ADAMS
Advanced Data mining And Machine learning System

Module: adams-core

b

Peter Reutemann

December 24, 2014

(©2009-2013

©®

g THE UNIVERSITY OF

. WAIKATO

N8
Te Whare Wananga o Waikato

Except where otherwise noted, this work is licensed under
http://creativecommons.org/licenses/by-sa/3.0/

==

*|

Contents

2.2.3.2 Pull the Trigger|
[2.2.3.3 Branching — or how to grow your flow|

[2.2.4 Protecting sub-flows|
2.3 Running flows|. oo

2.4 Arrays and collections| oo
2.5 Converting objects| L oL
2.6 String handling| oo
2.7 File handlingl o
2.8 Numeric operations|. Lo oo
2.9 JSON
2.10 Properties|

...............................
BI7 Variabledo o
[2.18 Temporary storage| Lo,
2.19 Debugging your flow|

[2.19.1 Breakpomnts| oo

[2.19.2 Monitoring|
...............................

2.21 External processes and classes|.

3

B Visualzation

3.1 Image viewer|

8.2 Preview browserl

[4_Toolsl

FMaintenancel

b.1 Placeholder management|.
b.2 Named setup management|.
.3 Favorites management|

[6 Customizing ADAMS|

[7.2.1 Nexus repository manager|

[7.2.2 Configuring Maven|

[7.2.4 3rd-party libraries|

7.3 clipsef. oo o
3.1 Plug-ing| o 000 0000000

[7.3.2 Setting up ADAMS|

|74 Custom Maven project|.
[7.5 Non-maven approach|.

8 Using the AP]|

8.1.1 Life-cycle of an actor|{.
8.1.2 Settingupatlow

CONTENTS

65

........... 65
........... 66

69

........... 69
........... 69
........... 69
........... 70
........... 72

73

........... 74
........... 78
........... 80

87

CONTENTS

9 Extending ADAMS|

namic class discovery| L oL
9.1.1 itional package|
[9.1.2 Additional class hierarchy|
9.1.3 Blacklisting classes| 0000,

9.1

9.2 Creating anew actor|,

9.2.1 reating anewclass|

9.2.2 ption han

INGI . . . o o e e e s e e e e e e e e

9.2.2.1 Example] 000000

|9,2,;i yallahlﬁ Sldﬂ-ﬁ”ﬂs lsl

[9.2.4 Graphical output|00

[9.2.5 Textual output|

9.2.6 Creating anicon|

[9.2.7 Creating a JUnit test|

9.3 Creating a new module|.

9.5.1 Main menu|
[9.5.2 Popup menu|

0.6

Image viewer| . . .

(10 JUnit tests|

[11 Parser plugins

11.1

rogrammatic hoo

105
105
105
106
106
106
107
108
108
109
110
110
111
111
111
112
113
113
114
115
115

117

119
120

121

CONTENTS

List of Figures

2.1 Flow editor with an empty new flow (File - New — Flow) . . . 13
2.2 Popup menu for adding a new actor| 14
[2.3 Selecting a different actor| 15
2.4 Searching for StringConstants actor| 15
2.5 Help dialog for the StringConstants actor| 16
2.6 g the Hello World! string|. 16
2.7 Flow after adding the StringConstants actor|. 17
2.8 Tab displaying help tor the StringConstants actor|. 18
2.9 Tab displaying the non-default options for the StringConstants |
Cackorl . - . o oo 19
[2.10_Adding another actor after the current onef 19
2.11 Searching for the Display actor| 20
2.12 e complete Hello World flow| 20
2.13 e output of Hello Wor OW[. v v v v e e e e e 20
2.14 Adding an additional actor] 21
2.15 Adding the Convert transformer| 22
2.16 Configuring the Convert transtormer| 22
217 Extended Hello World flow] 23
[2.18 Output of the extended Hello World flow] 23
[2.19 Customizing the StringReplace transformer| 23
[2.20_Output of further extended Hello World flow] 24
2.21 The Hello World flow with Tee actors. 25
[2.22 The log file generated by the Tee actors|. 26
2.23 A customized ConditionalTee actor.) 26
12.24 The Hello World flow with an additional Trigger actor.| 27
12.25 The modified log file generated with the additional Trigger actor| 27
12.26 The Hello World flow using a Branch actor.. 28
12.27 Flow runner interface with a flow for generating the Mandelbrot |
% 31
12.28 Flow editor interface with a flow for generating the Mandelbrot |
7 32
12.29 Outputting parallel processed strings in a single callable Display |
Cactor] - o oo o e 44
2.30 Editing an external low directly.| 46
2.31 An wnlined or expanded external flow.| 47
12.32 Simple flow that prompts the user to enter a value, using a default |
L value of “42” and a custom message.| 49

[2-33 Adding a sub-flow generated from a template to an existing How.] 49

7

LIST OF FIGURES

[2.34 The options of the UpdateVariable template.| 50
2.35 The added sub-flowl) 51
[2.36 The asterisk (“¢”) next to an option indicates that a variable is |

attached)o 52
2.37 Using a variable to control what file to load and display.| 52
2.38 Using a variable to control what external flow to execute (flow).|. 53
[2.39 Using a variable to control what external flow to execute (output)] 53
[2.40 Flow demonstrating the temporary storage functionality]. 56
[2.41 Output of low demonstrating the temporary storage functionality.| 57
2.42 Flow demonstrating the LRU cache storage functionality. 57
[2.43 Display of the temporary storage during execution.| 58
2.44 Output of flow demonstrating the LRU cache storage functionality.| 58
[2.45 The control panel of the Breakpoint actor.| 59
2.46 Example flow with Breakpoint actor| 60

[2.47 The Inspection dialog of the Breakpoint actor for the current token. 61
|2.48 The Inspection dialog of the Breakpoint actor for the current flow.| 62

3.1 Displaying a fractal in the Image viewer|. 65
8.2 Preview browser displaying an image| 66
3.3 Preview browser displaying a flow.| 66
3.4 Preview browser displaying an plain text file| 67

4.1 Overview of actor usage in flow files| 70
4.2 Editor for viewing/editing plain text files] 71

4.3 Comparing two text files.| 72
b.1 Viewing the currently defined placeholders.| 74
5.2 Entering the name for a new placeholder.| 75
5.3 Selecting the directory that the new placeholder represents.| . . . 75
5.4 The updated view of the placeholders.| 75
b.5 Making the placeholder changes persistent.| 76
5.6 Editing the path of a placeholder.|. 77
5.7 Selecting the new directory that the placeholder should represent |

mstead) 77
9.8 Viewing the currently defined named setups.| 78
5.9 The class hierarchy for the named setup.|. 78
15.10 Selecting the configuration that the new named setup represents.| 79
b.11 The nickname for the setup.|. 79
b.12 The updated view of the named setups| 79
5.13 Making use of a favorite in the Flow editor) 80
5.14 Adding a setup in the object editor to the favorites.| 81
5.15 Adding a favorite for new superclass.| L. 82
.16 Configuring the new favorite.| 82
.17 Naming the favorite.| 83
5.18 The updated favorites view.| 83
5.19 Changing a different setup for a tavorite.|. 84
5.20 The view with the updated favorite| 84
5.21 Choosing a new name for the favorite| 85
15.22 The view with the renamed favoritel 85

5.23 Saving the modified favorites.| oL 86

LIST OF FIGURES

[6.1 Proxy preferences|. o o oL 90
[6:2 Time zone preferences| 90
[6.3 ocale preferences| 91
[7.1 texlipse configuration for the adams-core module|. 99

.2 Screenshot of the “Roll your own” section of the ADAMS website.[100

10

LIST OF FIGURES

Part 1

Using ADAMS

11

Chapter 1

Introduction

ADAMS is the result of a research project processing spectral data that required
extensive preprocessing and parallelism. The workflow approach seemed the
best way of dealing with this problem. A system was required, that was easy to
extend and make it easy for the user in setting up workflows quickly.

Initially, the workflow engine of choice was Kepler [1], being both written in
Java and designed for the science community. In order to bring machine learning
to Kepler, the KeplerWeka project [2] was started. Over time we realized that
we spent a lot of time rearranging actors (i.e., the nodes in the workflow) on
the workflow canvas, whenever we needed to add more preprocessing or another
layer of complexity to it. Even with Kepler’s support for sub-workflows (which
are opened up in separate windows), it soon became apparent that this was not
an optimal solution.

Since most of the processing merely was loading data from the database and
then preprocessing it (forking as well and different preprocessing in parallel), we
decided to implement a very basic workflow engine ourselves, with a tree-like
structure (1-to-1 and 1-to-n connections). Using a simple JTree for representing
the structure of the flow, implied the relationship between the actors and no
time was spent on rearranging them anymore. We could finally concentrate on
setting up the flow to process the data.

Over time, ADAMS grew and more and more actors for various domains
(machine learning, scripting, office, etc.) were added. Not all projects that use
ADAMS as base-platform needed all the available functionality. This initiated
the modularization of ADAMS and represents the current state of the platform.
Derived projects now merely have to add dependencies to existing modules in
order to gain additional functionality — without hassle.

Have fun — The ADAMS team

13

14

CHAPTER 1. INTRODUCTION

Chapter 2

Flows

Workflows, or flows for short, are at the center of ADAMS. Most activities can
be expressed in a series of steps. Using a flow to define them is just logical. The
advantage of using flows to describe activities is they document all the steps that
are happening, making it easy to reproduce results. For instance for machine
learning experiments, reproducibility is very important. Therefore, capturing
every step, from the preprocessing of the raw data to the actual running of
experiments and evaluating them, is essential.

The following section introduces the basic concepts of flows in the ADAMS
context and how to set them up. Advanced topics are covered as well, like
callable actors and variable support.

2.1 Actors

A single step or node in a flow is called actor. There are various kinds of actors:

standalone — no input, no output
source — only generates output
transformer — accepts input and generates output

sink — only accepts input

A special kind of actor is the control actor, which controls the flow execution
in some way. This can be a simple Stop actor, which merely stops the whole
flow when executed. Or, it can be a Branch actor, which forwards the input it
receives to all its sub-branches.

An actor that accepts input, like a transformer or sink is called an Input-
Consumer. An actor that generates output, like a transformer or a source, is
called QutputProducer.

Each InputConsumer returns what types of data it does accept and is able
to process. For some actors, this changes based on the parameters. The same
applies to OutputProducer ones, which also return what type of data they are
generating. Once again, the type of output data can change, depending on
parametrization.

Before a flow is being executed, the compatibility of the actors is checked.
This includes basic checks like the one that no InputConsumer can come after
a sink, since that one doesn’t generate any output. Additionally, the types of

15

16 CHAPTER 2. FLOWS

output generated and the types of generated input are checked whether they
are compatible. If one transformer generates floating point data, but the next
transformer only accepts strings, this will result in an error.

There are two special types of data that an actor can return for accepted
input or output:

e (Object — which can be any type, but not an array.
e Unknown — which can be any type, even an array.

Data itself is not being passed around directly, but in a container called Token.
This container allows additional storage, like provenance information. Actors
that support provenance — adams.flow.provenance. ProvenanceSupporter — up-
date the provenance information in the container before forwarding it.

2.2. CREATING FLOWS 17

2.2 Creating flows

The basic flow layout is as follows:

e [optional] standalone(s) - for static checks or static operations when the
flow is started

e source — for generating tokens that will get processed by subsequent actors.

e [optional] transformer(s) — for processing the tokens.

e [optional] sink — for displaying or storing the processed tokens.

The tool for creating — and also running — flows is the Flow editor. Figure [2.1
shows the default view of the editor when starting it up. Actors can be added
to a flow by either dragging them from the Actors tab on the right-hand side
onto the flow or by using the right-click menu of the left-hand side pane.

The Search box of the Actors tab on the right-hand side allows to search in
the actor names and their description.

v Flow editor =+ %
Eile Edit Debug Execution View Window
[]
newd Adors | Clipboard | Help | Parameters
(7] Flow 9 Jroot
& [adams.flow
Search

Figure 2.1: Flow editor with an empty new flow (File = New — Flow)

You can edit as many flows in parallel as you want, e.g., for copy/pasting
actors or other setups between them. Also, you can run them in parallel as well.

18 CHAPTER 2. FLOWS

2.2.1 Hello World

The first flow El that we will be setting up now is very simple: a source will
output the string Hello World! and a sink will display it then. For simplicity,
we will just use the right-click menu for adding the actors to this flow.

Since this is our first flow, we want the display to be as verbose as possi-
ble. Hence make sure to check Show input/output from the View menu. This
will display what types of inputs and outputs the various actors accept and/or
generate. Once you are familiar with the actors, you might want to turn this
feature off again, especially when the flows become larger.

First, we need to add the source that outputs the string. The StringCon-
stants source can output an arbitrary number of strings that the user defined.
We will use this actor in this simple example.

Select the actor that you want to add an actor before, after or below. In
this case, starting with an empty flow, this is the Flow actor. Now right-click
and select Add beneath. .. from the menu, as shown in Figure 2.2

Flow editor -+ o
File Edit Debug Execution View Window

DL [v]+]
[‘new1o | 4 Actors | Clipboard | Help | Parameters
Al % Croot
Hlow A ¢ =1adamsiiow
' Edit... F10 =9 control
Add beneath... Shiftdnsart : o sink
Add here R e = source
ad . o [standalone

o [transformer

PY

Disable pac
(@) Bookmark »
Rename... F2

Template

Create callable actor circ

Externalize...

Search

Flow

Figure 2.2: Popup menu for adding a new actor

ADAMS tries to suggest an actor depending on pre-defined rules and the
context where the actor will get placed. The ones pre-defined by rules will be
automatically available through the combobox at the top. But due to the large
amount of actors, quite often you will choose a different one. You can do this
by simply clicking on the button — showing an icon of a hierarchical structure
- in the top-right corner of the current dialog. A new popup will be displayed
right next to the button (see Figure .

Due to the large amount of available actors EI, most of the time it is quicker

ladams-core-hello_world1.flow

2ADAMS automatically filters actors that won’t fit where you want to place a new actor.
Using the strict mode, you can also filter the actors that might only be compatible, like general
purpose ones. Each module can define such rules. Also, the initial actors that ADAMS sug-
gests are based on pre-defined rules of what actors are commonly placed in certain situations.
If there are more than one suggestions, a combobox with all the class names is displayed in
the GenericObjectEditor instead of a simple label.

2.2. CREATING FLOWS 19

Flow editor

Execution View Window

(e8] [~ 1] (&) [=]3]

[new1in Actnrs [Clipboard ["Help | Parameters
— - Add beneath...

v F root
[adams.flow.source. selectrile =N - & Clroot =
About Select different class
Pops up a file chooser dialog, prompting the user to select one or o sink
more files, + O source
loggingLevel WARNING -~ CallableSource
[t CombineVariables
name [selectrile ConditionalSource
annotations I [DeqQueue
) Directorylister =
skip [m] B enterManyvaiues
stopFlowOnError O Entervalue
Exec
CUIBULATaY o ExternalSource
stopFlowlfCanceled [] Filesupplier
h
ge | ForLoop
fileChooserTitle [[tw] GetEnvironmentVariable
initialDirecto cwD t rroper
o ls : I [HashSet
[Nene [(15) InstantiatableSource
initialFiles [None |- 63 ListEnvirenmentvariables
absoluteFilenames [search] \M
noninteractive [m] @lEiltering [] Strict mode

Flow

Figure 2.3: Selecting a different actor

to use the search facility of the popup displaying the class tree. Either click in
the search box or use the shortcut A1t+S to jump there. As soon as you type,
the display filters out all the class names that don’t match the entered string.
After entering str you will see a result similar to Figure [2.4]

Flow editor
File Edit Debug Execution View Window
o] [#]*]
I3 10 ; Actors | Clipboard | Help | Parameters
— - Add beneath... x
[+ S root
[adams.flow.source. selectFile =] [[& [ereet
About ¢] adams.flow
file chooser dial ting the User to select [cource
;un;;: :E: ile chooser dialeg, prompting the user to select one or StringConstants
¢ [transformer
loggingLevel [warNING [+ StringCut
name [SelectFile £ stringndexaf

stringinsert
StringJoin
stringLength
StringMatcher
StringRangecut
StringReplace
stringSanitizer
StringSplit
StringTrim

annotations

skip

[m]
stopFlowOnError O
outputArray [m]

o

stopFlowlfCanceled

filechooserTitle [

initialDirectory [s{cwD} —
i Nons =
initialFiles [None |-
absoluteFileNames [Searchlstd][close
DTG o WIEiltering [] Strict mode B
o] ot |
Search[|

Flow

Figure 2.4: Searching for StringConstants actor

Now click on the StringConstants actor to select it. The About description
only displays some of the information about an actor (normally only the first
sentence of the general description). If you want to know more about an actor
and its options, just click on on the [Z) button in the About box. For the
StringConstants actor this opens a dialog like shown in Figure For quick
info on options, you simply hover with your mouse over one of the options and

20 CHAPTER 2. FLOWS

a tool tip will come up with the description.

~ Help on adams.flow.source.StringConstants

Name
adans. flov. source StringConstants

Synopsis

A source for strings.
Additional information

Flow input/output:
- output: java.lang.String

Options

 loggingLevel
The logging level for outputting errors and debugging output.

‘command—linel logging-Tlevel <OFF| SEVERE|WARNING| INFO|CONFIG| FINE | FINER| FINEST> |
‘default |WAHNING |

& name
The name of the actor.

‘ command—linel -name <java,lang.String> ‘
| defaurt [stringconstants | =

Close

Figure 2.5: Help dialog for the StringConstants actor

The strings property holds all the user-specified strings that this source actor
will output. In our case, we just want to output Hello World!. Open up the
array editor for the strings property, by clicking on the ... button for this
property. In order to enter a string value in this dialog, just click on the ...
button again and enter the value as shown in Figure and click on OK.

Flow editor
File Edit Debug Execution View Window
[o] [¢]]
[e }| Actors | clipboard [Help | Parameters
Add beneath P
[adams.flow.source StringConstants [~ E || ¢ c1adams.fiow
& (3 control
About d o [sink
A source for strings. &S source
-3
loggingte Object editor o= [transformer
name (& | @
annotatil ‘ |
skip
stopFlow - Object editer * [I i
Value 1
e % Hello World |
——
|
L=][
Total: 0, Selected: 0
=]
Flow

Figure 2.6: Adding the Hello World! string

So far, you have only configured an object (a simple string in this case). Now
you have to add the string object to the list, in order to use it. Just click on
the| 4 |button on the right-hand side (a red plus sign inidicates a recent
change, green indicates that nothing has changed). If you wanted to output
more than just one string, for each of them you would bring up the dialog

2.2. CREATING FLOWS 21

again, enter the value and add it to the list. After adding all the necessary
items, confirm the dialog by clicking on the OK button.

This finishes our set up of the StringConstants actor and you can confirm
the dialog with OK button. Figure shows the resulting flow.

- “Flow editor -4
File Edit Debug Execution View Window
Dz d - L IRE4
*newlo | g Actors | Clipboard [Help | Parameters
? ¥ 3 root
50 StringConstants Helo woridt I ¢ Eladams.flow
& control
& sink
& [source
& [standalone
& [transformer
Search
Flow

Figure 2.7: Flow after adding the StringConstants actor

The Flow editor offers help also through the tabs on the right hand side.
The Help tab (Figure displays the same information as the aforementioned
dialog, but without the need of opening a new dialog. You merely have to
select an actor on the left hand side in order to display its help screen. The
Parameters tab is a shortcut to see all the options of the currently selected
actor which differ from the default options . This can be quite handy when
quickly going through multiple actors, checking their values. Especially actors
with lots of options.

For our simple Hello World example, we don’t need an data processing using
transformer actors, only a sink that will display our data. The Display actor can
be used for displaying textual data. This actor adds the string representation
of each token that it receives as a new line in its text area.

For adding the Display actor, right-click on the previously added StringCon-
stants actor and select Add after... as shown in Figure 2.10

Once again, bring up the class tree dialog with all the actors by clicking
on the button in the top-right corner of the actor dialog. This time, you have
to search for Display. As soon as you have entered dis you will see the dialog
showing a filtered class tree as shown in Figure

Select the Display actor, just like you did with the StringConstants actor.
Since we don’t have to configure anything for this actor — it merely displays our
data — you can just confirm it by clicking on OK again.

This completes our flow for this simple example and you can save the set
up. The final flow is shown in Figure 212

With the flow finished, we can now execute it. In the Flow editor menu,
select Ezecution — Run. Or use the keyboard shortcut Ctrl+R. Figure [2.13]
shows the result output.

CHAPTER 2. FLOWS

*Flow editor

File Edit Debug Execution View Window

[o]

*newlo |

Actors | Clipboard | Help | Parameters

Flow
StringConstants Hellowerld! Name

adans . flow.source. StringConstants

Synopsis

A source for strings.
Additional information

Flow input/output:
- output: java.lang.String

Options
+ loggingLevel
The logging level for outputting errors and debugging output.

~logging-level
<OFF| SEVERE| WARNING| INFO| CONFIG | FINE| FINER| FINEST>

|aefaule [epnang

command-line;

«name
‘The name of the actor.

|commandrlme|rname <java.lang.String>

|defau1t |S(r)ngCun5tanta

Flow.stringConstants

Figure 2.8: Tab displaying help for the StringConstants actor

Well done, your first flow is set up and produces output!

