
D
RA
FT

ADAMS

Advanced Data mining And Machine learning System

Module: adams-weka

Peter Reutemann

February 3, 2012

c©2009-2012

Contents

1 Introduction 7

2 Classification and Regression 9
2.1 Basic . 10

2.1.1 Loading data . 10
2.1.2 Building models . 12
2.1.3 Preprocessing . 12
2.1.4 Evaluation . 15
2.1.5 Making predictions . 19

2.2 Advanced . 20
2.2.1 Learning curves . 20
2.2.2 Experiments . 20
2.2.3 Optimization . 20
2.2.4 Provenance . 20

3 Clustering 21
3.1 Building models . 21
3.2 Clustering data . 22

Bibliography 23

3

4 CONTENTS

List of Figures

2.1 Flow for loading a local dataset. 10
2.2 The dataset that got loaded from disk. 10
2.3 Flow for loading a local dataset. 11
2.4 The dataset that got loaded from disk. 11
2.5 Flow for generating and displaying an artificial dataset. 11
2.6 Flow for building J48 model on a dataset and outputting the model. 12
2.7 J48 model output. 12
2.8 Flow for comparing results generated from original and prepro-

cessed “slug” data [4]. 13
2.9 Evaluation summary on “slug” dataset (original). 13
2.10 Evaluation summary on “slug” dataset (log-transformed). 13
2.11 Classifier errors on “slug” dataset (original). 14
2.12 Classifier errors on “slug” dataset (log-transformed). 14
2.13 Cross-validating a classifier and outputting the summary. 15
2.14 Summary output of a cross-validated classifier. 15
2.15 Text file with command-lines of various classifiers. 16
2.16 Cross-validating classifier set ups read from a text file and dis-

playing the evaluation summaries. 16
2.17 Summary outputs of cross-validated classifiers. 16
2.18 Flow for evaluating built classifier on a separate test set. 16
2.19 Summary output of classifier evaluated on separate test set. . . . 16
2.20 Flow for building/evaluating classifier on a random split. 17
2.21 Summary output of classifier built/evaluated on random split. . . 17
2.22 Flow for evaluating classifier on separate train/test set. 18
2.23 Summary output of classifier evaluated on separate train/test set. 18
2.24 Flow for displaying the “accumulated error” of a two classifiers. . 18
2.25 The “accumulated error” of LinearRegression and GaussianPro-

cesses. 18
2.26 Flow for classifying new data and outputting the class distributions. 19
2.27 The generated class distributions for the new data. 19

3.1 Building a clusterer and outputting the model. 21
3.2 Cluster model output. 21
3.3 Building a clusterer incrementally and outputting the model. . . 22
3.4 Cluster model outputs, generated every 25 instances. 22
3.5 Flow for clustering new data. 22
3.6 Generated cluster. 22

5

6 LIST OF FIGURES

Chapter 1

Introduction

The adams-weka module offers most of the functionality found in WEKA [2]:
pre-processing, classification and regression, clustering, attribute selection, data
visualization and visualization of results/models. But it does not stop there:
the module also contains other features for optimization, experiment generation
that are not available from WEKA, be it Explorer or KnowledgeFlow. It is
assumed that you are familiar with WEKA 1 and machine learning in general,
as common terms are not explained again.

If you have used WEKA’s KnowledgeFlow before, then you will have to
forget (mostly) everything that you know about setting up workflows. ADAMS
does things quite differently in comparison to the WEKA. Additionally, ADAMS
offers a range of general purpose actors that allow you to go further.

The manual is split into two parts: classification and regression comprising
the first one and clustering the second.

1If you haven’t used WEKA before, check out the Data Mining book [3], which gives you
a good introduction to machine learning, data mining and WEKA.

7

8 CHAPTER 1. INTRODUCTION

Chapter 2

Classification and
Regression

WEKA’s main strength lies in its large number of classification and regression
schemes. Most of the documentation will cover this functionality therefore.

We start out with some basic WEKA functionality, like loading and prepro-
cessing data, building models and evaluating them. That includes visualization
of the results and models as well. After that we will cover more advanced fea-
tures like learning curves, experiment generation and evaluation, optimization
of classifiers and also the current provenance support in ADAMS.

