

	Extending ADAMS
	Dynamic class discovery
	Additional package
	Additional class hierarchy
	Blacklisting classes

	Creating a new actor
	Creating a new class
	Option handling
	Example

	Variable side-effects
	Graphical output
	Textual output
	Creating an icon
	Creating a JUnit test

	Creating a new module or project
	Module
	Project

	Main menu

	Bibliography