2.2. CREATING FLOWS 23

- *Flow editor

File Edit Debug Execution View Window

*newlo | Actors | Clipboard | Help | Parameters |
tringConstants Hale werd: Name

adans. flow. source StringConstants

Parameters

« strings
Hello Worlds

Flow.stringConstants

Figure 2.9: Tab displaying the non-default options for the StringConstants actor

- “Flow editor - x x
File Edit Debug Exeeution View Window
{|Actors [Clipboard [Help | Parameters
[+ oot
tants Helo Workdt ¢ [adams.flow
% StringConstants =] control
& Edit.... F10 > B sink
& [source
Add beneath... ShiftInsert : & standalone
5P Add here... nsert & [transformer
& cut
By copy
(@ paste »
Disable Space
() Bookmark »
Rename... F2
X Remove Delate
(@) Breakpoint »
Listeners »
Template »
Enclose »

Create callable actor ciic
Make conditional...
Externalize...

Expand all
Collapse all

@) Help... F1

Search

Flow. stringConstants

Figure 2.10: Adding another actor after the current one

CHAPTER 2. FLOWS

= *Flow editor +

Actors | Clipboard | Help | Parameters
i+ oot

StringConstants el werld: #] adams.flow
String o~ control
& B sink
o source
- Add after... x] o 3 standalone
=
adams.flow. control.Trigger ‘v‘ I:l & | CFreot
About ¢ £ adams.flow
he sub h " 4 through ¢ control
Executes the subs-actors whenever a token gets passed through. (@ clearcallablenisplay
& Csink
loggingLevel [warNING [+ Display
name [Trigger P!
p
[Il istoryDisplay
skip o rovenanceDisplay
stopFlowOnError (m]
finishBeforestopping []
asynchronous [m}

Search [dis] Close
iltering [Strict mode

Flow.StringConstants

Figure 2.11: Searching for the Display actor

- *Flow editor E—

i it ug Execution View Window

*newl1o | /| Actors | clipboard [Help [Parameters

low e Froot
IgCONStants HeloWerld! ¢ [adams.flow
1 & (= control
o sink
Display X:left. ¥:top. W:640. H:480, fort: Monospaced-PLAIN-12 H 3 source
o [standalone
& [transformer

search]

Flow.StringConstants

Figure 2.12: The complete Hello World flow

- Flow.Display -+ %
File Edit View
Hello Worldl

Figure 2.13: The output of Hello World flow

2.2. CREATING FLOWS 25

2.2.2 Processing data

Of course, for simply outputting some string, you don’t need a workflow engine.
The idea of a workflow is to be able to define all steps for processing the data,
not just simply loading and displaying it.

The following steps extend our flow El with some string processing: first,
turning the initial string into upper case and, second, appending some text at
the end.

Basic string processing can be performed with the Convert transformer.
This actor allows you to choose a conversion class that performs the actual
transformation.

Since our flow only consists of a source and a sink, we need to insert the
transformer in between the two of them. In our example we right-click on the
sink actor and then choose Add here. .., as you can see in Figure[2.14] But you
can also right-click on the source and then choose Add after. ...

The Add here... action always moves the actor on which you clicked one
further down and adds the chosen one at the current position. The Add after. . .,
adds the chosen actor after the one that you clicked on.

, *Flow editor -+
File Edit Debug Execution View Window

EIEAC] [#]]

*newlo | ; Actors | Clipboard [Help | Parameters
9 (F) Flow A+ S root

50 StringConstants Heloworidt ¢ CJadams.flow

. & control

= & B sink

=/ Display xief, v-top, W-640, H:480, — & [source
© [standalone
& [transformer

or Add here... N
Add after... Altansert

& cut ctrlx
Copy ctrlc

Disable Space
(| Bookmark »

Rename... F2

X Remove Delete

(@) Breakpoint

Template

Enclose

Create callable actor &6
Make conditiona
Externalize...

= [——

Flow. Display

Figure 2.14: Adding an additional actor

Now choose the Convert transformer from the class tree, e.g., by searching
for it, as displayed in Figure 2:15]

Change the type of conversion to UpperCase (Figure .

The flow should now look like Figure [2.17] and, when you execute it, produce
output as shown in Figure[2.18] This concludes our first string processing step.

The second string processing step El requires adding a custom string at the
end of the actor outputting HELLO WORLD!. We can achieve this by using
the StringReplace actor, which allows us to perform string replacements using
regular expressions El In this case, the replacement is very simple: replacing the

3adams-core-hello_world2.flow
4adams-core-hello_world3.flow
5For more information see http://en.wikipedia.org/wiki/Regular_expressions!

http://en.wikipedia.org/wiki/Regular_expressions

26

CHAPTER 2. FLOWS

*Flow editor
File Edit Debug Execution View Window
ol=| [«]*]
*newlo | Actors | Clipboard | Help | Parameters
7 E)Flow '+ Sroot
StringConstants Helowerld: f ¢ £Jadamsflow
’ sty & 3 control
- Add here... x o sink
o sours
|adams.ﬂuw.mmml.mgger ‘v‘ l:l & |7 Croet
About ¢] adams flow.transformer
Corwert

Executes the subs-actors whenever a token gets passed through.

loggingLevel [waRNING [+

name [Trigger

annotations [[

skip m]

stopFlowOnError [m]

finishBeforestopping [

asynchronous O

Search [conv —
[IEiltering [] Strict mode

Flow.Display

Figure 2.15: Adding the Convert transformer

Add here... x

|adam5.flow.transfurmer.Convert

-] Lo]

About

name

skip

conversion

loggingLevel

annotations

Converts data from one format into another.

stopFlowOnError []

[wARNING

[convert |

\ (.
O

|Uppercase |

Figure 2.16: Configuring the Convert transformer

end of the string (“$”) with the string that we want to append “ How are you

today!” (see Figure [2.19).

In a lot of cases, regular expressions can be overkill for manipulating strings.
E.g., when prepending or appending a string. In such simple cases, you also
just use the simpler StringInsert transformer.

Executing the flow now will produce output as seen in Figure [2.20)

2.2. CREATING FLOWS

- *Flow editor
File Edit Debug Execution View Window

E) (o]][]

*newlo | ; Actors | Clipboard | Help | Parameters
7 (B Flow e Sroot
stringConstants Helo worldt ¢ CJadamsflow
String o] control
& I sink
& source

¢ [Jstandalone
& Ctransformer

)y Xleft, ¥-top, W:640, H:480, fort: Monospaced-FLAIN-12

o|| Search

Flow. Convert

Figure 2.17: Extended Hello World flow

- Flow.Display - 4+ %
File Edit View
HELLO WORLD!

Figure 2.18: Output of the extended Hello World flow

- Add here... *
adams.flow.transformer.StringReplace M E
About

Performs a string replacement, using either String.replaceFirst(...) or
string.replaceall(...).

loggingLevel |WARNING

name [stringreplace |
annotations [e]
skip |

stopFlowOnError (m]

find s —|
replace [How are you today? |
replaceType [FIRST [~]

replaceContainsPlaceholder []

replaceContainsVariable [

Figure 2.19: Customizing the StringReplace transformer

28

CHAPTER 2. FLOWS

v Flow.Display - + x
File Edit View
HELLO WORLD! How are wou today?

Figure 2.20: Output of further extended Hello World flow

2.2. CREATING FLOWS 29

2.2.3 Control actors

So far, we have only covered linear execution of actors, where one actor is
executed after the other. For this linear approach, a workflow still seems like
overkill. In the following sections we will introduced control actors, which control
the flow of data within the flow in some way or another.

2.2.3.1 Have some Tee

The Tee actor, like the Unix/Linux tee command, allows you to fork off the
data that is being passed through and re-use it for something else. For example
for debugging purposes, when you need to investigate the data generation at
various stages throughout the flow.

In the following example[f] we will use the Tee actor to document the various
stages of transformation that the Hello World! string goes through. Three Tee
actors will be placed in the flow: one right after the StringConstants source,
the next after the Convert transformer, and the last after the StringReplace
transformer. Each time, a DumpFile sink will be added beneath the Tee actor,
pointing to the same log file. In our example, we are using /tmp/out.txt -
adjust it to fit your system. By default, the DumpFile actor overwrites the
content of the file if it already exists. This is fine for the first occurrence, but
for the second and third one we need to check the append option. Otherwise we
will lose the previous transformation steps. The fully expanded flow is shown
in Figure Figure [2:22] shows the generated log file in a text editor.

~ Flow editor [adams-core-hello_world4.flow - /homeffr j i ofsi — +
File Edit Debug Execution View Window

)= []]

adams-core-hello_world4 | Actors | Clipboard [Help [Parameters
Flow ¢ Jroot
¢ Sy:':\\gglavﬂgimfhat preprocesses the fallowing string before outputting it: o J adams.flow

The various processing stages are logged to ${TMP}/out txt
St StringConstants Hello Werld!

? Tee

i DumpFile ${TMP}Hout txt (overarite]

(B Convert UpperCase

? Tee-1

oIl DumpFile s{1MP Hout it (sppend)
StringReplace replace 's* with ' How are vouteday?
¢ [reez
& DumpFile ${TMP}/out txt (append)

=] Display xleft, v:top, W:640, H:420, font: Monospaced-PLAIN-12

Search

Flow.Tee-1

Figure 2.21: The Hello World flow with Tee actors.

The ConditionalTee control actor is an extended version of the simple Tee
actor. This actor only tees off the token if its boolean condition returns true.
For instance, using the Counting condition, this actor will keep track of the

6adams-core-hello_world4.flow

30 CHAPTER 2. FLOWS

- out.txt (/tmp) - gedit
File Edit View Search Tools Documents Help

0 Dopen v Dysave & v
|=|out.txt %
Hello World!
HELLO WORLD!
HELLO WORLD! How are you today?
Plain Text v Tab Width: 8~ Ln1, Col 1 INS

Figure 2.22: The log file generated by the Tee actors.

number of data tokens passing through. This allows you to specify rules for
when to fork off the data tokens. For instance, you can configure it that only
every third token gets forked off, starting with the 100th one and stopping with
the 200th token (to be precise, the first token output is the 102nd and the last
one the 198th one). See Figure for an example of this set up.

- Object editor

adams.flow.condition.bool.Counting II'

About

Counts the tokens passing through and returns ‘true’ it
minfmaxfinterval are met.

debuglLevel ‘ Olil

ini [100
maximum | 200
interval ‘ iljl

Figure 2.23: A customized ConditionalTee actor.

A close cousin to the ConditionalTee actor is the Count actor. This actor
offers the same conditions as the ConditionalTee for the tee output, but instead
of forking off the current data token, it forks off the number of tokens it has
encountered so far. Very useful when trying to keep track of how much data
has been processed.

2.2.3.2 Pull the Trigger

The Trigger control actor is used to initiate the execution of a sub-flow. In
contrast to the Tee actor, the Trigger does not fork off any token, it merely
triggers the execution of the actors defined below it. Since no data is being
forked off, a source actor is required in the sub-flow to kick off the other actors.
Using a triggermwe can inject another string into the log file that was generated
in the previous example, as Figure Figure shows the modified log file
in a text editor. The Trigger actor is also the only other control actor, besides
the Flow control actor, that allows standalone actors to be added to it.

A variant of the Trigger actor is the ConditionalTrigger actor. This actor
only executes the sub-flow if its boolean condition returns true. TriggerOnce,
another variant, triggers the sub-flow exactly once, useful for initializations.

7adams-core-hello_world5.flow

2.2. CREATING FLOWS 31

~ Flow editor [adams-core-hello_world5.flow -- /home/frack d; d; efsl = + %
File Edit Debug Execution View Window
clea (]]
adams-core-hello_worlds | Actors | Clipboard | Help | Parameters
Flow o (& IfStorageValue =
g () S Tonthat preproceseesthefooning sing bafors cutting o (F) FThenElse
The various processing stsges are logged to ${TMP}H/out txt &] Injector
smngmnstants Hello World! - lgg) Inspect
o (1) JMap
¢ (1}Tee o [LoadBalancer
o] DumpFile s{TMP}/out txt (averarits) o= [@) LocalScope
8 convert uppzrcase o [{J once
¢ [[}Teed o[t PlotContainerUpdater
i DumpFile £{TMP}Hout.txt (append) & [PlotProcessor
o~ [fe) Rejector
StringReplace replace '$" with* How are you todsy? o (59 Sequence
¢ [®) Trigger o[sleep
StANQCONStANES — irtarrupting the transrission — o [@) stop

& [E) storagevalueSequence

*0) DumpFile ${TMP}/out txt (append)
P o [5F) subProcess

? T‘eerz o (29 switch
o] DumpFile ${TMP}/eut txt (2ppend) =[] Tee
= Display Xileft. Yitop, W:640, H:420, font: Menospaced-PLAIN-12 s =|
& [§3) Triggeronce
o [@ Trycatch

o=) UpdateContainervalue
o [8F) UpdateProperties
o 0] whilsLoop

o [sink

o [J source

¢ [J standalone

Search

Flow.Trigger

Figure 2.24: The Hello World flow with an additional Trigger actor.

- out.txt (ftmp) - gedit
FEile Edit View Search TJools Documents Help

£ ijOpen ~ D; save @ ~

|=|out.txt 3¢

Hello World!

HELLO WORLD!

-- interrupting the transmission --
HELLO WORLD! How are you today?

Plain Text v Tab Width: 8~ Ln1, Coll INS

Figure 2.25: The modified log file generated with the additional Trigger actor.

2.2.3.3 Branching — or how to grow your flow

So far, we have only processed data in a sequential way. The Branch actor
allows the parallel processing of the same token. Each sub-branch receives the
same token for further processing. In Figure[2.26] we re-use our simple example,
outputting Hello World in parallel, displaying the results in two different Display
actors ﬂ The second sub-branch processes the original string further. As you
can see from this example, as soon as you have more than one actor, you need
to encapsulate the actors in a Sequence control actor. The default setting of
the Branch actor is to process the branches in separate threads, taking the
maximum number of cores/CPUs of the underlying architecture into account.
But it is also possible to enforce a sequential execution of the sub-branches, by
setting the number of threads to 0. There are two reasons fro this:

1. Resources — If the branch is located deeper in the flow with other parallel
execution happening, spawning too many threads can slow down the sys-

8adams-core-hello_world6.flow

32

CHAPTER 2. FLOWS

~ Flow editor [adams-core-hello_world6.flow -- fhome/fracy i d; ily/ad; d; efsi = + %
File Edit Debug Execution View Window
o] [v[+]
adams- core-hello_worldé | Adtors | Clipboard | Help | Parameters
Flow % root =
Simple flow that preprocesses the following string before displaying it
0 el word) ¢ 3 adams.flow
The string gets processed in parailel and displayed in two separate ¢ [control
Display acters o 1) ArrayProcess
@Y StringConstants Hells warld! o () Branch
9 Branch paraliel, threads: #tores o (@) Breakpoin
= o (] cast
{=) Display X:left, ¥:top, W:540, H480, font: Monospaced-PLAIN-12 (@) ClearCionaiDispiay

¢ {afsequence
cUnven Uppercase
=] Display X:right, Y:top, W:640, H:480, font: Monospaced-PLAIN-12

onditionalsubProcess
onditionalTe=
onditionalTrigger
ontainerValuePicker

o (@ FreeMemory
o (60 GC
o (&) GlobalActorScreenshot
+ @ Ifstoragevaluz
(F)

otContainerUpdater
2jector

o (34 Sequence
Search

Figure 2.26: The Hello World flow using a Branch actor.

tem more than it could help in the optimal case. In such a scenario, it is
advised to turn off parallel execution.

Ordering — In certain cases, the same data needs to be processed several
times, but the order of the in which this occurs is important. For instance,
an integer token could be used to create a sub-directory in which to store
the value of the integer token in a file. These two sub-branches need to
get executed one after the other, of course.

2.2.3.4 Further control actors

The Branch, Tee and Trigger control actors are just some of the more commonly
used ones. ADAMS comes already with a wide variety of control actors. In the
following a short introduction to the others:

ArrayProcess — instead of unraveling an array with ArrayToSequence and
then packaging again with SequenceToArray, this actor allows to perform
an arbitrary number of sub-steps on an incoming array.

e Breakpoint — Used for debugging a flow. See [2.19] for more details.

ClearCallableDisplay — Can be used to clear callable graphical actors, e.g.,
a SequencePlotter. See for more information on callable actors.
ConditionalTee — Basically like the Tee actor, but it allows you to impose
constraints on when to tee off the tokens.

ContainerValuePicker — Since ADAMS only allows 1-to-1 and 1-to-n con-
nections, multiple outputs are usually packaged in containers. The values
in the container can be accessed by their name (check the specific actor’s
documentation on what the names are) using this actor.

Continue — Does not pass on tokens if the specified boolean expression
evaluates to true, i.e., acts like the “continue” control statement.

2.2. CREATING FLOWS 33

e Count — In contrast to ConditionalTee, this actor tees off the number of
tokens it has encountered so far. Useful for lengthy processes, if you want
to keep track of how many tokens you have processed so far.

e FreeMemory — Invokes the parent to wrap up all its sub-actors, effectively
freeing up memory. Useful if branches of a many-branched Branch actor
only get executed once, but still keep their state and hog memory.

e (GIC — For explicitly executing the Java garbage collection.

e CallableActorScreenshot — For taking screenshots of a callable (graphical)
actor, whenever a token passes through this control actor. See for
more information on callable actors.

o [fStorageValue — An if-then-else source that executes the then branch if
the specified storage value exists. Otherwise it executes the else branch,
which needs to have a source actor for generating actual data.

e [fThenFElse — A control statement, which evaluates a boolean condition in
order to decide in which branch to pass on the incoming token.

e Injector — Allows you to inject tokens into the stream of tokens.

e Inspect — A more specialized actor for visualizing data that is passing
through the flow, interactively or not.

e JMap — If available, i.e., using a JDK instead of JRE, you can output
information on what objects are currently present in the JVM. Useful for
hunting down memory leaks.

e LoadBalancer — Spawns off threads for incoming tokens to process the
tokens independently in the sub-flow defined below this actor.

e LocalScopeTransformer — Provides “local” variables and internal storage;
useful when things run in parallel.

e LocalScopeTrigger — Provides “local” variables and internal storage; useful
when things run in parallel.

e Once — A tee actor that only tees off the first token it encounters. A
simplified ConditionalTee so to speak.

e PlotContainerUpdater — Allows one to update the name, z or y value
stored in a plot container. Useful for post-processing of plot containers,
e.g., for scaling.

e RaiseError — Raises an error if its condition evaluates to true using the
specified error message (see TryCatch).

e Rejector — Rejects tokens container data containers that have error mes-
sages attached.

e Sequence — Allows to specify multiple actors that get exectued one after
the other, with the output of one actor being the input of the next.

e Sleep — Suspends the flow execution for the specified number of millisec-
onds.

e Stop — If executed, stops the flow execution.

o StorageValueSequence — For processing the same storage value multiple
times in Triggers and/or Tees, but still outputting and forwarding it in
the flow.

e SubProcess — Like Sequence actor, but the last actor definitely has to
produce output, i.e., cannot be a sink.

e ConditionalSubProcess — Basically like the SubProcess actor, but it al-
lows you to impose constraints on when to process the tokens with actors

34 CHAPTER 2. FLOWS

defined in the sub-process.

e Switch — Allows an arbitrary number of branches, which get forwarded
the token if the corresponding condition evaluates to true.

o TryCatch — Allows you to protect a sub-flow in a “try” block. If the
execution fails for some reason the “catch” sub-flow gets executed to ensure
that flow execution continues (see RaiseError).

o UpdateContainerValue — Applies all defined sub-actors to the specified
element of the container that is passing through.

e UpdateProperties — Updates multiple properties of an actor wrapping a
non-ADAMS object, using current variable values.

o WhileLoop — Executes the sub-flow as long as the boolean condition eval-
uates to true.

2.2.4 Protecting sub-flows

By default, ADAMS tries to stop the flow execution as fast as possible. How-
ever, this behavior might not be desired in case of mission critical steps that
should never get interrupted. For instance, when reading (and in the same step,
removing) data from the database, that the output of said data on disk should
get interrupted.

In order to allow the user to protect the execution of certain sub-flows,
a fair amount of actors offer a flag for atomic execution. This flag is called
finishBeforeStopping in the option dialog. When enabled, this actor will wait
with stopping its sub-actors until the sub-actors have finished processing all
their data. Actors that support this, are for example, Sequence, Branch, Tee,
Trigger (and derived classes).

Be careful how and where you use this flag, as it can have undesired side-
effects: if you enable this flag in the Flow control actor, then the flow cannot
be stopped before all processing has finished.

2.3. RUNNING FLOWS 35

2.3 Running flows

Executing flows from the Flow editor is just one of the options of how to execute
a flow. Unless you want the ability to edit the flow, you could use one of the
following options.

2.3.1 Flow runner - GUI

The Flow runner is an interface to execute flows without the user being able
to modify them. This interface is used for merely executing flow. This can
be useful for users that only run flows, but never modify them. Depending
on the flow, the user is still able to influence its execution. The Flow runner
interface analyzes the flow and displays the topmost SetVariable standalones
as parameters that the user then can modify. Figure shows the flow in the
editor interface and Figure 2.27] in the runner interface. Annotations that are
attached to the SetVariable actors are available as help through a button next
to the edit field with the variable value.

~ Flow runner [adams-core-mandelbrot_colored.flow -- fhome/fracpete/i — <+
File Execution Window

=]]

Flow for generating the Mandelbrot set (colored version):
http:/ [en.wikipedia org/wiki/Mandelbrot_set
A tribute to the late Benoit B. Mandelbrot (1924-2010)

Available parameters

num_x [160 |
num_y [120 |
num_iter [100 |
limit 256 |
min_x l-2.5 |
max_x 15 |
min_y [-15 |
max_y [L5 |

Figure 2.27: Flow runner interface with a flow for generating the Mandelbrot
set.