9

10 CHAPTER 2. CLASSIFICATION AND REGRESSION

2.1 Basic

In this section we describe how to perform basic WEKA functionality that you
are used to perform with the Explorer, but in the workflow context. Instead of
having to repeat the same steps, like loading and preprocessing data, whenever
you update your data, a flow allows you to define the steps apriori and then
merely re-execute them time and time again. Also, flows make it very easy to
document all the steps that you perform, not just merely recording what you
are doing.

2.1.1 Loading data

Before we can build any models, we have to have data at hand, of course. So
the first step will be to obtain data from somewhere, whether that is by loading
a local dataset or by downloading a remote dataset.

To start, we will be loading files that are stored locally. The actor used
for loading datasets is the WekaFileReader transformer. This actor does not
have an option for the file to load. Instead, it expects a file name, string or
URL object to arrive at its input port. In order to supply a local file, we use
the SingleFileSupplier source, which allows us to specify a single file that gets
forwarded in the flow. If required, one can also use the MultiFileSupplier or
DirectoryLister sources 1, which can forward multiple file names instead of just
one. The latter one is especially handy, if the files are not known in advance,
e.g., generated on the fly. In order to display the loaded data, we use the
WekaInstancesDisplay sink actor, which displays the data in a nice tabular
format. Figure 2.1 shows the flow for loading the dataset and Figure 2.2 the
generated output.

Figure 2.1: Flow for loading a local
dataset.

Figure 2.2: The dataset that got loaded
from disk.

In this example 2 we let the WekaFileReader determine the correct file
loader automatically, based on the file extension. If this automatic determi-
nation should fail, you can always check the “useCustomLoader” checkbox and
then configure the appropriate loader yourself.

Another feature of this actor is the ability to output the dataset row by row
(option “incremental”). This is very handy in case of very large files, where load-
ing into memory could pose a problem. Even though the incremental feature

1adams-weka-crossvalidate classifier multiple datasets.flow
2adams-weka-load dataset.flow

2.1. BASIC 11

works for any file type that WEKA can read, truly incremental, i.e., memory-
efficient, loading is only possible if the underlying loader also supports incre-
mental loading. In any other case, the dataset gets loaded fully into memory
before being forwarded row by row.

Nowadays, a lot of data is available online. Instead of relying on local files,
one can use the flow also to download remote files. Some of the WEKA file
loaders, like the ArffLoader, natively support the download via a URL. Figure
2.3 shows a flow 3 that downloads (and displays) an ARFF file available from
a URL that was supplied by the SingleURLSupplier. If the required dataset
is encapsulated in an archive, e.g., a ZIP file and not just compressed with
GZIP, then one has to download the archive first and extract the correct file
before working with it. The flow 4 in Figure 2.4 downloads an archive from
WEKA’s sourceforge.net web site 5 using the DownloadFile sink and extracts
all the datasets which filename fit a regular expression. The extracted files are
then displayed in a HistoryDisplay sink.

Figure 2.3: Flow for loading a local
dataset.

Figure 2.4: The dataset that got loaded
from disk.

Finally, artificial data can be generated within ADAMS as well. Using the
WekaDataGenerator source, any WEKA data generator can be used to output
data. The flow 6 depicted in Figure 2.5 generates a small dataset using the
“Agrawal” data generator.

Figure 2.5: Flow for generating and displaying an artificial dataset.

3adams-weka-dataset download.flow
4adams-weka-dataset download2.flow
5WEKA on sourceforge.net: http://sourceforge.net/projects/weka/
6adams-weka-data generator.flow

http://sourceforge.net/projects/weka/

12 CHAPTER 2. CLASSIFICATION AND REGRESSION

2.1.2 Building models

After having sorted out the loading of the data, it is time to check out how to
build models. Since we are using supervised algorithms, we have to make sure
that the datasets have a class attribute set. The WekaClassSelector actor allows
the setting of the class attribute, in the default setting it simply uses the last
attribute as the class attribute. With the WekaClassifier actor you can choose
a classifier to be built. By default, the WekaClassifier actor outputs a container
that comprises the built model and the header of the training set. In order to
extract either of the container items, you need to use the ContainerValuePicker
control actor. Figure 2.6 demonstrates how to train a J48 classifier on dataset
and then displaying the built model (see Figure 2.7) 7.

Figure 2.6: Flow for building J48 model
on a dataset and outputting the model.