2.3.2 Flow runner - command-line

The ability to run flows on a server, in a headless environment, was one the
requirements when desinging ADAMS. This can be either for data processing
flows that poll directories or databases or scheduled executions. The following
class allows you to run a flow from command-line:

adams.flow.FlowRunner

36 CHAPTER 2. FLOWS

~ Flow editor [adams-core-mandelbrot_colored.flow -- fhome/frac ji il d d -+ %
Eile Edit Debug Execution View Window

El o] [+]]

adams-core-mandelbrot_colored |

Flow

Flow for generating the Mandalbrot set {colored version
? http:jlan wikipedia orgiwikjMandelbrot,_set

Atribute to the late Benoit B. Mandslbrot (1524-2010)

9 Initialization
set num_x @{num < = 150
the X reselution
Set NUM_Y @{num_y} = 120
the ¥ resclution

set num_iter @{num kst = 100
the maximum number of iterations far 2ach point

set limit @{lmic} = 256

the square of the escaps radius

set minx @{min_xt =-25

minirum < an the z plane

set max x @imaxxt=15
maxiru on the 2 plane

set min_y @{min vk =15

minimurm v on the 2 plane

set maky @{maxyt =15

maximum y on the z plans
o (EA) CallableActors
(@) stopwatch *0:00:00", updated avary 500 msacs
(fol ForLoop X far(i= Lii<= @{num_skii+= 1)
() calc ex (@4min_xh + (@{max_xh - @LminLxk) 1 (@4num_xk - 11 % (X - 1))
(0] set ex @{cx} [REPLACE]
o (Thoutputex
o (W) Trigger

Figure 2.28: Flow editor interface with a flow for generating the Mandelbrot
set.

Available options:

-help — lists all the available options.
-input — either a specific flow file or a directory containing flows to traverse
(use -include regular expression to limit flows).

e -headless — whether to suppress all graphical output.
-clean-up — remove any graphical output, like dialogs and plots when the
flow finishes.

e -no-ezecute — if you only want to test flows whether they still load and
pass the tests in the setUp phase, use this option.

2.4. ARRAYS AND COLLECTIONS 37

2.4 Arrays and collections

ADAMS offers a range of actors for generating and processing arrays and col-
lections.
The following control actors are available:

e ArrayGenerate — similar to the Branch actor, forwards the incoming token
to all of its branches and constructs an array from the collected output
and forwards this as a new token.

The following sources are available:

o NewArray — for generating empty arrays of arbitrary type and dimensions.
e Storage ValuesArray — combines the specified items in storage into an array
and outputs the array.

The following transformers are available:

o ArrayCombination — generations combinations or permutations of the el-
ements of the array passing through.

o ArrayLength — determines the length of an array of any type

e ArrayStatistic — calculates statistics for the array(s), e.g., mean, standard
deviation.

o ArraySubset — generates a new array with the chosen elements from the
incoming array.

o ArrayToSequence — turns an array into a sequence of tokens.

e (CollectionToSequence — turns a collection into a sequence of tokens.

e GetArrayFElement — returns a specific element from the array.

e Maz — returns index or value of the largest array element (integer or
double).

e Min — returns index or value of the smallest array element (integer or
double).

o ObjectArrayToPrimitive Array — turns an array of objects into an array of
is primitive counterparts.

o PrimitiveArrayToObjectArray — generates an array of objects from an ar-
ray of primitives.

o SequenceToArray — turns a sequence of tokens back into an array.

o SequenceToCollection — turns a sequence of tokens into a collection (type
is specified by user).

e SetArrayFElement — sets the value of a speficied array element, either from
a given value (or variable) or from a storage item.

Of special importance is the ArrayProcess control actor. This actor allows
you to appply a sequence of actors - defined below the control actor - to all
the elements of the array passing through. This is a shortcut to storing the
length of the array in a variable (ArrayLength), turning an array into a sequence
(ArrayToSequence), processing the individual tokens and then creating a new
array from the sequence with known length (SequenceToArray).

38 CHAPTER 2. FLOWS

2.5 Converting objects

Quite often, you will be faced with converting objects from one type into an-
other, due to ADAMS’ strong typing. Adding new actors for converting an
object from one type to another (e.g., from String to Integer and vice versa),
would just increase the already large number of actors even further. To avoid
this, ADAMS offers a catch-all transformer for these simple conversions: Con-
vert.

All conversion schemes are derived from the super class AbstractConversion
(package adams.data.conversion). In contrast to actors, which allow an arbi-
trary number of classes, a conversion scheme can only define a single input and
a single output class, underlying the simple aspect of the conversion.

Here are some conversion for numbers:

ByteToHex — generates a hexadecimal representation of the byte.

ByteTolnt — turns a byte into an integer.

ByteToString — generates a string representation of the byte.

DoubleToInt — turns a double into an integer (calling the int Value() method

of the Double object).

e DoubleToFloat — converts a double into a float (calling the floatValue()
method of the Double object).

e DoubleToLong — turns a double into a long (calling the long Value() method
of the Double object).

e DoubleToString — turns the double into a string, with the number of dec-
imals specified by the user.

o FloatToDouble — converts a float into a double (calling the double Value()

method of the Float object).

HexToByte — turns hexadecimal strings into bytes.

HexTolnt — turns hexadecimal strings into integers.

IntToByte — turns an integer into a byte (data loss may occur!).

IntToLong — turns an integer into a long.

IntToDouble — turns an integer into a double.

IntToHex — generates a hexadecimal representation of the integer.
IntToString — generates a string representation of the integer.
LongTolnt — turns a long into an integer (data loss may occur!).
LongToDouble — turns a long into a double.

ObjectArrayToPrimitiveArray — converts an object array to its primitve
counterpart (e.g., Integer[] or Character[] to int[] or charl]).
PrimitiveArrayToObjectArray — converts a primitive array to its object
counterpart (e.g., int[] or char[] to Integer[] or Character]]).

Round — rounds double values (round, ceiling, floor).

StringToByte — parses the string representing a byte.

StringToDouble — parses the string representing a double.

StringTolnt — parses the string representing an integer.

StringToLong — parses the string representing a long.

Some more string conversions:

o AnyToCommandline — Generates a commandline string from any object.

2.5. CONVERTING OBJECTS 39

AnyToString — Uses the Object’s toString() method.
CommandlineToAny — Creates an object from the commandline (class +
options).

BackQuote — Escapes special characters like tab, new line, single and
double quotes with backslashes. This can be reversed with UnBackQuote.

FieldToString — turns the Field object into its string representation, with
or without data type. The reverse is possible as well, using StringToField.

LeftPad — left pads a string up to a maximum number of characters, e.g.:
turning “1” into “001”.

LowerCase — turns a string into its lower case representation.

Quote — surrounds a string quite single or double quotes if it contains
blanks or special characters like tabs or new lines. Special characters will
get backquoted as well. Thereverse operations is done using UnQuote.
TimeToString — Turns a number representing milli-seconds since 1970
(Java date) into a String (see [9]).

e UpperCase — turns a string into its upper case representation.

Some more date/time conversions:

e BaseDateTimeToString — evaluates a date/time format string and it into
a string.

BaseDateToString — evaluates a date format string and it into a string.
BaseTimeToString — evaluates a time format string and it into a string.

ConvertDateTime Type — turns one date/time type into another, e.g., mil-
liseconds into Date.

DateTimeTypeToString — turns various date/time types into a string using
a format string.

EztractDate TimeField — extracts various date/time fields (year, hour, day
of week, etc) from date/time types.

StringToDate Time Type — parses a date/time string using a specified for-
mat string and turns it into various date/time types.

40

2.6

CHAPTER 2. FLOWS

String handling

Quite often when designing flows, you will be dealing with strings that need
tweaking, e.g., for file names. The following set of common string operations is
already implemented in ADAMS:

BreakUpString — breaks up the string into multiple lines (separated by line-
feed) using word-boundaries if wider than specified number of columns.
StringCut — cuts out a single portion of the string, either based on column
(using a specific separator) or character positions.

o StringIndexOf — locates a sub-string in the strings passing through.
e StringInsert — allows the insertion of a string into other string tokens,

using a specified location.

StringJoin — glues the individual elements a string array together into a
single string.

StringMatcher — either lets through or blocks strings that match a regular
expression (see also [10]).

StringRangeCut — cuts out one or more portions of a string and glues them
back together again into a single string.

StringReplace — uses pattern matching to find and replace parts of the
string passing through (see also [10])..

StringSanitizer — removes unwanted characters from a string as specified
by the user (or vice versa: leaves only accepted characters)

StringSplit — splits a string into sub-strings based on a regular expression
(see also [10]).

String Trim — removes preceding/trailing whitespaces from the string pass-
ing through.

See also section for some basic string conversions and section [2.7] on file
handling.

2.7. FILE HANDLING 41

2.7 File handling

The beauty of ADAMS lies in its ability to react dynamically to its processing
environment and, if necessary, also bootstrap or modify it. File handling is an
essential part in this. In the following you will find an overview of some of the
actors and conversion that offer file-related actions.

Available conversions:

FileToString — turns a file object into a string, either with a relative or
absolute path. The reverse is possible as well, using
ReplaceFileExtension — replaces the file’s extension with a user-supplied
one (or removes it if no new extension supplied). StringToF'ile.

StringTo ValidFileName — ensures that the string passing through can be
used as filename (excluding the path).

Available source actors:

DirectoryLister — lists directories and/or files in a directory (lots of op-
tions: pattern matching, recursive, sorting, ...).

FilenameGenerator — allows to create filenames using various generators.
FileSystemSearch — searches the file system using the specified search al-
gorithm.

SingleFileSupplier — outputs a single file specified by the user.
MultiFileSupplier — outputs multiple files specified by the user.

And transformers:

AppendName — appends a suffix to the file/directory passing through.
BaseName — strips the parent directory and forwards the remainder.
BinaryFileReader — reads a specific range of bytes from a binary file and
outputs the bytes one-by-one or as array.

CopyFile — copies the file passing through to a target directory (if pattern
matches).

DeleteFile — deletes the file passing through if the pattern matches.
Deserialize — loads a serialized Java object from disk.

Diff — generates a diﬂﬂ between two files.

DirName — extracts the directory part of the file (or parent directory in
case of a directory).

FileExtension — extracts the extension of the filename (the part after the
“7).

FileInfo — outputs information on a file, like size or last modified times-
tamp.

FilenameGenerator — allows to create filenames using various generators,
with some of them utilizing the token passing through.

MakeDir — creates the directory received on the input port (also available
as standalone actor).

MoweFile — moves/renames a file.

e PrependDir — prepends a directory (“prefix”) to the file passing through.

e SplitFile — splits a file into several pieces using the specified split algorithm.

9nttp://en.wikipedia.org/wiki/Diff

http://en.wikipedia.org/wiki/Diff

42 CHAPTER 2. FLOWS

o TextFileReader — loads the content of a text file.
Sink actors:

BinaryFile Writer — writes a byte array of BlobContainer to a binary file.
FilePreview — generates a simple preview of the file.

MergeFiles — merges several files back into a single one.

PasteFiles — combines all the files received at the input into a single file,
joining them line by line. The user specifies what separator to use for
glueing the lines together. Works similar to the Unix paste command.

Serialize — saves any (serializable) Java object to a file.
SideBySideDiff — displays a difﬂ between two files visually.

Finally, control actors:

e FileProcessor — processes files with a sub-flow, places them in processed
or failed directories, depending on successful execution of sub-flow.

Conditional control actors, like IfThenFElse, Switch, ConditionalTee or Condi-
tionalTrigger you can use the following boolean conditions:

e DirectoriesMatch — scans a directory for sub-directories that must match
a regular expression.

e DirectoryFExists — checks whether a directory exists.

o FileFxists — checks whether a file exists.

e FilesMatch — scans a directory for files that must meet a regular expres-
sion.

See also section 2.5l for some basic file conversions. Section .15l for interactive
actors is also worth looking at, if the user should select a file or directory during
flow execution.

Ohttp://en.wikipedia.org/wiki/Diff

http://en.wikipedia.org/wiki/Diff

2.8. NUMERIC OPERATIONS 43

2.8 Numeric operations

Being targeted at the scientific community, ADAMS also offers some general
purpose actors for numeric-related conversions:

e RandomNumberGenerator — source outputting random numbers (various
generator types are available).

o MathExpression — calculates the result of a mathematical expression/formula
(supports use of variables) — also available as source.

e ReportMathExpression — derives a value based on values from a report (or
report handler) passing through and stores the result back in the report.

e Round — rounds the data passing through (ceiling, floor or plain round).

See also section [2.5] for some basic numeric conversions and [2.4] for processing
arrays and calculating statistics.

44 CHAPTER 2. FLOWS

2.9 JSON

Flows cannot only be saved as JSON files (and read in again), but flows them-
selves can process JSON data structures as well.
The following transformers are available:

o (etJsonKeys — outputs all named elements of a JSON object.

o GetJsonValue — outputs the named value from a JSON object, can use
simple key or a JSON pathlﬂ

e JsonFileReader — reads the specific JSON file and forwards a JSON ob-
ject/array.

The following sinks are available:

e JsonDisplay — displays a JSON object in a browseable tree structure.
o JsonFileWriter — writes the JSON object/array to disk.

The following conversion are available:

ArrayToJsonArray — generates a JSON array from any object array.
JsonArrayToArray — turns a JSON array into a regular Java object array.
JsonToString — turns the JSON object/array into a string.

StringToJson — parses the string and generates a JSON object/array.

Hhttp://code.google.com/p/json-path/

http://code.google.com/p/json-path/

2.10. PROPERTIES 45

2.10 Properties

ADAMS can also process Java Properties files directly. The following sources
are available:

e NewProperties — creates an empty properties object.
The following transformers are available:

e GetPropertyNames — outputs all property names.

e GetPropertyValue — outputs the values of properties which key matches a
supplied regular expression.

e PropertiesFileReader — reads the specific properties file and forwards a
properties object.

e SetPropertyValue — sets the value of a specified property.

The following sinks are available:

e PropertiesDisplay — displays a properties object in a table.
e PropertiesFile Writer — writes the properties object to disk.

The following conversion are available:

e DOMToProperties — flattens a DOM document object into a properties
object.

e PropertiesToString — turns the properties object into a string.

o StringToProperties — parses the string and generates a properties object.

46 CHAPTER 2. FLOWS

2.11 XML

ADAMS offers some basic processing for XML. The following sources are avail-
able:

o NewDOMDocument — creates an empty DOM document.
The following transformers are available:

o AddDOMAttribute — adds an attribute and its value to the node passing
through.

o AddDOMNode — appends a child new to the node passing through.

o XMLFileReader — reads the specific XML file and forwards a DOM doc-
ument™?]

o XPath — applies an XPath expression to the incoming DOM documenﬂ

e XSLT — applies an XSLT stylesheet to the incoming DOM documentEl

The following sinks are available:

e DOMDisplay — simple tree view of a DOM node.
o XMLFileWriter — writes the DOM document to disk.

The following conversions are available:

DOMToString — turns the DOM object into an XML string.
DOMToProperties — flattens the DOM object into a Java Properties object
(key-value pairs).

DOMNodeToString — turns the DOM node into an XML string.
DOMNodeListToArray — turns the list of DOM nodes into an array.

o XMLToDOM — parses the XML string and generates a DOM object.

2http://www.w3.org/TR/xml/
http://www.w3.org/TR/xpath
Mhttp://wuw.w3.org/TR/xs1t

http://www.w3.org/TR/xml/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt

2.12. DATABASES 47

2.12 Databases

Any database that has a JDBC driver can be used within ADAMS. By default,
ADAMS comes with support for MySQL and SQLite. See section for how
to add more databases. The following actors allow you to perform some basic
operations::

e FrecSQL — standalone for executing any SQL query.
o SQLIdSupplier — source actor that either outputs integer or strings, ob-
tained from an SQL SELECT query.

For more functionality, see the documentation on the adams-spreadsheet mod-
ule.

48 CHAPTER 2. FLOWS

2.13 Callable actors

ADAMS uses a tree structure to represent the nested actor structure. This
enforces a 1-to-n relationship on how the actors can forward data. In the exam-
ple flow shown in Figure two separate Display actors get displayed. The
more branches, the more windows will pop up. This gets very confusing rather
quickly. ADAMS offers a remedy for this: callable actors. With this mech-
anism, multiple data streams can once again be channeled into a single actor
again, simulating a n-to-1 relationship. And here is what to do:

e Add the CallableActors standalone actor at the start of the flow.

e Add the actor that you want to channel the data into below the Callable-
Actors actor that you just added. In our example, this is the Display
actor.

e Replace each occurence of the actor that you just added below the Callable-
Actors actor with a CallableSink sink actor. Enter as value for the pa-
rameter callableName the name of the actor that you added below the
CallableActors actor. In this example this is simply Display.

Figure shows the modified flow |T_5L using a single callable Display actor
and multiple CallableSink actors. In addition to the CallableSink actor, there

~ Flow editor [adams-core-hello_world7.flow — fhomeffr i i efsi - + %
Eile Edit Debug Execution View Window

o=8][]

adams-core-hello_world7 | Actors | Clipboard [Help | Parameters
Flow 9 Croot B
Simple flow that preprocesses the fallowing string before displaying it adams.flow
? Hella Warkdl! =
Th string gets processed in parallel and displayed in a Display acter o [contral
that can be called fram anywhers in the flaw. ¢ [sink

(R
©|#] Canvas
- [t3) ConditionalSink
o [E Consale
Branch paralel thre o [l ContainerDisplay
&3] CallableSink pisplay ¢ (¢ DOMDisplay

¢ {fFsequence - (ElDisplay

o (@) DisplayPanalGrid
o [E DisplayPanelManager
o [0 DUmpFile
o b)) Enqueue
o [Ex| Exec
o [£5) ExternalSink
&[5 HistoryDisplay
o & Imageviewsr
o (15 InstantiatableSink
o [E] JsonDisplay
o [¥)JsonFilawriter

Callableactars
= Display xleft, v:top, ¥

-

540, H:430, font: Monospaced-PLAIN-12

3t StringConstants Hello Id!

-

69 Corvert upsercaze
cs) CallablesSink Display

o (L] LogDumper
o (L] Logviewer
o [Leg Logger
o[Menultem
o [pf] MergeFiles

Search

Figure 2.29: Outputting parallel processed strings in a single callable Display
actor.

are also the CallableSource actor (for using the same source multiple times in a
flow) and the Callable Transformer actor (for instance for using the same prepro-
cessing multiple times). They are used in the same fashion as the CallableSink
actor that we just introduced.

15 adams-core-hello_world7.flow

2.13. CALLABLE ACTORS 49

Combining views
The GridView standalone allows you to define several graphical actors to be
displayed in a grid layout, by adding them below this actor. This can be useful,
for instance, if two plots have very different scales and plotting them in the same
graph wouldn’t make much sense. Using GridView, you can create a plot with
two rows and one column for displaying the two SequencePlotter actors below
each other. The actors below the GridView actor get referenced from within
the flow using CallableSink actors.

The TabView standalone works just like the GridView actor, but instead of
displaying the graphical actors in a grid, they get displayed in a tabbed pane
(in the order they are below the TabView actor).

50 CHAPTER 2. FLOWS

2.14 External actors

Flows can quickly become large and complex, with lots of preprocessing happen-
ing in multiple locations. Pretty soon you will realize that certain preprocessing
steps are always the same. The same applies to loading data (e.g., various
benchmark data sets) or writing results back to disk.

To avoid unnecessary duplication of functionality, ADAMS allows you to ex-
ternalize parts of your flow to be externalized, i.e., stored on disk. Externalizing
an existing sub-flow is very easy, you merely have to right-click on the actor that
you want to save to disk and select Ezxternalize... from the popup menu. A
new Flow editor window will pop up with the currently selected sub-flow copied
into, ready to be saved to disk |T_Gl Once you saved the sub-flow to a file, you
have to go back into the original flow and update the file name of the flow in
the external meta actor that replaced the sub-flow.

Here are the available meta actors:

EzternalFlow — for executing complete flows.
EzternalStandalone — for using externalized standalones.
EzternalSource — for incorporating an external source.
ExternalTransformer — for applying an external transformer.
ExternalSink — for processing data in an external sink.

Once you have an EzternalXYZ actor, you can edit this flow directly by
selecting the Edit... menu item as shown in Figure [2:30]

~ Flow editor [adams-core-external flow.flow -- /home/fr j il eft = + X
File Edit Debug Execution View Window

o=8][]

adams- core- external_flow | Adors | Clipboard | Help | Parameters
Flow ¢ [source =
In this example, external flows isources) are used to "
generate data, The data itself is displayed in the glabal] Combinevarianles
9 (F Display actor Coutput’). o (€3] ConditionalSource
The SequenceSource actars in the external flows are - ¢4 Directorytister
wrapped in“InstantiztzbleSource” actors to allon them
10 be saved 1o disk # EJEntervalue
o [Bx) Exec
o (68 Glonalactars
) o [£3) ExternalSource
b Start o [F<] Filesupplier
9 (¥ exacute external flow (1) o~ [fur) ForLoop
ES) ExternalSource ${BIAMPLE_FLOWS}/adams-core-. I_flow_subi-1 flow o [lw] GetEnvironmentvariable
T
53] GlobalSink. output Externalsource o (§) GerSystemProperty
- (65 GlobalSource L
¢ (W) execute external flow (2) & Edit. F10 = =
£5) ExternalSource §(EAMPLE FLOWS) 2 EXTermal Flow ¥ & Edit.. %) ListEnviranmemtVariables
55) Globalsink. output Add beneath... Shift-Insert Expand’ | (@) ListstorageNames
b Add here... Insert o (I ListsystemProperties
Add after... Alt-lnsert o [@) Listvariables

o [MC] MakeContainer

& m e o= (8] NamediSetup

B copy culc o [If) MewArray
Paste » o (E) OptionProducer
Disable Space o= [1=] OptionTraverser

B Bookmark b o (i) PasteFromClipboard
Kenamen 2 o= tnd| RandomNumberGenerator

>) SQUIdSupplier

¥ Remove Deere o (B seleciDataTime

(@ Breakpoint » o [@] SelectDirectory =
o |) —
Enclose v

cul-g
Flow.execute external flow (1).Externaisourcd CTeate global actor cir

Figure 2.30: Editing an external flow directly.

Tip: In the flow editor, you can inline an external flow by selecting [# Fxpand
from the popup menu on the external actor. This will load the external flow

160nly actors that implement the InstantiatableActor interface can be externalized directly.
All others need to be enclosed in the appropriate InstantiatableXYZ wrapper. Using the
Ezxternalize. .. menu item automatically wraps the actor if required,

2.14. EXTERNAL ACTORS 51

and place it below the external actor as read-only sub-tree (see Figure
You can simply remove the actors using the [= Collapse option from the popup
menu of the external actor.

~ Flow editor [adams-core-external_flow.flow -- fhome/fr
File Edit Debug Execution View Window

cl=a [#] []+]

s —

adams- core- external_flow |

Actors | Clipboard | Help | Parameters

Flow

In this example, external flows (sources) are used ta

generate data. The data itself s displayed in the global
9 (FU) Display actor Coutput’)

The SequenceSource actors in the external flows are

wrapped in” InstantiatableSource” actors to allon them

10 be saved ta disk

o [6) Globalactars
(») stan
? execute external flow (1)
¢ [E5[ExternalSource SEXAMPLE FLOWS) adams-core-exteral_flan_sub-1 flow

InstantiatableSource
equencesource

Farloop forti=1;i==10;i+=1)
[#) MathExprassion x+1000
GlobalSink autput

xecute extarnal flow (2)
ExternalSource ${EXAMPLE_FLOWS}/adams-core-external_flow_sub-2flow
GlobalSink output

9 [source

& i) CombineVariables
onditionalSource
irectoryLister
o [3 Entervalue
o= XeC
Externalsource
ileSupplier
o [T ForLoop
= [tw) GetEmvironmentVariable
&[] GetSystemProperty

o [@) ListstorageNames
o (% ListSystemProperties

o (E) OptionProducer

o [i=) OptionTraverser

- asteFromClipboard
zandomNumberGenerator
o [sQLIdSUpRlizr

o [& SelectDateTime

& [@) SelectDirectory

Search

Flow.execute external flow (1).ExternalSource

Figure 2.31: An inlined or expanded external flow.

52 CHAPTER 2. FLOWS

2.15 Interactive actors

Most of the times, flows that you generate will simply be executed, without
any user interaction. However, sometimes user interaction can be very useful
in making the flow easier to use. Imagine a flow that takes a file as input, e.g.,
using the SingleFileSupplier source, reads and processes it. If the file varies, you
will have to change the source actor each time you want to run the flow with a
different file. To address this shortcoming, ADAMS offers a range of interactive
actors:

e FEnterValue (source) — allows the user to enter a value or choose from a
range of options.

e FEnterManyValues (source) — allows the user to enter one or more values,
supporting various data types.

e PasteFromClipboard (source) — Forwards the content (if any) of the sys-
tem’s clipboard (CopyToClipboard allows you to copy textual data to the
system’s clipboard).

o SelectDateTime (source) — pops up a dialog for selecting a date/time, date
or time, depending on configuration.

e SelectDirectory (source) — pops up a dialog for selecting a directory.

e SelectFile (source) — allows the user to select one or more files. File ex-
tensions for narrowing down the list of files being displayed is possible as
well.

o ConfirmationDialog (transformer) — prompts the user with a dialog, offer-
ing “yes” and “no” as options. If not custom string tokens are defined for
the “yes” /"no” actions, the current token will be forwarded in case of the
user selecting “yes” (“no” simply drops the token).

e Inspect (transformer) — allows the user to view the content of a token with
the specified panel provider, e.g., image viewer.

Using the SelectFile source in your flow now, the user won’t have to modify the
flow anymore. It is now far less likely that the user accidentally modifies and
breaks the flow in the process.

The source actors allow you to specify default values, e.g., a default directory
and default file(s) in case of the SelectFile actor. This cuts down the time the
user has to spend clicking through directories in the file chooser dialog.

Some of these interactive actors can be switched to “silent” mode, i.e., non-
interactive. Counterinuitive as it seems, a rather handy feature when developing
a the flow and constant dialogs are simply too annoying. Once development of
the flow has finished, the non-interactive setting can be reversed again. You
can either set the nonlnteractive flag for each of these actors manually, or use
the flow editor’s menu to either turn the interactive nature on or off (“Edit” —
“Interactive actors”).

2.16. TEMPLATES 53

*Flow editor
File Edit Debug Execution View Window

= [v]a]
7 @ Flow
(© Entervalue Please enter a number between 1 and 100
& Display X:left, Y:top, W:640, H:480, font: Monospaced-PLAIN-12

Input x

E Please enter a number between 1 and 100

W

Running

Figure 2.32: Simple flow that prompts the user to enter a value, using a default
value of “42” and a custom message.

2.16 Templates

ADAMS comes with a powerful templating mechanism, that speeds up the
inception of new flows. Templates allow you to insert complete sub-flows that
are generated by a template class. Therefore, commonly occurring sub-flows can
be encapsulated in a template class with optional parameters. A fairly common
sub-flow, encapsulated by a Trigger control actor, is the updating of a variable.
The Update Variable template inserts such a sub-flow, consisting of a Variable
source and a SetVariable transformer, enclosed by a Trigger. You only need to
supply the variable name that needs updating to generate the sub-flow and then
add the required transformers that take the current variable value and process
is some way or the other. Figures[2:33] to [2:35] show the use of this mechanism.

4 *Flow editor -+ x
File Edit Debug Execution View Window
EIEC] [#]+]
*newl1o |
¢ EFlow
(l) ForLoop fr (i= Li<=10;i+= 1)
(§4) SetVariable @{ki==1t 1
SetVariable
B Edit... F10
Add beneath... fe-lnsert
oh Add here... "
Add after... AltArsert
¥ cut c
B3 Copy
Paste 3
Disable Space
B Bookmark »
Rename... F2
¥ Remove Delete

Breakpoint
Listeners

»
»

Template B Template beneath...
»

Enclose Template here...
Create callable actor ctr- Template after... N
Make conditional... Last template...
Externalize...
Expand all
Collapse all

[2) Help... F1

Flow.SetVariable

Figure 2.33: Adding a sub-flow generated from a template to an existing flow.

The “meta-module” module allows you to use these templates also at run-

54 CHAPTER 2. FLOWS

- Add from template after...

adams.flow.template.UpdateVariable I:l

About

Generates a sub-flow (enlosed by a Trigger) that retrieves
and sets a variable, with the user being able to add
custom actors in between for updating the variable value.

loggingLevel |[WARNING [+]

name [|

variableName |blah [..]

Figure 2.34: The options of the Update Variable template.

time, dynamically generating flows on-the-fly using special actors.

2.17. VARIABLES 55

- *Elow editor -+ >
Eile Edit Debug Execution View Window

O - |= LIRS
*newlod |

? Flow

Fo FOFLOOR for (= Lii==10;i+=1)

(&) Setvariable @{blsh} [REPLACE]
9 Updating blah

$u Variable @{bishr

Setvariable @qblah} [REPLACE]

Flow.Updating blah

Figure 2.35: The added sub-flow.

2.17 Variables

A flow is very useful for documenting all the steps involved in loading, processing
and evaluating of data. But setting up a new flow, whenever you are merely
varying a parameter is not very efficient. In order to make flows more flexible
and dynamic, ADAMS offers the concept of variables. The idea of variables is to
attach them to options of the object that you want to vary. Actors keep track of
what variables have been attached to themselves or nested objects. Whenever
an actor gets executed, it checks first whether any of the variables that it is
monitoring has been modified. If that is the case, the actor re-initializes itself
before the execution takes place. This guarantees that the correct set up has
been applied. At the time of writing, the scope of variables is restricted to Flow
actors. Running the same flow in two concurrent Flow editor windows does
not result in those two flows interfering with each other. In case of attaching
variables to options that are arrays, the variable is expected to be a blank-
separated list of values.

In the following example E we are using a ForLoop source to generate the
index of a file to load. In a Tee actor we first convert the integer token to a
string using the Convert transformer and the AnyToString conversion scheme.
Then we add, first the path and then the file extension, to generate the full file
name using StringReplace transformers. Finally, we associate the generated file
name with the variable filename using the SetVariable transformer.

In order to display the content of the files, we need to set up a sub-flow
that consists of a SingleFileSupplier source, the TextFileReader transformer for
reading in the content and a HistoryDisplay sink for displaying the file contents.
The sub-flow gets enclosed by a Trigger control actor, which will get executed

17 adams-core-variables1.flow

56 CHAPTER 2. FLOWS

whenever an integer token from the ForLoop passes through.

To make use of the variable filename, we need to attach it to the file option
of the SingleFileSupplier. You can attach a variable by simply bringing up the
properties editor of an actor (or other ADAMS object), right-click on the name
of the option and then entering the name of the variable (without “@Q{” and
“}”). The properties editor indicates whether a variable has been attached to
an option by appending an asterisk (“x”) to the name of the option, as can be

seen in Figure [2:30]

b Add here... x

-] []

|adams.flow.sour(e.FiIeSuppIier

About

supplies files.
loggingLevel |WARNING |v‘
name [FileSupplier |
annotations [..
skip O

stopFlowOnError []

outputArray O

files* Mone El

Figure 2.36: The asterisk (“+”) next to an option indicates that a variable is
attached.

The complete flow is displayed in Figure[2.:37] With “quick info” enabled, the
SingleFileSupplier now also hints that the file it is forwarding is variable-based:
@{filename}.

efsrc/ — + X

adams- core-variables1 | Actors | Clipboard | Help | Parameters
Flow o () =
Simple xample for using variables: bt sequznceToarray
1. The FarLoop generates the index for the file to load SequenceToCallection
2.The Tee assembles the full path of the ile o load SetArrayElement

) S et the varable Flzname: . \f D
3. The Trigger lnads the ile, the variable "filename” etbatabase]
is attached ta the “file” option of the SingleFileSupplier setlD
adtor setPlotConaineryaluz
(fof) ForLoop for(i=1;i«=2i+=1) & [3F) SetPropenty

9 (T}FTee (st filaname variable) SetReportFromFile

SetReportyalue

{8 Convert AnyTostring
StringReplace (path) replace " nith SECAMPLE FLOWS)/datalvariable’ (PHI
StringReplace (2xtension) replace with " txt
(3] Setvariable @filename)
9 () Trigger doad and display filz)
FileSupplier @filenamer
Tex\FHeReader SINGLE_STRING
FE HistoryDisplay X<t Y:top, W:640, Hi480, font: Monospaced-PLAIN-12, entry nam

4] I [r

SetStorageValue
o [§) setsystemProperty
5~ evariabie]

o [i-d sort

& [stringCut

& [t Stringinsert

& [StringJoin

o [Lag StringLength

& () StringMatcher

& [@) stringRangeCut

& [StringReplace

& [Ad) StringSanitizer

o [Bf Stringsplit

&[54 StringTrim

& [T¢) TextFileReader

o [@) Timestamp

(1) Tool

& [1) UniguelD

Search

Flow.Tee (set filename variable).Setvariable

Figure 2.37: Using a variable to control what file to load and display.

The variable mechanism can also be used to dynamically execute another

2.17. VARIABLES o7

external actor at runtime (see section on external actors).
In Figure [2.38] you can see a flow that uses a ForLoop to execute three
external flows using a variable attached to the actorFile option.

- Flow editor [adams-core-external flow_variable.flow — fhomeffr
File Edit Debug Execution View Window

v v

adams- core- external_flow_variable |

[Actors | Clipboard | Help | Parameters

Flow
This flow shows how to use variables for dynamically loading external
ftransformen) flons.

9 (R The outer loop generates the inde for the flom file to lozd there are 3
external transformer flons available). The floms merely add a constant
value 1o the inner for-loop's value. This value and the flow filename are
displayed

ForLoop forli=1;i==3i+=1
3 assemb\e filename of external flow
B Convert IntTestring
StringReplace replace” with §(BCAMPLE_FLOWS)/adams-core - external_flow_vari
(B4 Setvariable @flow_name}
= flow fllename x.1ef, Y-top, W.540, H:451, short tile, font: Monaspaced-PLAIN-12
¢ () execute external flow

ExtarnalTransformer @(flon_nzmek

o (il sequencaToArray

& ball SequencaToCollection
o bl SatarrayElemant

o B setDatabaselD

& (in) setiD

o~ (10 SetPlotContainervalue
o (8F) SetProperty

o (k) setRepartFromFile

o Rl SetRepontValue

& (Bl setstoragevalue

o () setsystempropeny
o (84 SetVariable

e (i sort

o [stringCut

o (i Stringinsart

o g Strinajoin

FurLuup forli=1i<=10i+=1

=) output Xiright, ¥:top, W:6410, H:480, short title, font: Monospaced-PLAIN-12 o L) stringLength
& () StringMatcher
o (@] stringRangaCut
o [StringReplace
o= (] StringSanitizer
o [l Stringsplit

o 65 StringTrim =
o (1] TextFileRaader
o @) Timestamp
(1) Tool

o (1) UniqueiD B

Search

4] I D

Flow.assemble filename of external flow.flow filename

Figure 2.38: Using a variable to control what external flow to execute (flow).

The output generated by the three sub-flows is shown on screen in the same
Display actor. A screenshot of the output is displayed in Figure [2.39]

> output -+ x
File Edit View

1001.
1002
1003
1004
1005
1006
1007
1008
1008
1010
2001
2002
2003
2004
2005
2006
2007
2008

2009
10

hboobooboobbooDOOOOOD

Figure 2.39: Using a variable to control what external flow to execute (output).

Overview of actors
The following actors are available to handle variables:

o ListVariables — source actor for outputting the names of currently available
variables.

o CombineVariables — source actor for combining one or more variables into
a single string using a supplied expression.

58 CHAPTER 2. FLOWS

Variable — source actor for outputting the value associated with the vari-

able.

e VariablesArray — outputs the associated values of several variables as a
string array (source).

o FxpandVariables — similar to the Combine Variables source, this actor ex-
pands all variables in the string(s) passing through.

e SetVariable — updates the value of a variable (transformer).

e IncVariable — increments the value of the variable by either an integer or
double increment (transformer).

e DeleteVariable — removes a variable and its associated value from internal

memory (transformer).

Using callable actor as variables

One drawback of ADAMS is the absence of multiple inputs, only a single input
is supported and containers can mitigate that only to a certain degree. Instead
of only using variables values, ADAMS can also harness data generation on-the-
fly, by attaching callable actors to options. Attaching a callable actor works
just like attaching a simple variable, only the naming convention is different:

@{callable:<callable-actor-name>}

The callable: prefix tells ADAMS that the following name is referencing a
callable actor. It then locates the actor and executes it to obtain the value for
using with the option in question.

This mechanism has mainly three caveats:

e The callable actor (or sequence of actors) gets executed whenever the
actor, which has one or more callable actor references attached, gets exe-
cuted. Depending on the actors in use, this can be rather computationally
expensive.

e Since the variable mechanism has no notion of where in the flow it is, only
callable actors that are defined below the Flow actor can be used (kind of
“super callable actors”).

e The callable actor should generate the correct type for the option it is at-
tached to. Otherwise, the value gets converted and parsed as a command-
line value. Though the flow will be able to recover, this will slow things
down as an exception will get output whenever this occurs.

Using storage items as variables
Similar to attaching callable actors, storage values can be attached like variables
as well. Once again, a custom prefix, “storage”, is used to distinguish these
special variables from ordinary ones:

@{storage:<storage-value-name>}

The referenced object is then obtained from storage and set.
This mechanism has two caveats:

e The storage value is retrieved whenever the actor, which has one or more
storage value references attached, gets executed.

2.17. VARIABLES 59

e The storage value needs to have the correct type for the option it is at-
tached to. Otherwise, the value gets converted and parsed as a command-
line value. Though the flow will be able to recover, this will slow things
down as an exception will get output whenever this occurs.

Non-ADAMS objects

The Variable functionality is only available for objects within the ADAMS
framework, as it requires special option handling. 3rd-party libraries do not
benefit from this functionality directly. But thanks to Java Introspection@you
can use property paths to access nested properties and update their values. A
property path is simply the names of the various properties concatenated and
separated by dots (“.”). In case of arrays, you simply have to append “[x]” to
the property with “x” being the O-based index of the array element that you
want to access.

The following actors allow the updating of properties:

e SetProperty — transformer that modifies a single property of a callable
actor based on the current value of the specified variable.

e UpdateProperties — allows you to update multiple properties (each prop-
erty is associated with a particular variable) of the actor that this actor
manages.

Special variables
Often, flows use resources that are relative to the flow itself. In order to make
this easier, there are two special variables available at runtime:

e flow_dir — stores the path of the flow
e flow_filename_long — stores path and file name of the flow
e flow_filename_short — stores only the file name of the flow

18See mttp://download.oracle.com/javase/tutorial/javabeans/introspection/| for
more information on Java Introspection.

http://download.oracle.com/javase/tutorial/javabeans/introspection/

60 CHAPTER 2. FLOWS

2.18 Temporary storage

Variable handling within ADAMS is a very convenient way of changing param-
eters on-the-fly, but it comes at a cost. Values for variables are merely stored as
strings internally and each time an options gets updated this string needs to get
parsed and interpreted. Furthermore, each time the whole actor gets reinitial-
ized if one its own options or an option of its dependent objects gets updated.
It is strongly advised against using the variables functionality if they are not
actually attached to any options, but only used for keeping track of values like
loop variables.

Instead, ADAMS offers an alternative framework for managing values at
runtime: temporary storage. In contrast to variables, values are stored inter-
nally as Java objects, referenced by a unique name. Just like with variables,
the scope of these objects is restricted to Flow actors at the time of writing.
Additionally, the values don’t need to be parsed again when used, since they
are stored as is, resulting in a more efficient storage/retrieval. Finally, arbitrary
objects can be stored, not just objects for which a string representation can be
generated /parsed. The latter aspect combined with fast storage/retrieval en-
courages multiple read/write accesses of the same object in various locations of
the flow. An example would be accessing a data set or spreadsheet, retrieving,
setting or updating values. Figure shows a flow that takes the number gen-
erated by the random number generator and stores it, before re-using it in the
sub-flow below the Trigger actor. The resulting output is displayed in Figure
241

~ Flow editer [adams-core-temp_storage.flow -- home/fr j i e/ - + >
File Edit Debug Execution View Window

o] 4[]

adams- core-temp_storage | Actors | Clipboard [Help [Parameters
Flow - =
The ™ - transformer and " " saurce SequanceToAray

T

actors allow o store arbitrary values during flow execution, quenceToCollection
This s quite handy if one has 1o have access to an object

% (L) that wouldnt be passed around as token otherwise
In the example here, the random numbers, that the random
number generator saurce generates, get stored in temporary
storage. The Trigger actar then retrieves the current value tPlotContainervalue

using the “Staragevalue” source actor.

Property

tReportFromFile

k) setReportvalue

ol erGenerator ejio0

SE\SmrageVa\ue rand

LR A A A

¢ (8 Trigger (=) berstoragevalue
) StorageValue rand o () SetsystemProperty

T o (B Satvariabla
=) Display X:left, Y:top, W:640, H480, fant: Monospaced-PLAIN-12 i son

& [3) stringCut
T

ingReplaca
ingSanitizer
ingsplit
ingTrim =
xFileReader
o [@ Timestamp
(1) Tool

o (1) UniguelD S

Search

LA A A A A

Flow.SetStoragevalue

Figure 2.40: Flow demonstrating the temporary storage functionality.

By default, the storage system is unlimited which can quickly result in mem-
ory problems when not used wisely. In order to restrict memory usage and
encourage re-generation of values on demand, the storage system also offers

2.18. TEMPORARY STORAGE

File Edit View

- Flow.Trigger.Display

.7308781907032909
-41008081149220166
. 20771484130871707
.3327170559595112
-G677559094241207
-006117182265761301
-9637047970232077
.9398653887819038
.0471949176631939
.9370821488959636
.3971743421847056
.34751802920311026
.284057032004035677
.5064836273262351
.11596708803265776
.7705358800781777
.65989270869342
.156746890569845625
.3782020453210553
-13976268290375116

61

Figure 2.41: Output of flow demonstrating the temporary storage functionality.

least-recently-used (LRU) caches |T_gl Instead of simply setting a value with a
name, you can specify the name of a particular LRU cache as well. The cache
needs to be initialized first, of course, using the InitStorage Cache standalone ac-

tor. Figure [2.:42] shows the use of the LRU cache functionality, with Figure 2.43]

displaying a snapshot in time of the storage inspection panel available through
the Breakpoint control actor. Finally, Figure [2.:44] shows the final output of the

flow.

File Edit Debug Execution View Window

o] A

~ Flow editor [adams-core-temp_storage_using_cache.flow - fhomefr

adams- core-temp_storage_using_cache |

Adors | Clipboard | Help | Parameters

The " transformer and " " source
actars allow ta store arbitrary values during flow execution
It is also passible to store the values in named LRU
(least-recently-used) caches

? Inthe example here, the random numbers, that the random
number generator source generates, get stored in the LU
cache called “randam_numbers’, with the name being the
walue of the random number
The Breakpoint actor is used to display the state of the
internal starage. Just keep clicking on"Continue” to see
the LRU cache being sloly filled.