Figure 2.7: J48 model output.

A built model can be saved to disk (and then re-used later) using the
WekaModelWriter. The file generated can also be loaded in the WEKA Ex-
plorer again and applied to another test set there 8.

2.1.3 Preprocessing

A very important, but often underrated step is preprocessing. Unless your
data is properly cleaned up and in the right format, your models will not be
very meaningful. Preprocessing steps can be done within the flow using the
WekaFilter transformer, which wraps around a single WEKA filter. One either
chains multiple actors together or uses the weka.filters.MultiFilter meta-filter
to executed several filter sequentially in a single actor.

In Figure 2.8 we are investigating the impact of preprocessing on the “slug”
dataset [4]. The flow 9 cross-validates LinearRegression on the original and
log-transformed data. The log-transformed data is generated by applying the
AddExpression filter on each of the two attributes of the dataset and then delet-
ing the original ones. In each case, original or preprocessed, it displays the
evaluation summary and classifier errors.

Figures 2.9 and 2.10 show the evaluation summary, for the original and
the log-transformed data. The log-transformed dataset gets not only a better
correlation coefficient, but also smaller errors.

7adams-weka-build classifier-output only model.flow
8adams-weka-build classifier-save model.flow
9adams-weka-filter data.flow

2.1. BASIC 13

Figure 2.8: Flow for comparing results generated from original and preprocessed
“slug” data [4].

Figure 2.9: Evaluation summary on
“slug” dataset (original).

Figure 2.10: Evaluation summary on
“slug” dataset (log-transformed).

Figures 2.11 and 2.12 display the classifier errors. It is obvious from the funy
log-shaped curve, that LinearRegression built on the original data is not a very
good model. Something that is not so obvious by just looking at the correlation
coefficient: 0.9056 is not bad.

This flow can be quickly extended to accommodate other preprocessing tech-
niques, all very easily comparable in the graphical output.

In this example the preprocessing was rather specific. On the other hand, if
your are working mainly in a particular data domain, like spectral analysis of
some kind, then certain preprocessing steps will always be same. In this case,
it makes sense to store these externally in a preprocessing library which you
then link to using external actors (see manual for the adams-core module for
more details). This reduces duplication and you will only have to update the
preprocessing step in a single location.

14 CHAPTER 2. CLASSIFICATION AND REGRESSION

Figure 2.11: Classifier errors on “slug”
dataset (original).

Figure 2.12: Classifier errors on “slug”
dataset (log-transformed).

2.1. BASIC 15

2.1.4 Evaluation

Knowing how to build a model is good, but how can you tell whether the
model that you built is any good? Evaluation is the key to unlock this mystery.
ADAMS offers several types of evaluations:

• Cross-validation – if you only have a single dataset.

• Test set evaluation – evaluating an already trained classifier with a sepa-
rate dataset.

• Train/test set evaluation – training and evaluating a classifier with a train-
ing and test set. This can be either achieved using a RandomSplit actor
or reading two separate files from disk.

Cross-validation
We start with cross-validation, which is probably the most used type of evalua-
tion. The WekaCrossValidationEvaluator transformer is used for cross-validation.
In order to get around ADAMS’ limitation of allowing only one input, the
WekaCrossValidationEvaluator actor takes a dataset as input and obtains the
classifier to evaluate from a global actor. This approach hides how the classifier
is obtained, whether it is a simple WekaClassifier definition or a more com-
plex scheme for outputting a Classifier object (e.g., loading it from a serialized
model file). Figure 2.13 shows a flow 10 with simple cross-validation using a
global WekaClassifier to obtain the classifier object from.

Figure 2.13: Cross-validating a classifier
and outputting the summary.

Figure 2.14: Summary output of a
cross-validated classifier.

Most of the time, you don’t just want to test a single classifier, but several
ones. With ADAMS you can, for instance, load classifier command-lines from a
text file and then evaluate them one after the after 11. Reading the text file (see
Figure 2.15) is fairly straight-forward, using the TextFileReader transformer.

For updating the global classifier’s set up, we need to attach a variable to
the global WekaClassifier actor’s “classifier” option and update this variable
with each set up that we are reading from the text file using the SetVariable
transformer. This update of the classifier set up has to happen before we are
triggering the cross-validation. Figures 2.16 and 2.17 show the full flow and the
generated output, when reading in three set ups from a text file (J48, filtered
J48, SMO).