InitStorageCache random_numbers/50
erGenerator 100
(84) Setvariable @(rand;
(&) SetStorageValue @(rand) cache: random_numbers
¢ () Trigger
(B StorageValue @frand) cache: random_numbers

Braakpoint true, vien: STORAGE
=) Display X:left, ¥:top, W:640, H:480, font: Manospaced-PLAIN-12

& [l SequencaToArray
o £il] sequencaToCollection
& bl SetArrayElement
o @) setDatabaseiD

o (D) SetiD

o= (it SetPlotContainervalue
o (8F) SatPraperty

o () SetReportFramFile
o b SetRepartValue

o (Bl setstoragevalue
& () setsystemProperty
o (Bl Setvariable

o (i sort

& B StringCut

o (itg Stringinssrt

o [StringJoin

& [Lag StringLenath

o () StringMatcher

& (@) StringRangeCut

o (b StringReplace

o (@ StringSanitizer

& B0 Stringsplit

o 59 StringTrim

o (T TextFileReader

o [@) Timestamp

o (T) Tool

e (0] UniquelD

Search

Figure 2.42: Flow demonstrating the LRU cache storage functionality.

Overview of actors

The following actors are available to handle variables:

e InitStorageCache — standalone actor for initializing a named LRU cache

with a specific size.

19See http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used for more

information on LRU caches.

http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used

62 CHAPTER 2. FLOWS

Breakpoint -+ x
Execution

I » Continue | O stop I # Disanie |

Condition adams.flow. condition. bool.Exprassion L

Runtime information

‘ 69" Expressions | Variables | [_]Storage ‘
‘ E%' Inspeat token | &: Inspea flow | Source ‘
Actor path Flow Trigger Breakpoint
(storage |

Cache Name Tvpe Inspect. ‘
randem_numbers [11.0 |javalang.Double

randem_numbers [14.0 |java.lang.Double
randem_numbers [23.0 |java.lang.Double
randem_numbers [5.0 |javalang.Doutle

Figure 2.43: Display of the temporary storage during execution.

- Flow.Trigger.Display
File Edit View

D

Figure 2.44: Output of flow demonstrating the LRU cache storage functionality.

o CombineStorage — source actor for combining string representations of
storage items and variables into a string.

o FapandStorage — similar to the CombineStorage source, this actor expands
all storage items and variables in the string(s) passing through.

o (etStorage Value — transformer that replaces the incoming string with the
storage value that the string represents. associated with the specified
name.

o ListStorageNames — source actor for outputting the names of the currently
stored items.

e StorageValue — source actor for outputting the storage value associated
with the specified name.

e Storage ValuesArray — source actor for outputting the storage values asso-
ciated with the specified names as an array.

e SetStorage Value — updates the specified storage value (transformer).

o IncStorageValue — increments the value of the stored integer or double
object by either an integer or double increment (transformer).

e DeleteStorage Value — removes a storage value from internal memory (trans-
former), freeing up memory.

2.19. DEBUGGING YOUR FLOW 63

2.19 Debugging your flow

2.19.1 Breakpoints

The more complex a flow gets, the harder it becomes to track down problems.
With all its general purpose actors and control actors (loops, switch, if-then-
else, ...), ADAMS is basically a basic graphical programming language. A
programming language without at least some basic debugging support is very
inconvenient. Therefore, ADAMS allows you to set breakpoints in your flow.
These breakpoints are merely instances of the Breakpoint control actor. This
actor allows you to specify a breakpoint condition on when to stop. The default
condition is true, i.e., the execution gets paused whenever the actor gets reached.
This boolean condition can also evaluate the value of variables. Just surround
the name of the variable with “@{” and “}” in order to use its value within
the expression. For more information on what the expression can comprise of,
check the online help of the Breakpoint actor.

Whenever the Breakpoint actor is reached and the condition evalutes to true,
the control panel of the actor will get displayed (see Figure .

- Breakpoint -+ %
Execution

}» Continue| | & Stop | ¥ Disable ‘
Condition adams flow. condition.bool Expression -expression “@(mnE
Runtime information
‘ " Expressions | Variables | [storage ‘
E& Inspect token | %2 Inspect flow | Source
Actor path Flow.Breakpoint

Token | Expressions

Expression Type |Value Add.. ‘
@{loop_var} |VARIABLE |6

Figure 2.45: The control panel of the Breakpoint actor.

The functionality of the control panel is best explained with an example.
The flow E in Figure simply outputs integer values, ranging from 1 to 10.
This value gets stored in the variable loop_var which is also part of the condition
of the Breakpoint actor. Finally, these values get displayed in a Display sink.

When the breakpoint gets triggered, the flow gets paused and the aforemen-
tioned control panel is displayed.

e The buttons in the Execution group allow you to continue with the flow
execution, you can stop the flow or you can simply disable the breakpoint
(which resumes the execution immediately).

e It is possible to update the breakpoint condition whenever the breakpoint
is reached, by simply changing the condition string and clicking on the
Update button.

20 3dams-core-breakpoint.flow

64 CHAPTER 2. FLOWS

~ Flow editor [adams-core-breakpoint.flow -- fhome/fracy j d; ily/ad; d; e/src = + %
File Edit Debug Execution View Window
EBECIE [v[+]
adams- core- breakpoint | Actors | Clipboard | Help | Parameters
Flow 9 3 control -
Demaonstrates the debugging functionaliy of the flow
using the “Breakpoint” actor. The "Breakpaint” actar ¢ [arrayprocess
? evaluates inthis case the "laop_var” variable, whether o [) Branch
it has avalue greater than 5. If that is the case, the o (@) [Braakgaint
Tl 5 oot e s e mspect o crone
flow emvironment, whether everything is as expected & (W) Cast
- e
R ForLaop for 1= 1,1 <= 1051 = 1 (] ClearCloballisplay

o [t ConditionalSubPracass
ConditionalTee
ConditionalTrigger
ComainervaluePicker =

($4) Setvariable @(oop_var
(@) Breakpoint @loop_van = 5, 1 watch, views: INSPECT_T OKEN, EXPRESSIONS
=) Display X:left, ¥:top, W:640, H:480, fort: Monaspaced-PLAIN-12

FreeMemory
cc

o [@ Globalactorscraenshot
o [B] ifStorageValue

& () fThenElse

& (i) Injector

o () jMap

o) LoadBalancar

o (0] LocalScope

&[fJ) once

o [l PlotContainerUpdatar
o [f) Rejector

o [59) Sequence

&) sinkhole

o[Sleep =
Search

Flow.Breakpoint

Figure 2.46: Example flow with Breakpoint actor.

e In the Runtime information group you can view the source code of the
fully expanded flow (i.e., all external actors are inserted completely and
variables are expanded to their current value), you can define watch ex-
pressions (variables, boolean and numeric expressions; Figure , dis-
play an overview of all the variables and their current values, inspect the
current storage items, you can inspect the current token that is being
passed through the breakpoint (Figure and also inspect the current
flow object (Figure [2.48).

'y

While a flow is running, you have some basic tools for inspection at hand as
well (available from the Debug menu):

e Variables — allows you to monitor the variables of a flow and how they
change. Note that updating the dialog is quite expensive and will slow
down your flow considerably.

e Storage — when a flow is paused, you can inspect the current storage
items; as soon as you resume the flow, the dialog will disappear again, as
it doesn’t get refreshed automatically.

2.19.2 Monitoring

With ADAMS it is possible to eavesdrop on the flow execution by attaching
a so-called flow execution listener to the Flow actor and enable the listening
process there as well.

The following listeners are available:

o CurrentlyExecuted — displays all the actors (with their start times) that
are currently being executed.

2.19. DEBUGGING YOUR FLOW 65

= Breakpoint - + x
Execution

» Continue) Stop | i Disable

Condition adams flow.condition.bool Expression —expression "@{Ioolzl

Runtime information

4" Expressions Variables] Storage
lnspecltuken %z Inspect flow Source
Actor path Flow.Breakpoint

Token | Expressions

L3 P this [adams.flow.core. Token]
$# hashCode [java.lang.Imeger]

&P [payioad [java lang Integer

o

| [Juse reg. Exp

Figure 2.47: The Inspection dialog of the Breakpoint actor for the current token.

e Debug — similar to the Breakpoint control actor, this listener allows you
to set breakpoints in a flow. You can do this also at runtime, without
changing the flow in the editor.

e FEzxecutionCounter — counts for each actor how often it was executed.

e FEzxecutionLog — writes all calls to the input, execute and output methods
to a log file.

o MultiListener — allows you to listen with multiple listener setups to the
flow execution.

e NullListener — dummy listener, does nothing.

66

CHAPTER 2. FLOWS

> Breakpoint -+ x
Execution
» Continue & Stop | ¥ Disable
Condition adams. flow.condition bool Exprassion -expression "@{\onlil
Runtime information
4" Expressions Variables [_.] storage
5 Inspect token € Inspect flow | Source

Actor path Flow.Breakpoint

Token | Expressions | Flow

? ¥ this [adams.flow. control. Flow]
hashCode [java.lang.Integer]
& debuglevel [java lang.Integar]
® name [java lang String]
o~ & annotations [adams. core. base BaseText]
L skip [java.lang Boolean]
L stopFlowOnError [java.lang.Boolean]
& finishBeforeStopping [java.lang Boolean]
? P actors [adams flow core_ AbstractActor]]]
hashCode [java.lang.Imeger]
o R [1] [adams.flow.source.ForLoop]
? P [2] [adams.flow.transformer.SetVariable
hashCode [javalang Imeger]
L debuglevel [java lang.Integer]
P name [java.lang String]
o R annotations [adams.core base BaseText]
L skip [java.lang.Boolean]
& stopFlowonError [java.lang.Boolzan]
o R variablalame [adams. core. VariableMame]

4ladams. flow. transformer. Setvariable -var
Gj-name loop_var

| [Juse reg. Exp

Figure 2.48: The Inspection dialog of the Breakpoint actor for the current flow.

2.20 Passwords

In various places, ADAMS requires the use of passwords, for instance, when
connecting to databases. ADAMS does not offer any proper encryption of the
passwords, merely a weak obfuscation using Base64E| encoding. Keep this in
mind when designing flows and making the available to other people.

2lhttp://en.wikipedia.org/wiki/Base64

http://en.wikipedia.org/wiki/Base64

2.21. EXTERNAL PROCESSES AND CLASSES 67

2.21 External processes and classes

ADAMS allows you to start up external processes or call Java classes that are
present in the classpath from within a flow. The following actors are available:

e Java — standalone that calls the main method of a Java class, using the
current JVM.

e JavaFxec — standalone that starts up a new JVM using the current class-
path and JRE. stdout and stderr can be further processed in the flow.

e FEzxec — source that calls any external executable and allows to further
process either stdout or stderr.

68

CHAPTER 2. FLOWS

Chapter 3

Visualization

Visualization is very important in data analysis. The core module of ADAMS
comes with some basic support.

e Image viewer — For displaying images of type PNG, JPEG, BMP, GIF.
e Preview browser — Generic preview browser, any ADAMS module can
register new preview handlers for various file types.

3.1 Image viewer

The Image viewer is a basic viewer for graphic files (PNG, JPEG, BMP, GIF).
Figure shows the viewer with a single image loaded. It is possible to copy
images to the system’s clipboard, export or save them in a different file format
or print them.

- Image viewer [lya2.jpg -- fhomeffracpete/media/pictures/fractals]
File Edit View

lya2jpg

Name Value
File ${HOME}/media/pictures/fractals/lya2.jpg
Height 200
Width 300

X: 275 Y:217 Zoom: 100%

Figure 3.1: Displaying a fractal in the Image viewer.

69

70 CHAPTER 3. VISUALIZATION

3.2 Preview browser

The preview browser is a generic preview framework within in ADAMS and
each module can register new handlers for various file or archive types. In its
basic functionality, the preview browser can view images (see , properties
files, flows (see and plain text files (see [3.4). If no handler is registered for
a file type, i.e., a certain file extension, then the plain text handler is used by
default. If more than one handler is registered for a file type, then you can select
from the combobox at the bottom of the dialog, which handler is the preferred
for this type of file.

Preview browser -+ x
File View Window

Files

S{HOMEY/media/pictured .|

Iya2.jpg
mandel_closeup.png
twitter_background.png

N

X:19 Y:285 Zoom: 100%

Preferred handler [adams.gui.tools.previ v

Figure 3.2: Preview browser displaying an image.

> Preview browser -+ %
File View Window
Files

® ;}g\vglhi gaussian bell curve with mean of 0.0 and standard deviation of 1.0,
SEXAMPLE FLOWS] | . |

(B setvariable @mean; = 0

adams- core-array_el
adams- core-array_ = (B setvariable-1 @istde = 1.0
adams- core-array_subsetf| ForLoop for (i = -200; i <= 200; i += 1)
adams- core-bell_curve-va (3) MathExprassion x/33
adams- core-bell_curve.flo: & iy R
adams- core-bell_curve.fl HamExpression ° R
adams- core-breakpointfio MakePlotContainer staey
adams- core- canvas.flow || ®A| SequencePlotter X:left, ¥-top, W00, H:350
4 1]

Preferred handier [adams.gui.tool [~]

Figure 3.3: Preview browser displaying a flow.

3.2. PREVIEW BROWSER

- Preview browser
File View Window

Files 2013-06-10 02:52:49 weka.gui.explorer.Explorer <init>

INFO: Weka Explorer
S{HOME}wekaies [. | pHICE B0 ERROTST weka. gui . explorer. Explorer <inits

2013-06-10 02:52:49 weka.gui.explorer.Explorer <inits
INFO: web: http://wwn.cs.waikato.ac.nz/~nl/weka/
2013-06-10 02:52:49 weka.Qui. explorer.Explorer <inits
INFO: Started on Monday, 10 June 2013

ekalog INFO: (c) 1999-2013 The University of Waikato, Hamilton, New Zealand

Preferred handler !lfhm gui.tool i PlainTi

[~]

Figure 3.4: Preview browser displaying an plain text file.

71

Serialized files can be inspected as well, e.g., for model files generated by
WEKA. Other modules may offer specific viewers for the objects stored in such

a file.

72

CHAPTER 3. VISUALIZATION

Chapter 4

Tools

Among the items in the Tools menu are the most important tools of ADAMS,
the interfaces for editing and running flows.

4.1 Flow editor

The Flow editor is the central tool in ADAMS, allowing you the definition of
powerful workflows for a multitude of purposes. See chapter |2 for a comprehen-
sive introduction.

4.2 Flow runner

The Flow runner is an interface to execute flows without the user being able to
modify them. See chapter for more information.

4.3 Actor usage

The class adams.flow.core. ActorUsage allows you to generate a spreadsheet that
generates an overview of which actors are used in what flows. Here is an example
command-line for Linux:

adams.flow.core.ActorUsage \
-dir ./flows \
-recursive \
-no-path \
-output $HOME/actors.csv \
-logging-level INFO

The command looks recursively for flows, starting in the ./flows directory. The
generated output, omitting the path from the flow files, is written to actors.csv
in the user’s home directory.

Rather than using a static spreadsheet, you can also use this tool from the
main menu: Help -; Actor usage. After selecting a directory containing flows
(which will get searched recursively), you will be presented with a dialog that
displays the generated spreadsheet (see Figure . This dialog also allows you

73

74 CHAPTER 4. TOOLS

to select one or more flow files and then edit them, by clicking on the Fdit
button. You can directly edit a single flow by double-clicking on it in the table
as well.

- Actor usage =+ x

Row Class Edit

1 Al \—L}-‘
21 |adams.flow.control ContainerValuePicker =1
22 adams.flow.control. Count /home/fracpete/development/projects/adamsfamily/adams/ as
23 |adams.flow.control FileProcessor
24 |adams.flow.control. Flow
25 adams.flow.control. FreeMemory
26 |adams.flow.control. GC
27 |adams.flow.control GlobalActorScreenshot
28 adams.flow.control.IfStorageValue

»

28 adams.flow.control. IfThenElse Jhome ffracpete/development/projects/ fadams/a
30 adams.flow.control.IfThenElse /home/fracpete/development/projects/adamsfamily/adams/ as
31 |adams.flow.control. fThenElse /home/fracpete/development/projects/adamsfamily/adams/a
32 adams.flow.control.IfThenElse /home/fracpete/development/projects/adamsfamily/adams/ as
33 adams.flow.control.IfThenElse /home/fracpete/development/projects/adamsfamily/adams/as
34 |adams.flow.control. IfThenElse /home/fracpete/development/projects/adamsfamily/adams/as
35 adams.flow.control.IfThenElse /home/fracpete/development/projects/adamsfamily/adams/ as
36 |adams.flow.control Injector fhome/fracpete/development/projects/adamsfamity/ adams/ ai
37 adams.flow.control.Injector /home/fracpete/development/projects/a adams/a
38 adams.flow.control.Injector /home/fracpete/development/projects/adamsfamily/adams/ as

39 [adams.flow.control. Map

40 [adams.flow.control LoadBalancer
41 adams.flow.control.Localscope /home/fracpete/development/projects/adamsfamily/adams/aq
42 |adams.flow.control. Once

43 adams.flow.control.PlotContainerUpdater
44 |adams.flow.control.Rejector

45 adams.flow.control.Sequence /home ffracpete/development/projects). adams/ a
46 adams.flow.control.Sequence /home/fracpete/development/projects/adamsfamily/adams/ as
47 [adams.flow.control.Sequence /home/fracpete/development/projects/adamsfamily/adams/a
48 adams.flow.control.Sequence /home/fracpete/development/projects/adamsfamily/adams/ as
49 adams.flow.control.Sequence /home/fracpete/development/projects/adamsfamily/adams/aq_ |
SO‘ adams.flow.control.Sequence home, rracpetle development/projects/adamsfamir adams‘ all
1] »

[| Cluse reg. Exp

Figure 4.1: Overview of actor usage in flow files.

4.4 Text editor

The Text editor is a very simply editor for plain text files. It allows you to view
and edit one file at a time. It also supports printing and, if the net module is
present, sending the files via Email.

4.4. TEXT EDITOR

~ Text editor [LICENSE.txt -- /home/fracpete/development/projects/adamsi -
File Edit View

+ x

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Frees Software Foundation, Inc. <http://Tsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it 15 not allowed.

Preamhle

The GNU Ceneral Public License is a free, copyleft license far
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away wour freedom to share and change the works. By contrast,
tha GWU General Public License is intended to guarantee your freedom to
share and change 211 versions of a program--To make sure 1T remains free
software for all its users. We, the Fres Software Foundation, use the
GNU Genaral Public License Tor mostT of our software; iT applies also To
any other work released this way by 1ts authors. You can apply 1t to

our programs, tod.

When we speak of free software, we are referring to freedom, not
price. 0Our General Public Licenses are designed to make sure that wou
have the freedom to distribute copies of free software (and charge for
them if wou wish), that vou receive source code or can get it if wou

ant it, that wou can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying wou
these rights or asking you To surrender the rights. Therefore, you have

[Ty

Figure 4.2: Editor for viewing/editing plain text files.

75

76

CHAPTER 4. TOOLS

4.5 Comparing text

The Comparing text tool allows you two compare two files or content pasted
from the clipboard (using the paste buttons at the bottom) or a mixture of
both. Figure shows the open dialog and the comparison of the files in the
background (red depicts changes between the files, blue a deletion and green an

addition).

File Edit

$[EXAMPLE_FLOWS}/ data/ diffL.txt

Comparing text

$ {EXAMPLE_FLOWS}/ data/ diff2.txt

1 This part of the
document has stayed the
same from version to
wversion. It shouldn't

=1 1 This is an important

2 noticel It should

3 therefore be located at
4 the beginning of this
5 document!

6

7 This part of the

8 document has stayed the
9 same from version to
10 version. Tt shouldn't

change. Otherwis

7 would not be helpi| Firstfile
compress the size

9 changes. Second file

2
3
4
5 be shown if it do
6
7
8

Load files to compare x
${EXAMPLE_FLOWS}/data/diff1.1x1 L]
H{EXAMPLE_FLOWS]/data/diff2 tx E

16 It is important to spell
17 check this dokument. On
18 the other hand, a

19 misspelled word isn't
20 the end of the world.
21 Nothing in the rest of
22 this paragraph needs to
23 be changed. Things can
24 be added after it.

16 It is important to spell
17 check this document. On
18 the other hand, a

119 misspelled word isn't
20 the end of the world.
21 Nothing in the rest of
22 this paragraph needs to
23 be changed. Things can
‘w24 be added after it.

Figure 4.3: Comparing two text files.

Chapter 5

Maintenance

The Maintenance menu is only available, if the application has been started
as a user labeled as expert or developer. By default, the user is assumed to
be a basic user, not needing the more advanced features, requiring more care
and consideration. If access to maintenance tools is required, you can add the
following to the command-line for starting up ADAMS:

-user-mode EXPERT
or

-user-mode DEVELOPER

7

78 CHAPTER 5. MAINTENANCE

5.1 Placeholder management

Whenever file names are being used in a flow, you run the danger for making
your flow only executable on your own machine. In order to make it easy to
use flows on multiple computers with different directory structures, ADAMS
introduces the concept of placeholders. Placeholders are basically system-wide
defined variables for directories. This allows you to define a placeholder called
XYZ and point it to directory /some/where on computer 1. On computer 2, on
the other hand, you point it to /somewhere/completely/different. As long as the
directory structure below this placeholder is the same, the flow is guaranteed to
work.

In Figure [5.1] you can some see placeholders already defined. Here, the
placeholders are used for example flows for various presentations.

- Placeholder management -+ x
Eile

Ker Value [Ada..
ECMLZO11 /home/fracpete/documents/prasentations/adams/ecmiZ011
EUROFE2010 /home /fracpete/documents /presentations,/europe2 010
EXAMPLE_FLOWS _ |/home/fracpete/devel ent/projects/ dams/ad.
PRESENTATIONS | /home /fracpete /documents/prasantations

Total: 4, Selected: 0

Figure 5.1: Viewing the currently defined placeholders.