10adams-weka-crossvalidate classifier.flow
11adams-weka-crossvalidate classifier setups from text file.flow

16 CHAPTER 2. CLASSIFICATION AND REGRESSION

Figure 2.15: Text file with command-lines of various classifiers.

Figure 2.16: Cross-validating classifier
set ups read from a text file and dis-
playing the evaluation summaries.

Figure 2.17: Summary outputs of cross-
validated classifiers.

Test set evaluation
Simply testing a built classifier on a test set is useful when you are always
intending to save the generated model to a file, but also want to keep an eye
on the performance. In this case, you can very easily extend your current flow
for building and saving the model. First, add a global actor that loads the
separate training set from disk. Second, add a Tee control actor that performs
the evaluation using the WekaTestSetEvaluator and WekaEvaluationSummary
transformers and a Display sink for showing the results 12. The full flow and
the generated output are shown in Figures 2.18 and 2.19.

Figure 2.18: Flow for evaluating built
classifier on a separate test set.

Figure 2.19: Summary output of classi-
fier evaluated on separate test set.

12adams-weka-build classifier evaluate on testset.flow

2.1. BASIC 17

Train/test set evaluation
An evaluation using separate train and test set can be used, if you don’t want to
keep the evaluated model, but you are only interested in the evaluation output.
The evaluation actor in this case is the WekaTrainTestSetEvaluator transformer.
This actor accepts WekaTrainTestSetContainer data tokens. To generate this
container you have several options:

• WekaRandomSplit – splits a single dataset into a train and test set, based
on the percentage supplied by the user.

• WekaCrossValidationSplit – Generates train/test splits like they occur in
cross-validation. Useful, if you want to inspect the various models built
during cross-validation, not just the summary.

• MakeContainer – manually generating a container from two individually
loaded datasets.

Figures 2.20 and 2.21 show how to use the RandomSplit actor in the evalua-
tion process 13. For simulating cross-validation, simply exchange the WekaRan-
domSplit actor with a WekaCrossValidationSplit one (you might also want to
change from Display to HistoryDisplay, to keep better track of the various eval-
uations).

Figure 2.20: Flow for build-
ing/evaluating classifier on a random
split.

Figure 2.21: Summary output of classi-
fier built/evaluated on random split.

Figures 2.22 and 2.23 display the flow 14 for manually creating a container
using the general purpose MakeContainer source actor. In order to assemble a
container, you need to know what type of container you want to create (the
type is normally listed in the “Help” of an actor), where to obtain the data
from (i.e., the global actors) and how to store the data (i.e., under which name
in the container).

Visualization
You have already encountered the display of the classifier errors (in Figure
2.11). The sink for displaying these errors is WekaClassifierErrors, which takes
an Evaluation object as input. If you want to evaluate and display multiple
classifiers then you have to use the DisplayPanelManager with the WekaClas-
sifierErrors actor as “panelProvider”. The DisplayPanelManager actor offers a
history of generated panels, like the HistoryDisplay does for plain text.

13adams-weka-evaluate classifier randomsplit.flow
14adams-weka-assemble traintestset container and evaluate classifier.flow

18 CHAPTER 2. CLASSIFICATION AND REGRESSION

Figure 2.22: Flow for evaluating classi-
fier on separate train/test set.

Figure 2.23: Summary output of classi-
fier evaluated on separate train/test set.

Another interesting visualization is the WekaAccumulatedError transformer.
This transformer takes also an Evaluation object and then turns it into a special
sequence of plot containers: it creates a sequence of the prediction errors that
were obtained during an evaluation and outputs them sorted, from smallest to
largest 15. The Figures 2.24 and 2.25 show the flow and the generated output
respectively. As you can see from the graph, GaussianProcesses generates con-
sistently larger errors than LinearRegression, which only seems to have a few
big outliers (steep increase at the end).

Figure 2.24: Flow for displaying the
“accumulated error” of a two classifiers.

Figure 2.25: The “accumulated error”
of LinearRegression and GaussianPro-
cesses.