5.1. PLACEHOLDER MANAGEMENT 79
Adding placeholders
In order to add a new placeholder, you need the following two steps:

1. Add the name for the new placeholder, e.g., TEST (see[5.2)
2. Add the directory that this placeholder is to represent (see .

After you added this placeholder the management panel will look as shown in
panel[5.4] In order to make the changes persisten, you need to save the changes
(see p.5)) and restart the application.

- Input x

Iz‘ Please add new placeholder
[TEST]

Figure 5.2: Entering the name for a new placeholder.

- Select directory x
oo o
o= 9 VirtualBox VMs
] backup
3 kin
o= development L
o~ [documents
o= installs
o= media
o~ 3 programs
o Jfiemg]
o= [wekafiles —
3 lost+found
o [mysql
o [Flib
Jlib3z
Jlibs4 <

| »

| Make New Fo... | ‘ Open H Cancel |

Figure 5.3: Selecting the directory that the new placeholder represents.

- *Placeholder management - + x
File

Ke Value [Add. |
ECML2011 /home /fracpete/documents/presentations/adams/ecmli2011 | —
EUROPE2010 /home ffracpete/documents/presentations/europe2 010 | Remove |

EXAMPLE_FLOWS _|/home/fracpete/development/projacts/adamstamily/adams/ad
PRESENTATIONS | /home/fracpete/documents/prasentations
TEST home ffracpete /tamy

Totak: 5, Selected: 1

Figure 5.4: The updated view of the placeholders.

80

CHAPTER 5. MAINTENANCE

- *Placeholder management

File |
Value | Add...

E save Ctris
Ehomeffracpe(e/documemsmre ntations/adams/ecm(2011
home /fracpete/documents/prasentations/europe20 10 ‘ Remove ‘

Revert
ﬁgluse Cirl-0 |/home/fracpete/development/projects/adamsfamily/adams/ad.
FRESENTTATTOTT /home /fracpats/documents/prasentations

TEST /home/fracpata/temp

Total: 5, Selected: 1

Figure 5.5: Making the placeholder changes persistent.

5.1. PLACEHOLDER MANAGEMENT 81

Editing placeholders
By double-clicking on a cell, you enter the edit mode of the cell and you can
either change the name of the placeholder or the path. Figure [5.6] shows the

latter.

{ - Placeholder management
Eile

I Kel
ECHL2011

EUROPE2010
[EXAMPLE_FLOWS
PRESENTATIONS

Totak: 4, Selected: 1

Figure 5.6: Editing the path of a placeholder.

Double-clicking a second time on the path, while you are in edit mode, you
can bring up a dialog for selecting a directory (see . This is less error
prone than manually entering the path. Of course, after you have updated a
placeholder, you need to make these changes persistent again by saving the
configuration and restarting the application.

A6 Select directory x

oo o =
o= 9 VirtualBox VMs =
] backup
1 kin
o= [development
o= 3 documents
o installs
o= media
o~ [programs L
¢ Elfempl
o= [J apache-cxf-2.56.1
Hdb
o= [Jmoa
=3 manitor
o= [photos
o [senvices =

| Malke New Fo... | ‘ Open H Cancel |

Figure 5.7: Selecting the new directory that the placeholder should represent
instead.

82 CHAPTER 5. MAINTENANCE

5.2 Named setup management

ADAMS allows you to define setups of, e.g., filters that can be referenced then
by their name, hence named setup. In case of filters, this would happen by using
the special filter NamedSetup.

In Figure [5.§]you can see the currently defined setups of a test system — your
view might look different.

x Named setup management =+ %
File
I Name Setup [Ada.. ‘
baseline_passthrough |adams. data baseline PassThrough =
filter_passthrough adams. data.filter. PassThrough | Remaove ‘
id_simple adams. data.id.SimplelDGenerator

noise_passthrough adams. data.noise.PassThrough

outlier_passthrough [adams.data outlier. PassThrough

ams. data.report.PassThrough
ams.flow.standalone. Tool -tool adams.1ools.InitializeTables
ams.flow. sink. DumpFile -output ${TMP}/dumpfile.txt -ap...
ams. data. smoothing.PassThrough

reportfilter_passthrough|as
singleton_tool_inittables |as
sink_dumpfile EL

smoothing_passthrough |a

Total: 9, Selected: 0

Figure 5.8: Viewing the currently defined named setups.

Adding a new named setup is a three-stage process: first, you select the class
hierarchy (see ; second, you select and configure the actual setup that you
want to reference (see ; third, add the nickname for this setup (see .
This will update the main view as shown in Figure In order to make these
changes persistent, you need to save them by selecting the Save menu item from
the menu of the management panel.

3

b Type

Please select type of setup

adams.data.conversion.Conversion
adams.data.conversion.ConversionFromString
adams.data.conversion.ConversionToString
adams.datafilter.AbstractFilter
adams.dataid.AbstractID Generator
adams.dataio.input AbstractDataContainerReader
adams.dataio.input AbstractReportReader
adams.data.io.output. AbstractDataContainerWriter
adams.data.io.output. AbstractReportWriter
adams.data.noise.AbstractDenoiser

MED

4]

Figure 5.9: The class hierarchy for the named setup.

5.2. NAMED SETUP MANAGEMENT

> Configure the setup *

adams.datafilter.RemoveNoise

About

Afilter that removes noise from the data with a
user-supplied noise level algorithm.

debuglLevel OE

denoiser [FassThrough -regions [-] & |

invert (|

s Input ¢

IE‘ Please enter 'nickname’ for the setup:
[remove_naise_filter |

Figure 5.11: The nickname for the setup.

> *Named setup management - + x
File

[Name [Setup | Ada. |
haseline_passthrough |adams. data baseline PassThrough =

filter_passthrough adams. data filter.PassThrough | Remove |

id_simple adams. data.id.SimplelDGenerator
|noise_passthrough |adams.data noise.PassThrough
outlier_passthrough adams. data. outlier. PassThrough
remove_noise_filter
reportfiter_passthrough|adams.data.report.PassThrough

singleton_tool_inittables |adams.flow. standalone. Tool -tool adams.toals. InitializeTakles
sink_dumpfile adams.flow. sink DumpFile -output ${TMP}/dumpfile.txt -ap.
smoothing_passthrough |adams. data smoothing. PassThrough

Totak 10, Selected: 1

Figure 5.12: The updated view of the named setups.

83

Figure 5.10: Selecting the configuration that the new named setup represents.

84 CHAPTER 5. MAINTENANCE

5.3 Favorites management

The last thing you want to do, is wasting time on configuring the same setup
in, e.g., the object edit over and over again. Figure [5.13| shows how to use the
favorites mechanism for selecting a favorite, replacing the currently displayed
object in the object editor completely. Figure on the other hand, shows
how to add the setup from a property as a new favorite, using the right-click
menu of the property. Favorites get grouped by the superclass they belong to
in the object editor.

*Flow editor
File Edit Debug Execution View Window

cs| []]

“new3 Actors
? Flow. 93 root

[F<] SingleFileSupplier $cwo o [F adams.flow

- Add after... ES
adams.flow.control. Tee ‘ v‘ s
AT B2 Copy nested setup
C d- i T
Allows 10 tap into the flow and tee—of tokens (L Gl JI ISR
Paste setup
[] Enter setup...
debugLevel UE L
.. Favorites ¥ Add to favorites..
name [Tee] Add as temporary favorite
i reportfilereader
ETEENIETE =] reportfilereader (csv))
sKip [m}
stopFlowOnError []

Search

FlowSingleFileSupplier

Figure 5.13: Making use of a favorite in the Flow editor.

ADAMS distinguishes between permanent and temporary favorites. The
latter are only available in the current session and won’t get stored on disk (in
GenericObjectEditorFavorites.props). They are considered more of an extended

clipboard.
Of course, ADAMS comes with a management interface for maintaining all
the various setups, allowing you to store, edit, rename and remove (named)

configurations.

5.3. FAVORITES MANAGEMENT

= Flow editor -+
File Edit Debug Execution View Window

@ v’_| - ’—"—‘Add beneath... x

newt ctors
[adams.fiow. ileReader || [- |
Flow | - = root

About o[adams.flow

Loads a file containing a repart from disk with a specified
readsr and passes ft on.

debuglevel oH

name [ReportFileReader |
annotations [| -
skip (m]

stopFlowOnError []

reader S =
L.

Copy nested setup
Copy command-line setup El

[Paste setup

] Enter setup...

Set variable...

Attach global actor...

Autach storage value...

Add as temporary favor

Search

Flow

Figure 5.14: Adding a setup in the object editor to the favorites.

86 CHAPTER 5. MAINTENANCE

Adding a favorite

When starting from scratch with the favorites, then it will most likely be the
case that you haven’t got a superclass group yet in your favorites that you want
to add the new favorite to. In that case, you need to Add a superclass on
the left side first (see [5.15)). This automatically pops up the dialog then that
allows you to configure a favorite for this superclass (see . Accepting the
configuration will prompt you with a dialog requesting a name for the favorite
(see . Once this is done, the view is refreshed as seen in Figure

Favorites management
File
Superclass Favorites
adams.flow.core.AbstractActor Add... | reportfilereader/adams.flow.transformer.R: Add...
reportfilereader (csv)/adams.flow.transforr
Remove Edit..
Remove all Rename...
Remove
Remove all
- Add superclass x
Superclass adams.flow.condition.booLAbstractBooleanCondition
] Il | |»
Figure 5.15: Adding a favorite for new superclass.
Favorites management
File
Superclass Favorites
adams.flow.core. AbstractActor H Add... | ‘ Add...
-~ Add Favorite (adams.flow.condition.bool.Absti » Edit...
adams.flow.condition.bool.Expression l:l 5= Rename...
PR Remove
P : Remove all
Evaluatas 1o 'true’ if the exprassion evaluatas to ‘trus’
=
debuglLevel 0
expression [trus [

Figure 5.16: Configuring the new favorite.

5.3. FAVORITES MANAGEMENT

> Favorites management
Eile
Superclass Favorites
adams.flow.core.AbstractActor Add... Add...
Remove Edit...
Remove all Rename...
Remove
- Input b Remove all
Please input name for favorite:
[cond_trug|
Figure 5.17: Naming the favorite.
- *Favorites management -+ %
Eile
Superclass Favorites
adams.flow.condition.boolAbstractBoolear Add... cond_true/ adams.flow.condition.boolLExpr Add...
adams.flow.core.AbstractActor
Remove Edit..
Remove all Rename...
Remove
Remove all
4] 1] [» 4] Il | [»

Figure 5.18: The updated favorites view.

88

CHAPTER 5. MAINTENANCE

Editing a favorite

It is not uncommon that favorites can change slightly (or even more drastic) over
time. Being able to update the setups is therefore important. By selecting an
existing favorite on the right-hand side and clicking on Fdit, you can change the
existing setup (see . If the new setup is accepted, the view gets refreshed

and the new setup is being displayed as shown in Figure

File
Superclass

*Favorites management

adams.flow.condition.booLAbstractBoolear
adams.flow.core. Abst

Favorites

cond_simple/adams.flow.condition.boolEx Add...

- Edit Favorite (cond_simple) 3 =
Edit..

adams.flow.condition.bool.Counting l:l Rename...
About Remove
Counts the tokens passing through and returns ‘true’ if Remove all
min/max/interval are met.

debugLevel ’:E
minimum ’:E
maximum ’:E
interval ’:E

—

Figure 5.19: Changing a different setup for a favorite.

*Favorites management - + =
File
Superclass Favorites
adams.flow.condition.boolLAbstractBoolear Add... _simple/adams.flow.condition.bool.Counti Add...
adams.flow.core. AbstractActor
Remove Edit...
Remove all Rename...
Remove
Remove all
‘ I D AT I [»

Figure 5.20: The view with the updated favorite.

5.3. FAVORITES MANAGEMENT 89

Renaming a favorite

With the number of favorites growing or simply updating them, it can happen
that renaming of one or more favorites is required. By selecting a favorite on
the right-hand side, you can click on Rename to bring up a dialog for the new
name (see [5.21). If this dialog is confirmed, the view gets refreshed and the
renamed favorite is being displayed as shown in Figure

*Favorites management

Eile
Superclass Favorites
adams.flow.condition.boolLAbstractBoolear Add... cond_true/adams.flow.condition.bool.Expr Add...
adams.flow.core.AbstractActor
Remove Edit..
Remove all Rename...
Remove
- lnput Remove all
lz‘ Please input new name:
\cond_simple

Figure 5.21: Choosing a new name for the favorite.

- *Favorites management - 4+ =
File
Superclass Favorites
adams.flow.condition.bool.AbstractBoolear Add... cond_simple/adams.flow.condition.bool.Ex Add...
adams.flow.core.AbstractActor
Remove Edit...
Remove all Rename...
Remove
Remove all
[i D [I | D

Figure 5.22: The view with the renamed favorite.

90 CHAPTER 5. MAINTENANCE

Saving the favorites
Of course, in order to make the changes permanent, you have to save them to
disk. You can do this by selecting File — Save from the menu as shown in

Figure

-~ *Favorites management -+ x
File |
& save ctis Favorites
A Drinn.ImoI.Al:ls(rat:llhmlea. _simple/adams.flow.condition.bool.Counti
[%] Revert Add... Add...
bstractActer
B3 close -2 Remove Edit...
Remove all Rename...
Remove
Remove all
[l i > o] [l >

Figure 5.23: Saving the modified favorites.

Chapter 6

Customizing ADAMS

Though ADAMS may lack somewhat preference dialogs in the user interface, it
nonetheless allows you to customize a lot of the behavior and the way things are
displayed using properties files or environment variables. The following sections
explain the basics of how this customization works and goes into detail for some
of the user interfaces in ADAMS.

6.1 Environment variables
The following variables are recognized:

e ADAMS_OPTS — Instead of supplying command-line options, you can also
set the options using this variable. For instance, to always use the expert
menu mode, use the following:

ADAMS_OPTS=-user-mode EXPERT

6.2 Properties files

A properties file is a plain text file that ends with the extension .props. Each
properties file contains key-value pairs that are separated by an equals sign
(“=%). A backslash at the end of a line can be used to break up long lines
and continue on the next one. The default setup is defined in the file present
in the jar archive. But you can override this behavior in two places: your
home directory ($HOME/ .adams for *nix and %USERHOMEY\adams for Windows)
and the current directory that the application is executed from. The current
directory approach, if ADAMS is installed in a directory accessible to all users,
can be used to define system-wide configurations. The home directory approach,
on the other hand, is for user-specific customizations (e.g., preferred keyboard
shortcuts). Overriding a properties file works by simply creating a new file
with the exact same file name (case-sensitive) and providing a new value for
a key that exists in the default properties files. Only the file name needs to
be the same, you do not need to create a directory structure in the home or
current directory. Here is an example: if you want to override the properties
files adams/some/where/Blah.props, then you simply create a Blah.props file,

91

92 CHAPTER 6. CUSTOMIZING ADAMS

the adams/some/where part is omitted. The order in which properties files are
read, is as follows:

1. jar archive
2. home directory
3. current directory

6.3 Main menu

The menu that ADAMS presents to the user, is defined in the following prop-
erties file:

adams/gui/Main.props

With this configuration you can determine the menu layout, the shortcuts,
whether additional menu items get automatically discovered and added (see
section for details on adding new menu items) and whether certain menu
items should get black-listed, i.e., not shown in the menu (in case of automatic
menu item discovery).

Menu layout

The main menu is generated using the MenuBar key. This key simply lists the
names of the menus that the menu bar should offer in a comma-separated list.
Here is a simple example:

MenuBar=Program,Visualization,Windows

The menu items for each of the menus listed there have a key in the properties
file that starts with Menu- and then has the nme of the menu. The value itself
is once again a comma-separated list, but this time listing the class names of the
menu item. The “-” character can be used to insert a separator. For instance,
the entry for the Visualization key could look like thisL

Menu-Visualization=\
adams.gui.menu. ImageViewer, \
adams.gui.menu.PreviewBrowser

The Windows menu is a special one which gets populated automatically.

Shortcuts

Keyboard shortcuts do not only speed up interaction with an application, they
are also a very personal thing. A key for shortcut consists of the prefix Shortcut-
and the class name of the menu item. The value for the key is then ac-
cording to the format defined for the getKeyStroke(String s) method of the
javazx.swing. KeyStroke class. You can use ctrl for the Control key, shift for
the Shift key, alt for the Alt key and meta for the Apple key. The following
key defines the Ctrl+F shortcut for the Flow editor.

Shortcut-adams.gui.menu.FlowEditor=ctrl pressed F

Automatic menu item discovery
Adding new menu items to the main menu, e.g., from other modules that you

6.4. FLOW EDITOR 93

refernce, can be quite useful. Automatic discovery takes out the hassle of having
to manually maintain the properties file by adding menu items whenever a
module offers a new menu item. Turning the automation on or off is done using
the following key and using either “true” or “false” as value:

AutomaticMenuIltemDiscovery=true

Black-listing menu items

With automatic discover enabled, you give up control on what menu items are
being displayed (and the where as well). In some cases, in can be necessary to
suppress a menu item (or lift the ban for one). Suppressing or black-listing an
item is very easy, you simply need to add a key to properties file that prefixes
the menu item’s class name with Blacklisted-. The value for this property is of
course boolean, with the values “true” or “false”. For instance, the menu item
adams.gui.menu.Some Viewer can be suppressed using the following key:

Blacklisted-adams.gui.menu.SomeViewer=true

6.4 Flow editor

The flow editor already comes with a basic preference dialog (Program — Pref-
erences — Flow), but you can still customize it further. See section for
customizing the shortcuts in the main menu and section for customizing
the popup menu for the actor tree (menu layout and shortcuts).

6.5 Proxy

In companies or organizations, the use of proxies for internet access is quite
common. In order for you to be able to go through the proxy, you need to
configure ADAMS’ proxy settings accordingly. You can find the settings in
the Preferences dialog (Program — Preferences — Prozy). Basically, you have
to specify the type of proxy (http or socks), the proxy server and the port
its listening on and also exclude hosts on your network from being accessed
through the proxy. These are usually: localhost, 127.0.0.1 and everything inside
your domain. For instance, if your local domain is blah.com, then you can
use the following wildcard: *.blah.com. Some proxies require authentication,
which you can provide as well in the dialog, once you have checked the Requires
authentication checkbox. See Figure for an example setup.

6.6 Time zone

ADAMS allows you to change the time zone it is operated in to one that is
different from the system’s one. You can find the settings in the Preferences
dialog (Program — Preferences — Time zone). If you choose Default, then this
will simply use your system’s default time zone. See Figure for an example
setup.

94 CHAPTER 6. CUSTOMIZING ADAMS

v Preferences =+ x

Charset

Connection [prme [~]
Flow
Locale HEtp & Fp
Proxy Host [proxy.blah.com
Time zone Port ‘ sze]
No proxy for [localhost, 127.0.0.1, *blah.com |

Requires authentication

User [user]
Password [PassworD]
Show Password

Socks

Host

Port H

Requires authentication [
User
Password

Show Password O

Figure 6.1: Proxy preferences

A Preferences - -

Charset

Flow

Locale pacil Y
Proxy Pacific’/Chatham

Time zone Pacific/Chuuk
PacificEaster
Pacific/Efate
PacificEnderbury
Pacific/Fakaofo
PacificFiji

Time zone |Pacific/Auckland

D

o« [l

Figure 6.2: Time zone preferences

6.7 Locale

Just like with the time zone settings, you can also change the locale settings
that ADAMS is operating with. By default, it uses the system’s locale. You can
find the settings in the Preferences dialog (Program — Preferences — Locale).
If you choose Default, then this will simply use your system’s default locale. See
Figure [6.3] for an example setup.

6.8 Database access

In order to add support in ADAMS for a database, in addition to MySQIEl and
sqliteEl7 the following steps are required:

e Place the jar archive of the JDBC driver in the lib directory.

Thttp://www.mysql.com/
2http://www.sqlite.org/

http://www.mysql.com/
http://www.sqlite.org/

6.9. BROWSER 95

- Preferences -
Charset :;Locale Default "
Flow 3
T g Default h =
Proxy e M
Time zone arAE

ar_BH

ar_DZ

ar_EG

ar_IQ —

ar JO Ed

Figure 6.3: Locale preferences

e Update the Drivers.props properties file, adding the classname of the
JDBC driver to the Drivers key. For instance, use oracle.jdbc. Oracle Driver
for the Oracle driver:

Drivers=\
com.mysql. jdbc.Driver,\
org.sqlite.JDBC,\
oracle. jdbc.0OracleDriver

This is a comma-separated list, so just append your JDBC driver(s).

6.9 Browser

Since release 6, Java can launch the desktop’s default browser. With the huge
variety of desktops for Linux, this does not work properly all the time, unfortu-
nately. Or it simply launches the wrong browser. If your desktop on Linux is not
supported, ADAMS uses a fallback method to determine an available browser.
The LinuzBrowsers property in the adams/qgui/core/Browser.props properties
file defines the order of the binaries that ADAMS looks for. The first binary
that it can find, it will use.

However, if you want to use a specific browser, you can do that as well.
You simply have to supply an absolute path to the browser’s binary in the
DefaultBrowser property. This will override any automatic browser discovery.
Here is an example for specifying the Firefoxr browser on Linux:

DefaultBrowser=/usr/bin/firefox

This override can be used on all platforms.