15adams-weka-accumulated error display.flow

2.1. BASIC 19

2.1.5 Making predictions

Of course, building models is only part of the picture. You will want to use this
model as well and make predictions with it. The actor for making predictions
on incoming data (i.e., single instance objects) is the WekaClassifying actor.
This actor can either use a serialized model or a global actor that generates a
trained classifier. The flow 16 in Figure 2.26 uses the global actor approach,
training a classifier on a training set and then performing classifications on a
test set, with the class distributions shown on screen (see Figure 2.27).

Figure 2.26: Flow for classifying new
data and outputting the class distribu-
tions.

Figure 2.27: The generated class distri-
butions for the new data.

16adams-weka-classifying data.flow

20 CHAPTER 2. CLASSIFICATION AND REGRESSION

2.2 Advanced

2.2.1 Learning curves

incremental 17 and non-incremental 18

2.2.2 Experiments

experiment generation 19, execution and evaluation 20

2.2.3 Optimization

setup generators 21, ranker 22, optimizer 23

2.2.4 Provenance

provenance display 24

17adams-weka-build classifier incrementally.flow
18adams-weka-classifier learning curve.flow
19adams-weka-experiment generation.flow
20adams-weka-experiment.flow
21adams-weka-classifier setup generation.flow
22adams-weka-classifier setup ranking.flow
23adams-weka-classifier optimizer.flow
24adams-weka-crossvalidate classifier-display provenance.flow

Chapter 3

Clustering

Clustering behaves very much like Classification/Regression, the only difference
being that it is an unsupervised learning process. This means that the flows
won’t contain a WekaClassSelector actor to set the class attribute in the loaded
data. Due to the similarity, the section here will cover only the basics of clus-
tering.

3.1 Building models

Building clustering models is as easy as building classification/regression models.
Instead of the WekaClassifier transformer, you use the WekaClusterer one.

Figures 3.1 and 3.2 show a flow 1 that builds a SimpleKMeans clusterer on
a dataset (the class attribute gets removed using a WekaFilter actor) and the
generated model gets displayed.

Figure 3.1: Building a clusterer and out-
putting the model.

Figure 3.2: Cluster model output.

If the base cluster algorithm is an incremental one, i.e., one that implements
the weka.clusterers.UpdateableClusterer interface, you can build your clustering
model incrementally as well. The flow 2 in Figure 3.3 builds the CobWeb cluster
algorithm incrementally and outputs the generated models every 25 instances
(see Figure 3.4).

1adams-weka-build clusterer.flow
2adams-weka-build clusterer incrementally.flow

21

22 CHAPTER 3. CLUSTERING

Figure 3.3: Building a clusterer incre-
mentally and outputting the model.

Figure 3.4: Cluster model outputs, gen-
erated every 25 instances.

3.2 Clustering data

Clustering new data is done using the WekaClustering transformer, which takes
a single instance as input and outputs the generated clustering information
in form of a container (WekaClusteringContainer). You can either specify a
serialized clusterer model to use or a global actor to obtain the clusterer from.
The flow 3 in Figure 3.5 shows how to build a clusterer and use it to cluster
new data, outputting the cluster distributions (see Figure 3.6 for the generated
output).

Figure 3.5: Flow for clustering new
data.

Figure 3.6: Generated cluster.

3adams-weka-clustering data.flow

Bibliography

[1] ADAMS – Advanced Data mining and Machine learning System
http://adams.cms.waikato.ac.nz/

[2] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, Ian H. Witten (2009); The WEKA Data Mining Software:
An Update; SIGKDD Explorations, Volume 11, Issue 1.
http://www.cs.waikato.ac.nz/ml/weka/

[3] Ian H. Witten, Eibe Frank, Mark A. Hall (2011); Data Mining: Practical
Machine Learning Tools and Techniques; Third Edition; Morgan Kauf-
mann; ISBN 978-0-12-374856-0
http://www.cs.waikato.ac.nz/ml/weka/book.html

[4] Barker, G, and McGhie, R (1984) The Biology of Introduced Slugs (Pul-
monata) in New Zealand: Introduction and Notes on Limax Maximus, NZ
Entomologist 8, pp 106-111

23

http://adams.cms.waikato.ac.nz/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/book.html

	Introduction
	Classification and Regression
	Basic
	Loading data
	Building models
	Preprocessing
	Evaluation
	Making predictions

	Advanced
	Learning curves
	Experiments
	Optimization
	Provenance

	Clustering
	Building models
	Clustering data

	Bibliography