96

CHAPTER 6. CUSTOMIZING ADAMS

Part 11

Developing with ADAMS

97

Chapter 7

Tools

ADAMS, like any other complex project, is using a revision control system to
keep track of changes in the code and a build system to turn the source code
into executable code.

The requirements are as follows:

e Java 1.7+
e Maven 3.0+
e TexLive 2010+ (for compiling the LaTeX documentation)

The following sections cover the various tools and environments that are
used when developing for/with ADAMS.

7.1 Subversion

The revision control system that ADAMS uses as backend is Apache Subversion

[4]. The ADAMS repository is accessible via the following URL:
https://svn.cms.waikato.ac.nz/svn/adams/base/trunk/

You can check out the code in the console using the following command, provided

you have subversion command-line tools installed:

svn checkout https://svn.cms.waikato.ac.nz/svn/adams/base/trunk adams
Further modules are available from these repositories:

e addons (less common used modules)
https://svn.cms.waikato.ac.nz/svn/adams/addons/trunk/

e incubator (experimental modules)
https://svn.cms.waikato.ac.nz/svn/adams/incubator/trunk/

There are lots of graphical clients for subversion available, open-source and

closed-source ones alike. A good overview is accesible through WikiPedia, Com-

parison of Subversion clients:
http://en.wikipedia.org/wiki/Comparison_of_Subversion_clients

99

https://svn.cms.waikato.ac.nz/svn/adams/base/trunk/
https://svn.cms.waikato.ac.nz/svn/adams/addons/trunk/
https://svn.cms.waikato.ac.nz/svn/adams/incubator/trunk/
http://en.wikipedia.org/wiki/Comparison_of_Subversion_clients

100 CHAPTER 7. TOOLS

7.2 Maven

ADAMS was designed to be a modular framework, but not only multi-module
but multi-project and each of the projects consisting of multiple modules. In
order to manage such a complex setup, a build system that can handle all this
was necessary. Apache Maven [§] fits the bill quite well, coming with a huge
variety of available plug-ins that perform many of the tasks that are necessary for
build management, e.g., generating binary and source code archives, automatic
generation of documentation.

7.2.1 Nexus repository manager

By default, maven merely uses a remote site that one copies archives via scp
or sftp. This approach does not offer a fine-grained access control, you either
have access or you don’t. Also, if you are deploying snapshots on a constant
basis, these will start to clutter your server hosting the archives, since none of
them will ever get removed - even if they are completely obsolete. For better
management of the maven repository, Sonatype’s Nexus repository manager [6]
is used.

In addition to hosting the ADAMS artifacts, Nexus also functions as a proxy
to common maven repositories like Maven Central, JBoss Public, java.net, Code-
haus, Apache and Google Code.

The manager instance for ADAMS is accessible under the following URL:
https://adams.cms.waikato.ac.nz/nexus/

7.2.2 Configuring Maven

In order to gain access to the repositories hosted by the Nexus repository man-
ager, maven needs to be configured properly. The following steps guide you
through the process:

Create maven home directory

First, you need to create maven’s home directory, if it doesn’t exist already.
The directory is usually located in your home directory and is called .m2. The
full path, on Unix/Linux/Mac systems, is as follows:

$HOME/ .m2
On Windows, use the following instead:

%USERPROFILE\ .m27%

Configure maven
Download the following configuration file and place it in your maven home
directory that you just created:

https://adams.cms.waikato.ac.nz/resources/settings.xml
This file will point maven to ADAMS’ repository manager, which manages not
only all the ADAMS modules, but also all its dependencies. It specifies a range
of public repositories, like Maven Central.

https://adams.cms.waikato.ac.nz/nexus/
https://adams.cms.waikato.ac.nz/resources/settings.xml

7.2. MAVEN 101

Proxy
If you are behind a proxy, you need to tell Maven about it. Let’s assume that
your proxy is called proxy.blah.com and its port is 3128.

If you don’t need a password to connect to it, you have to add the following
tag to your settings.xml file:

<proxies>
<proxy>
<active>true</active>
<protocol>http</protocol>
<host>proxy.blah.com</host>
<port>3128</port>
<nonProxyHosts>localhost|*.blah.com</nonProxyHosts>
</proxy>
</proxies>

If your proxy requires a user /password, then you have to 1) generate a master
password with Maven (which gets stored in settings-security.zml in your Maven
home directory) and then 2) the actual password for the proxy. The details are
explained on the Maven homepageﬂ Once you’ve created the passwords, you
have to add the following tag to your settings.zml file and replace the USER
and ENCRYPTED_PASSWORD placeholders accordingly:

<proxies>
<proxy>
<active>true</active>
<protocol>http</protocol>
<host>proxy.blah.com</host>
<port>3128</port>
<username>USER</username>
<password>{ENCRYPTED_PASSWORD}</password>
<nonProxyHosts>localhost|*.blah.com</nonProxyHosts>
</proxy>
</proxies>

7.2.3 Common commands

Here are a few common maven commands, if you obtained ADAMS from sub-
version:

e Removing all previously generated output:
mvn clean
e Compiling the code:
mvn compile
e Executing the junit tests:
mvn test
e Executing a specific junit test:
mvn test -Dtest=<class.name.of.test>
e Packaging up everything:
mvn package

Thttp://maven.apache.org/guides/mini/guide-encryption.html

http://maven.apache.org/guides/mini/guide-encryption.html

102 CHAPTER 7. TOOLS

e Installing the ADAMS jars in your local maven repository (that will also
run the tests):
mvn install

e You can skip the junit test execution (when packaging or installing) by
adding the following option to the maven command-line:
-DskipTests=true

7.2.4 3rd-party libraries

Make sure that libraries that you use are publicly available from Maven Central,
http://search.maven.org/, otherwise they won’t be considered.

7.3 Eclipse

The choice of integrated development environment (IDE) is Eclipse [7]. It is not
only a very good IDE for Java development, but also offers great support for
Maven and LaTeX - provided you install the proper plug-ins.

7.3.1 Plug-ins

In order to get the most out of developing with Eclipse, it is recommended to
install the following plug-ins:

e m2e — adds proper maven support
http://eclipse.org/m2e/

o texlipse — turns Eclipse into a type-setting environment with syntax high-
lighting, previewing, etc. This allows you to program and document with
the same application.
http://texlipse.sourceforge.net/

Furthermore, install the buildhelper m2e connector:

Window

-> Preferences
-> Maven

-> Discovery

For viewing the source code correctly, use the following code formatting
setup:
https://adams.cms.waikato.ac.nz/resources/eclipse-code-formatting.
xml

7.3.2 Setting up ADAMS

After installing the recommended plug-ins, you can proceed to import the
ADAMS source code that you checked out earlier using subversion. Import-
ing maven projects is extremely easy:

e right-click in the Navigator or Project Explorer and select Import...
e select Maven — Erxisting Maven projects

http://search.maven.org/
http://eclipse.org/m2e/
http://texlipse.sourceforge.net/
https://adams.cms.waikato.ac.nz/resources/eclipse-code-formatting.xml
https://adams.cms.waikato.ac.nz/resources/eclipse-code-formatting.xml

7.4. CUSTOM MAVEN PROJECT 103

e choose the top-level directory of your ADAMS source code tree (the one
that contains all the modules and the system-wide pom.zml)
e select all the projects that you want to work with and hit Finish

For projects that have LaTeX documentation, you have to make sure that the
texlipse plugin is configured correctly, otherwise you might end up losing files.
Figure [7.1] shows an example setup for the manual of the adams-core module.
This module has the adams-core-manual sub-directory below the latex directory,
with a LaTeX file of the same name, i.e., adams-core-manual.tex. This LaTeX
file is listed as the main TeX file in the setup. Since the documentation is gen-
erated using pdfiatex, the output format is pdf and the build command pdfiatex.

It is very important not to place any temporary files in the source directory,

as they might get deleted during an Eclipse clean project operation. Instead,
the output directory should be target/latex/<documentation sub-dir> (e.g.,
target/latex/adams-core-manual), and the output file target/later/< documentation
sub-dir> /< documentation sub-dir>.pdf (e.g., target/latex/adams-core-manual/adams-
core-manual.pdf).

I‘_& Properties for adams-core x|

Latex Project Properties -

I Resource

Builders
Java Build Path
[Java Code Style
P Java Compiler
by
J

Main TeX File: [sr(.i'maim‘\atexi‘adams—(ore—manualladam&(ure-manua\,tex]

Output File: [targeﬂlatexladams—core—manual;‘adams—core-manual.pdf]

ava Editor Directory for Latex temporary files: |target/latex/adams-core-manual]

avadoc Location

Latex Project Properties| Set LaTeX temporary files as derived

Maven Set LaTeX output files as derived
Mercurial
Project References Output Format: Build commands: | pdflatex = l
Run/Debug Settings Setup build tools
Subversion

I Task Repository Makeindex style l]
Task Tags

Language setting is used by the spell checker to determine the dictionary file to use.

XML Syntax
The two-letter (1ISO 639 standard) language code: [l
[Restore Qefaultsl [Apply]
1 TR | D]
®

Figure 7.1: texlipse configuration for the adams-core module.

7.4 Custom Maven project

The ADAMS website allows you to create a custom Maven setup of a custom-
tailored ADAMS distribution with just the modules that you want to include.
You can access this functionality here:
https://adams.cms.waikato.ac.nz/roll-your-own

Figure shows a screenshot of the website.

https://adams.cms.waikato.ac.nz/roll-your-own

104 CHAPTER 7. TOOLS

= ADAMS - The Advanced Data mining And Machine learning System - Mozilla Firefox - + x
/ fi% ADAMS - The Advanced ... | &

A % | € & nhttps/adams.cms.waikato.ac.nz/rolly witeBEyel 4 s wBaA &y =

“Roll your own”

This page allows you to generate a custom Maven setup of ADAMS, with the specific version and modules that
you select, for generating your own ADAMS distribution.

Check out the Get started section for Developers for more information on requirements and configurations for
compiling ADAMS.

Project name
First, choose a name for your project:

IMyAdams

Build environment
Second, download the zip archive containing the skeleton build environment.

Unzip it on your machine in the location where you want o build your ADAMS project.

Release
Third, select the release that you want to use as basis:

Please select § |

Modules

Figure 7.2: Screenshot of the “Roll your own” section of the ADAMS website.

7.5 Non-maven approach

Though it is recommended, the use of Maven is not required. If you download
a release or snapshot of ADAMS, you can simply link your project against all
the jars in the 1ib directory for compiling your code.

Creating a new release can be done like this as well: simply drop any ad-
ditional jars that your project requires and/or generates in the 1ib directory.
You only need to create a new archive from the ADAMS directory to get an
extended ADAMS release/snapshot. No need to update any scripts, as all jars
in the 1ib directory get added to the classpath automatically.

When using Eclipse with this approach, the only disadvantage is that you
will have to manually attach the sources to the project (located in the src
directory). Otherwise you won’t be able to view ADAMS classes as source
code. This is something that gets handled automatically by the m2e Eclipse
plugin for Maven.

Chapter 8

Using the API

Using the graphical user interface may be sufficient for most users, but as soon
as you want to embed one framework in another, you need to get down and
dirty with the API. This chapter addresses some core elements of the ADAMS
API, mainly the flow related APIs.

8.1 Flow

The API of the flow component of ADAMS is simple by design. The idea was to
provide not just a graphical interface for setting up and manipulating flows, but
also enabling other people for embedding flows in their own code. Limiting the
interface to only a few methods was therefore necessary. The following sections
provide an in-depth discussion of the API.

8.1.1 Life-cycle of an actor

Any actor, whether a simple one like the Display actor or a control actor like
Branch, has the following lifecycle of method calls:

e setUp() — performs initializations and checks, ensuring that the actor can
be executed

e execute() — executes the actor, i.e., transformers process the input data
and generate output data

e wrapUp() — finishes the execution, frees up some memory that was allo-
cated during execution

e cleanUp() — removal of graphical output, like dialogs/frame and destruc-
tion of internal data structures

The setUp() and ezecute() methods return null if everything was OK, otherwise
the reason (i.e., error message) why the method didn’t succeed. The ezecute()
method is executed as long as finished() returns false.

OutputProducer

As long as the hasPendingOutput() method of an actor implementing Output-
Producer returns true, output tokens will get collected and passed on to the
next InputConsumer.

105

106 CHAPTER 8. USING THE API

8.1.2 Setting up a flow

ADAMS distinguishes between primitive actors, like the Display actor, and
ones that handle other actors, like the Branch actor. The actor handlers can
be divided into ones that have a fixed number of sub-actors, like the IfThenFElse
actors (always two sub-actors), and others that can have a more or less arbitrary
number of sub-actors (a lower bound may be defined, though), like the Branch
actor.

Usually, the Flow control actor is the outermost actor. But this is not
necessary. In theory, any actor can be setup, executed and destroyed again.
Only if you need things like variables and internal storage, you will need a
control actor like the Flow actor to provide this kind of functionality.

Setting up a flow conists basically of nesting the actors like in the flow ed-
itor. The tree structure in the flow editor is a 1-to-1 representation of the
underlying actor nesting. For actors that handle sub-actors (implementing the
ActorHandler interface), you can use the set(int, AbstractActor) method
for setting/replacing a sub-actor at the specified index. Actors that imple-
ment the MutableActorHandler interface instead, adding of new actors is much
simpler: either using the add(AbstractActor) method (appends the actor at
the end) or add(int, AbstractActor), which adds/inserts the actor at the
specified location. To remove any previous existing actors, you can call the
removeAll () method. Instead of adding the actors one-by-one, some actors
(mainly MutableActorHandler ones) offer methods for setting/getting an array
of sub-actors, like the setActors and getActors methods of the Flow actor.

The following piece of code sets up a little flow that generates a number of
random numbers between 100 and 200, which get used as input in a mathemat-
ical expression (simply dividing the numbers by PI), before dumped them into
a text file in the temp directory.

import adams.flow.control.Flow;

import adams.flow.source.RandomNumberGenerator;
import adams.data.random.JavaRandomInt;

import adams.flow.transformer.MathExpression;
import adams.parser.MathematicalExpressionText;
import adams.flow.sink.DumpFile;

import adams.core.io.PlaceholderFile;

Flow flow = new Flow();

RandomNumberGenerator rng = new RandomNumberGenerator();
rng.setMaxNum(10) ;

JavaRandomInt jri = new JavaRandomInt();
jri.setMinValue(100);

jri.setMaxValue(200);

rng.setGenerator (jri);

flow.add(rng) ;

MathExpression math = new MathExpression();
MathematicalExpressionText expr = new MathematicalExpressionText();
expr.setValue("X / PI");

math.setExpression(expr) ;

8.1. FLOW 107

flow.add (math) ;

DumpFile df = new DumpFile();
df .setOutputFile(new PlaceholderFile("${TMP}/random.txt"));
flow.add(df);

108 CHAPTER 8. USING THE API

Chapter 9

Extending ADAMS

The overarching goal of ADAMS was to develop a plug-in framework, which
makes extending it very easy. The built-in dynamic class discovery is at the
heart of it. The following sections cover various aspects of extending ADAMS,
from merely adding a subclass to creating a new project built on top of ADAMS.

9.1 Dynamic class discovery

ADAMS is a flexible plug-in framework thanks to the dynamic class discovery
that is offered through the adams.core.ClassLocator class. But merely locat-
ing classes is just half of the story, you also have to organize them. This is where
the adams.core.ClassLister class and its properties file ClassLister.props
(located in the adams.core package, below src/main/resources) come into
play. The ClassLister class iterates through the keys in the properties file,
which are names of superclasses, and locates all the derived classes in the listed
packages, the comma-separated list which represents the value of the property.

Here is an example for the conversion schemes that can be used with the
Convert transformer:

adams.data.conversion.AbstractConversion=\
adams.data.conversion

The superclass in this case is adams.data.conversion.AbstractConversion
and only one package is listed for exploration, adams.data.conversion.

Instead of adding new keys and packages to this central properties file, when-
ever a new modules requires additional class discovery, the developer can just
simply add an extra file in their module. The only restriction is that it has to
be located in the adams.core package (below src/main/resources).

This works for adding new keys, i.e., new superclasses, as well as for merely
adding additional packages to existing superclasses. In the latter case, only the
additional packages have to be specified, since ADAMS will automatically merge
keys across multiple properties files.

9.1.1 Additional package

Coming back to the previous example of the conversion schemes, module funky-
module, package org.funky.conversion contains additional conversion schemes.

109

110 CHAPTER 9. EXTENDING ADAMS

These are all derived from AbstractConversion. In that case, the ClassLister.props
file would contain the following entry:

adams.data.conversion.AbstractConversion=\
org.funky.conversion

When starting up, ADAMS will merge the two props files and the key will look
like this, listing both packages:

adams.data.conversion.AbstractConversion=\
adams.data.conversion,\
org.funky.conversion

9.1.2 Additional class hierarchy

Adding a new class hierarchy works just the same. You merely have to use
the superclass that all other classes are derived from as key in the props file
and list all the packages to look for derived classes. Here is an example for a
class hierarchy derived from org.funky.AbstractFunkiness, which has derived
classes in the packages org.funky and org.notsofunky:

org.funky.AbstractFunkiness=\
org.funky, \
org.notsofunky

9.1.3 Blacklisting classes

In production environments it might not always be wise to list all the classes
that are available, e.g., experimental classes. ADAMS provides a mechanism
to exclude certain classes, using pattern matching (using regular expressions).
These patterns are listed in the ClassLister.blacklist properties file. The
format for this file is similar to the ClassLister.props file, with the key be-
ing the superclass and the walue a comma-separated list of patterns. In the
following an example that excludes a specified data conversion class called
SuperExperimentalConversion from being listed:

adams.data.conversion.AbstractConversion=\
org\.funky\.conversion\.SuperExperimentalConversion

If you want to exclude all conversions of the og.funk.conversion package that
contain the word Ezperimental, then use the following pattern:

adams.data.conversion.AbstractConversion=\
org\.funky\.conversion\. .*Experimental. *

9.2 Creating a new actor

Being a workflow-centric application, it is most likely the case that a new module
will contain new actors and not just newly derived subclasses of already existing
superclasses. For this reason, the development of new actors is explained in
detail.

Developing a new actor is fairly easy, you only need to do the following:

9.2. CREATING A NEW ACTOR 111

e create a new class
e create an icon, which is displayed in the flow editor
o [optional, but recommended] create a JUnit test for the actor

9.2.1 Creating a new class

Any actor has to be derived from adams.flow.core. AbstractActor. Depending
on whether the actor consumes or produces data, there are two more interfaces
available:

e adams.flow.core.InputConsumer — for actors that process data that they
receive at their input

e adams.flow.core. QutputProducer — for actors that generate data of some
form

In general, four types of actors can be distinguished, based on the combina-
tions of these two interfaces:

standalone — no input, no output
source — only output
transformer — input and output

sink — only input

In order to make development of new actors easier and to avoid duplicate code
as much as possible, there are already a bunch of abstract classes in ADAMS
that implement these interfaces:

e adams.flow.standalone. AbstractStandalone — for standalones

e adams.flow.source. AbstractSource — for data producing source actors

e adams.flow.transformer. Abstract Transformer — for simple transformers that
take one input token and generate at most one output token.

e adams.flow.sink. AbstractSink — the ancestor of all sinks, actors that only
consume data

There are plenty more abstract super classes, since there are actors that perform
similar tasks. Some of them are listed below:

e adams.flow.sink. AbstractDisplay — for actors displaying data in a frame or
dialog

e adams.flow.sink. AbstractGraphicalDisplay — for actors that display graph-
ical data, e.g., a graph, which can be saved to an image file automatically

o adams.flow.sink. Abstract TextualDisplay — for actors that display text

A special interface, adams.flow.core. ControlActor, is an indicator interface for
actors that control the flow or the flow of data somehow. For instance, a Branch
actor controls the flow of data, since it provides each sub-branch with the same
data token that it received.

Actors that manage sub-actors, need to implement the adams.flow.core. ActorHandler
interface.

The special superclass adams.flow.control. AbstractControlActor already im-
plements the ActorHandler and ControlActor interfaces and implements some of

112 CHAPTER 9. EXTENDING ADAMS

the functionality. The AbstractConnectorControlActor class in the same pack-
age, is used for control actors which sub-actors are connected, like the Sequence
actor. The sub-actors in the Branch actor, on the other hand, are not connected,
but treated individually.

The following methods you will usually have to implement:

e globalInfo() — The general help text for the actor.

e doExecute() — Here the actual execution code is located, the pre- and
post- methods, you usually won’t have to touch. All three methods are
called in the execute() method.

9.2.2 Option handling

Option handling in ADAMS is available through classes implementing the OptionHandler
interface (package adams.core.option). Most classes or class hierarchies, that

includes the actors, are simply derived from AbstractOptionHandler, which
implements this interface and all the required methods. For adding a new op-

tion, there are usually only three things to do:

1. add the (protected) field

2. add the get-, set- and tiptext-methods that make up the new property
of this class

3. add an option definition

9.2.2.1 Example

The following shows how to implement a new option for an integer field volume
that only allows values from 1 to 11. For clarity’s sake, Javadoc comments have

been left out.
First of all, we define the (serializable) field:

protected int m_Volume;
Then we add the required methodd'}

public void setVolume(int value) {
if ((value >= 1) && (value <= 11)) {
m_Volume = value;
reset(); // notify object that the settings have changed
}
}
public int getVolume() {
return m_Volume;
}
public String volumeTipText() {
return "The volume to crank up the speakers to.";

}

And finally, we define the option, by overriding the defineOptions () method.
Otherwise, the option won’t show up in the GUI and you won’t be able to set
the value via a command-line string.

IThe tiptext method generates the help text in the GUI and command-line, so you should
never omit this.

9.2. CREATING A NEW ACTOR 113

public void defineOptions() {
super.defineOptions() ;
m_OptionManager.add(

"volume", // flag on the command-line without the leading "-"
"volume", // the Java Bean property for getting/setting the value
1, // the default volume

1, // the minimum value

11); // the maximum value

}

For numeric values, like integers and doubles, you can specify the lower and
upper bounds, if that makes sense, like in our example here. If one of them is
to be unbounded, simply use null. If both are unbounded, then simply omit
the last two parameters.

9.2.3 Variable side-effects

Actors keep track of variables that have been attached to either one of their
own options (e.g., fieldIndex option of the StringCut transformer) or to options
of one their sub-objects (e.g., the numDecimals option of the DoubleToString
conversion used by the Convert transformer). Options like sub-actors, as used
by actor handlers such as Tee or Branch, are excluded from this monitoring.

Attaching a variable to an option has some side-effects that you need to be
aware of when variable values change:

e affected actors get re-initialized, since the configuration has changed, re-
suling in calls of the reset() and setUp() methods.
e actor handlers recursively call the setUp() of their sub-actors.

In order to prevent losing the internal state, due calling the reset() method, you
can backup the current state of member variables in an actor. For instance, the
Count control actor keeps track how many tokens have passed through. This
counter gets zeroed when calling reset(). You can backup/restore the current
state using the backupState and restoreState methods. These methods use an
internal hashtable to backup key-value pairs. The following code is used by
Count to backup the counter m_Current:

public final static String BACKUP_CURRENT = "current";

protected Hashtable<String,Object> backupState() {
Hashtable<String,0Object> result = super.backupState();
result.put (BACKUP_CURRENT, m_Current);
return result;

}

protected void restoreState(Hashtable<String,Object> state) {
if (state.containsKey(BACKUP_CURRENT)) {
m_Current = (Integer) state.get(BACKUP_CURRENT);
state.remove (BACKUP_CURRENT) ;
}
super.restoreState(state);

}

Of course, this counter now never gets zeroed, since we back it up all the
time. In order to zero the internal counter, i.e., if an option of the Count actor

114 CHAPTER 9. EXTENDING ADAMS

itself was modified and it should get zeroed, you have to prune the backup. You
can do this by using the pruneBackup method, which gets called in case one of
its own members got modified. The code to achieve this is as follows:

protected void pruneBackup() {
super . pruneBackup () ;
pruneBackup (BACKUP_CURRENT) ;
}

9.2.4 Graphical output

Using the AbstractGraphicalDisplay as superclass instead of AbstractDisplay,
allows you to take advantage of some additional functionality: menu, SendTo
framework integration.

Methods that require implementation are as follows:

e globalInfo() — a short description of the sink, available as help in the
GUI

accepts() — the classes that this sink can process and display
newPanel () — generates the panel that is added to the dialog
clearPanel () — removes the currently displayed data

display(Token) — processes and displays the content of the token pro-
vided (of one of the accepted classes)

If it is necessary to extend the default menu, you can override the createMenuBar ()
method, which generates the JMenuBar that is used in the dialog.

It is recommended to implement the DisplayPanelProvider interface as
well. By doing this, the sink can be selected in the DisplayPanelManager sink,
which keeps a graphical history of the tokens passing through, by creating a
single panel per token.

9.2.5 Textual output

Instead of directly sub-classing AbstractDisplay, you should use AbstractTextualDisplay
instead. This abstract class already implements various interfaces like MenuBarProvider
and SendToActionSupporter, to provide the user with a menu for saving the
output, changing font size, etc and also enabling the user to take advantage of
the SendTo framework. In the simplest case, this is printing the textual output
on a printer.
You only need to implement the following methods in order to get a fully
functional interface:

e globalInfo() — a short description of the sink, available as help in the
GUI

accepts() — the classes that this sink can process and display
newPanel () — generates the panel that is added to the dialog
clearPanel () — clears the (textual) content of the panel
display(Token) — processes and displays the content of the token pro-
vided (of one of the accepted classes)

e supplyText () — returns text that is currently on display

If it is necessary to extend the default menu, you can override the createMenuBar ()
method, which generates the JMenuBar that is used in the dialog.

9.3. CREATING A NEW MODULE 115

9.2.6 Creating an icon

The icon has to be placed in the adams.gui.images package with the same name
as the class, but with a GIF or PNG extension. E.g., the Display actor’s full
class name is adams.flow.sink.Display. This means that ADAMS expects an
image called adams.flow.sink.Display.gif or adams.flow.sink.Display.png in the
adams.gui.images package. NB: Since ADAMS uses Maven as build system,
non-Java files need to placed below the src/main/resources directory.

There are already some templates available for new icons:

e adams.flow.standalone. Unknown.gif — red outline

e adams.flow.source. Unknown.gif — orange outline

o adams.flow.transformer. Unknown.gif — green outline
o adams.flow.sink. Unknown.gif — grey outline

e adams.flow.control. Unknown.gif — blue outline

Just create a copy of one of these icons and modify it to make your actor
distinguishable from all the others in the flow editor.

9.2.7 Creating a JUnit test

JUnit 3.8.x [§] is used as basis for the unit tests. Test classes are placed in
sre/test/java and have to be suffixed with Test. E.g., the Display actor has a
test class called DisplayTest in package adams.flow.sink.

A flow unit test needs to be derived from adams.flow. AbstractFlowTest and
only the getActor() method needs to be implemented by default. This method
typically returns a Flow actor which is set up and executed. If any step in the
lifecycle of the actor returns an error, the unit test will fail.

If required, a regression test can be performed. For this, you merely need
to implement a method called testRegression(), which calls the performRe-
gressionTest(File) or performRegressionTest(File[]) method. These methods
record the content of the specified files in a special reference file (found be-
low src/test/resources) and the next time the test is run the newly generated
output is compared against the stored reference data. If the data differs, the
regression test will fail. Please note, that you should remove temporary files
that you use for regression tests in the setUp() and tearDown() methods of the
unit test, to provide a clean environment to this and other tests.

9.3 Creating a new module

First, you have to make sure that your local repository catalog is up-to-date:
mvn archetype:update-local-catalog
Second, run the following command to create a new module called adams-funky:

mvn archetype:generate \
-DarchetypeCatalog=local \
-DinteractiveMode=false \
-DarchetypeGroupld=nz.ac.waikato.cms.adams \
-DarchetypeArtifactId=adams-archetype-module \

116 CHAPTER 9. EXTENDING ADAMS

-DarchetypeVersion=0.4.7 \
-Dgroupld=nz.ac.waikato.cms.adams \
-DartifactId=adams-funky \
-Dversion=0.0.1-SNAPSHOT

This command will base the module on the latest ADAMS release, using the
0.4.7 release of the template (or archetype, to use the correct maven term).
The version number of the newly created module will be 0.0.1-SNAPSHOT.
After the command has finished, you have to update the Module.props file in
the src/main/resourcesl/adams/env directory. The minimal change that you
have to perform is to set the correct module name, specified under the Name
key. Apart from the name, this properties file contains information about your
module, which gets displayed automatically in the About dialog in the GUL

Official modules

If you run the above command within the top-level directory that hosts all
the other ADAMS modules, then it will automatically add this module to the
pom.xml configuration file as a new dependent module. This means that each
time you issue a command in this directory (e.g., mvn package), your module
will be processed accordingly. This is the preferred approach when adding a
new module to be added to the ADAMS subversion repository.

Other modules

Otherwise, if you created that module outside the ADAMS module hierarchy,
it will use the artifacts that you have installed in your local repository (of
course, maven will occasionally check the Nexus repository manager for up-
dates). Use this approach if there is no intention on adding the module to the
official ADAMS subversion repository.

9.4 Main menu

The main menu of ADAMS can use a pre-defined menu structure, as defined in
the adams/gui/Main.props properties file. But it also offers dynamic addition
of other menu items at runtime.

In order for new menu items being picked up at runtime, you need to derive
a new menu item definition from the following class (or one of the appropriate
abstract classes derived from it):

adams.gui.application.AbstractMenultemDefinition

For instance, if you merely want the menu item to open a browser with a specific
URL (displaying the homepage or some help page), then you can derive the menu
item from the following class:

adams.gui.application.AbstractURLMenultemDefinition

If you don’t want to modify the dynamic class discovery (ClassLister.props),
then you have to place your newly created menu item definition in the following
package:

adams.gui.menu

9.5. FLOW EDITOR 117

In order to get implement a menu item, derived from AbstractMenuItemDefinition,
you need to implement or override the following methods:

e getTitle() — The text of the menu item.

e getlconName() — By default, the menu item won’t have an icon, specify
the filename (without path) of the icon that you would like to use. The
icon is expected to reside in the adams/qui/images directory.

e getCategory() — This string defines the menu the item will get added to.
Existing ones are, e.g., Tools or Maintenance. You don’t have to use an
existing one, new categories get automatically added as new menus.

e isSingleton() — If your menu item can be launched multiple times, then
return false, otherwise true.

e getUserMode() — This defines the visibility of your menu item. Whether
it is intended for regular users, experts or developers. What level is being
displayed is defined — normally — by the application’s —user-mode <mode>
command-line option when starting the application.

e launch() — This method finally launches your custom code. More details
below.

The launch() method
For the best integration within ADAMS, the launch() will create a java.swingz. JPanel
derived panel and create an internal frame using the following call:

JPanel panel = new MyFunkyPanel();
ChildFrame frame = createChildFrame(panel);

Using this approach, your panel with show up in the Windows menu of the main
menu of ADAMS.

Menu items derived from AbstractURLMenultemDefinition don’t need to
implement this method, they merely need to supply a URL string with the
getURL() method. Their launch() method uses this URL to open a browser
with.

9.5 Flow editor

The flow editor itself allows for some customization:

e Adding menu items to the main menu.
e Changing the layout of the tree popup menu.

9.5.1 Main menu

The flow editor can add new menu items dynamically to its main menu. You can
only need to derive a new class from the following abstract superclass and place
it in the adams . gui.flow.menu package (or update the ClassLister.props file
accordingly if in another package):

adams.gui.flow.menu.AbstractFlowEditorMenultem

When you implement your new class, you need to do three things:

118 CHAPTER 9. EXTENDING ADAMS

1. Determine in which menu the item should get added (you can start a new
menu as well).

2. Create the AbstractBaseAction that does the actual work and also de-
fines how your menu item looks.

3. React to updates in the user interface.

Here is an example class, called RunningHelloWorld, which is available if there
is at least one flow currently running. The menu item titled “Say hi” simply
pops up a dialog with the words “Hello World!”.

package adams.gui.flow.menu;

import adams.gui.action.AbstractBaseAction;
import adams.gui.core.GUIHelper;
import adams.gui.flow.FlowEditorPanel;

public class RunningHelloWorld extends AbstractFlowEditorMenuItem {
// we want to add our menu item to the "View" menu
public String getMenu() {
return FlowEditorPanel .MENU_VIEW;
}
// the action that handles the dialog
protected AbstractBaseAction newAction() {
return new AbstractBaseAction("Say hi") {
GUIHelper.showInformationMessage (getOwner(), "Hello World!");
}
}
// action is only available if at least one flow is running
public void updateAction() {
m_Action.setEnabled(getOwner () .isAnyRunning());
}
}

Shortcuts definitions can be stored in the FlowEditorShortcuts.props files
(package adams.gui.flow, below src/main/resources). The definition can be
accessed and converted into a KeyStroke object using the the following call:

adams.gui.core.GUIHelper.getKeyStroke (
adams.gui.flow.FlowEditorPanel.getEditorShortcut ("File.New"));

This example accesses the shortcut definition stored in property Shortcuts.File.New.

9.5.2 Popup menu

Each item in the popup menu that is displayed in the tree when opening the
right-click menu for one or more actors is derived from the following class:

adams.gui.flow.tree.menu.AbstractTreePopupMenultem

Even sub-menus are derived from this superclass, but instead of returning a sim-
ple JMenuItem object in the getMenuItem(StateContainer) method, a JMenu
object is returned, which encapsulates other menu items.

The layout of this popup menu is defined in the FlowEditor.props file, in
the adams.gui.flow package (below the src/main/resources directory). The
key for the menu is called Tree.PopupMenu and the value for this property is
a simple comma-separated list of class names (use “-” if you want to add a
separator).

Shortcuts definitions can be stored in the FlowEditorShortcuts. props files
(package adams.gui.flow, below src/main/resources). The definition can be
accessed and converted into a KeyStroke object using the the following call:

9.6. IMAGE VIEWER 119

adams.gui.core.GUIHelper.getKeyStroke(
adams.gui.flow.FlowEditorPanel.getTreeShortcut ("Help"));

This example accesses the shortcut definition stored in property Tree.Shortcuts.Help.
The following example menu item pops up a “Hello World!” dialog if the
flow /actor is editable:

package adams.gui.flow.tree.menu;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;
import javax.swing.JMenultem;

import adams.gui.core.GUIHelper;

import adams.gui.flow.tree.StateContainer;

public class HelloWorldItem extends AbstractTreePopupMenultem {
protected JMenultem getMenultem(final StateContainer state) {
JMenultem result = new JMenuIltem("Hello world");
result.setEnabled(getShortcut () .stateApplies(state));
result.setAccelerator(getShortcut () .getKeyStroke());
result.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
getShortcut () .execute(state) ;
}
b
return result;
}
protected AbstractTreeShortcut newShortcut() {
return new AbstractTreeShortcut() {
protected String getTreeShortCutKey() {
return "HelloWorld"; // won’t do anything unless props file is updated
}
public boolean stateApplies(StateContainer state) {
return state.editable;
¥
protected void doExecute(StateContainer state) {
GUIHelper.showInformationMessage(state.tree, "Hello World!");
}
};
}
}

9.6 Image viewer

The Image viewer allows you to add custom plugins to the menu. The superclass
for all plugins is:

adams.gui.visualization.image.plugins.AbstractImageViewerPlugin

o canExecute(ImagePanel) — determines whether the plugin can be applied
to the current image panel.

e doFEzecute() — executes the plugin and returns a string depending on suc-
cess (null) or failure (error message).

e createLogEntry() — can be used to output a string that should appear the
in viewer’s log tab; return null if that does not apply.

9.7 Database access

In order to add support in ADAMS for a database, in addition to MySQIE| and
sqliteﬂ the following steps are required:

%http://www.mysql.com/
Shttp://www.sqlite.org/

http://www.mysql.com/
http://www.sqlite.org/

120 CHAPTER 9. EXTENDING ADAMS

e Add a dependency for the JDBC driver to your pom.zml project definition
(search on Maven Centraﬂ). For instance, adding the Oracle JDBC driver:

<dependency>
<groupIld>com.oracle</groupld>
<artifactId>ojdbcl4</artifactId>
<version>10.2.0.4.0</version>
</dependency>

e Add or update the Drivers.props properties file, adding the classname of

the JDBC driver to the Drivers key. For instance, use oracle.jdbc. OracleDriver
for the Oracle driver:

Driver=oracle. jdbc.OracleDriver

This is a comma-separated list. If there are already entries, just append
your JDBC driver(s).

4http://search.maven.org/

http://search.maven.org/

Chapter 10

JUnit tests

Any additional JUnit test should be derived from the following superclass:
adams.test.AdamsTestCase

Regression tests

It is possible to suppress regression tests:

e all: -Dadams.test.noregression=true

e quick info: -Dadams.test.quickinfo.noregression=true
e data processors: -Dadams.test.data.noregression=true
e actors: -Dadams.test.flow.noregression=true

121

122 CHAPTER 10. JUNIT TESTS

Chapter 11

Parser plugins

The parsers for expressions, like mathematical expressions and boolean expres-
sions are quite powerful as they are. However, in the past, adding new functions
required changing the lexer and parser generator grammars, re-generating Java
code and recompiling. It is now possible to add functions (return a value) and
procedures (don’t return anything - not used at the moment, reserved for future
use) by simply deriving classes from an abstract superclass.

A new function only needs to implement the adams.parser.plugin. ParserFunction
interface (analog for procedures: adams.parser.plugin. ParserProcedure). The
function name is defined by the getFunctionName() method, with the name
only consisting of letters, numbers and underscores. You can supply up to
10 parameters to your function. In order to avoid clashes in the parser, this
function name then gets prefixed with f_ (analog for procedures: p_).

Below is an example function for return the value of an environment variable,
with the name env and available in the parser via f_env(name):

public class Env extends AbstractParserFunction {
public String getFunctionName() {
return "env";
}
public String getFunctionSignature() {
return getFunctionName() + "(String): String";
}
public String getFunctionHelp() {
return getFunctionSignature() + "\n"
+ "\tFirst argument is the name of the environment variable to retrieve.\n"
+ "\tThe result is the value of the environment variable.";
}
protected String check(Object[] params) {
if (params.length != 1)
return "Only accepts single parameter, which must be name of the "
+ "environment variable to retrieve!";
return null;
}
protected Object doCallFunction(Object[] params) {
return System.getenv().get(params[0]);
}
}

123

124 CHAPTER 11. PARSER PLUGINS

11.1 Programmatic hooks

A flow is usually a self-contained unit, which makes it hard to hook into it from
a programmatic point of view. However, using the ProgrammaticSink pseudo-
sink you can easily add listeners that listen for tokens arriving at this actor.
Here is a little code snippet that shows how to use this sink. The flow simply
generates integer tokens in the ForLoop actor and the ProgrammaticSink simply
outputs the tokens to stdout.

public static void main(String[] args) throws Exception {
Environment.setEnvironmentClass (Environment.class);
// assemble flow
Flow flow = new Flow();
ForLoop forloop = new ForLoopQ);
flow.add(forloop);
ProgrammaticSink psink = new ProgrammaticSink();
psink.addTokenListener (new TokenListener() {
public void processToken(TokenEvent e) {
System.out.println(e.getToken() .getPayload());
}
b;
flow.add(psink);
// setup flow
String result = flow.setUpQ);
if (result '= null) {
System.err.println("Failed to set up flow: " + result);
return;
}
// execute flow
result = flow.execute();
if (result '= null) {
System.err.println("Failed to execute flow: " + result);
flow.wrapUpQ);
flow.cleanUpQ);
return;
}
// finish up
flow.wrapUpQ);
flow.cleanUpQ);

Bibliography

[1]

2]

Kepler — A free and open source, scientific workflow application.
https://kepler-project.org/

KeplerWeka — A module for the Kepler workflow engine, which adds
WEKA functionality.
http://keplerweka.sourceforge.net/

ADAMS — Advanced Data mining and Machine learning System. The
community homepage is available at the following URL:
https://adams.cms.waikato.ac.nz/

Apache Subversion — An open-source, centralized version control system.
http://subversion.apache.org/

Apache Maven — Software project management and comprehension tool.
http://maven.apache.org/

Nexus — Repository manager for Apache Maven.
http://nexus.sonatype.org/

Eclipse — An open development platform comprised of extensible frame-
works, tools and runtimes for building, deploying and managing software
across the lifecycle.

http://eclipse.org/

JUnit — JUnit is a unit testing framework for the Java programming lan-

guage.
http://junit.org/

DateFormat — For parsing date/time strings and turning date/time ob-
jects into strings. http://download.oracle.com/javase/1.5.0/docs/
api/java/text/DateFormat.html

Regular expressions — The regular expression handling as available
in Java. http://download.oracle.com/javase/1.6.0/docs/api/java/
util/regex/Pattern.html

125

https://kepler-project.org/
http://keplerweka.sourceforge.net/
https://adams.cms.waikato.ac.nz/
http://subversion.apache.org/
http://maven.apache.org/
http://nexus.sonatype.org/
http://eclipse.org/
http://junit.org/
http://download.oracle.com/javase/1.5.0/docs/api/java/text/DateFormat.html
http://download.oracle.com/javase/1.5.0/docs/api/java/text/DateFormat.html
http://download.oracle.com/javase/1.6.0/docs/api/java/util/regex/Pattern.html
http://download.oracle.com/javase/1.6.0/docs/api/java/util/regex/Pattern.html

	I Using ADAMS
	Introduction
	Flows
	Actors
	Creating flows
	Hello World
	Processing data
	Control actors
	Have some Tee
	Pull the Trigger
	Branching – or how to grow your flow
	Further control actors

	Protecting sub-flows

	Running flows
	Flow runner - GUI
	Flow runner - command-line

	Arrays and collections
	Converting objects
	String handling
	File handling
	Numeric operations
	JSON
	Properties
	XML
	Databases
	Callable actors
	External actors
	Interactive actors
	Templates
	Variables
	Temporary storage
	Debugging your flow
	Breakpoints
	Monitoring

	Passwords
	External processes and classes

	Visualization
	Image viewer
	Preview browser

	Tools
	Flow editor
	Flow runner
	Actor usage
	Text editor
	Comparing text

	Maintenance
	Placeholder management
	Named setup management
	Favorites management

	Customizing ADAMS
	Environment variables
	Properties files
	Main menu
	Flow editor
	Proxy
	Time zone
	Locale
	Database access
	Browser

	II Developing with ADAMS
	Tools
	Subversion
	Maven
	Nexus repository manager
	Configuring Maven
	Common commands
	3rd-party libraries

	Eclipse
	Plug-ins
	Setting up ADAMS

	Custom Maven project
	Non-maven approach

	Using the API
	Flow
	Life-cycle of an actor
	Setting up a flow

	Extending ADAMS
	Dynamic class discovery
	Additional package
	Additional class hierarchy
	Blacklisting classes

	Creating a new actor
	Creating a new class
	Option handling
	Example

	Variable side-effects
	Graphical output
	Textual output
	Creating an icon
	Creating a JUnit test

	Creating a new module
	Main menu
	Flow editor
	Main menu
	Popup menu

	Image viewer
	Database access

	JUnit tests
	Parser plugins
	Programmatic hooks

	Bibliography

