ADAMS
Advanced Data mining And Machine learning System

Module: adams-webservice

Peter Reutemann

December 24, 2014

©2012-2013

©®

g THE UNIVERSITY OF

. WAIKATO

N8
Te Whare Wananga o Waikato

Except where otherwise noted, this work is licensed under
http://creativecommons.org/licenses/by-sa/3.0/

==

*|

Contents

7

[2__Creating a web-service| 9
2.1 efining the WSDL| oo o o000 9
2.2 Creating a new module|. 9
2.3 Configuring code-generation| 9
2.4 Implementing the web-service| 10

4 D VI .. e 10

BA2 Serverl . . . o 11

A3 Chenfl . o v v o oo e e e 12

[2.4.4 Callable transtormer support| 13

3 Flow 15
Bibliograp 17

CONTENTS

List of Figures

LIST OF FIGURES

Chapter 1

Introduction

The power of web-services [2] lies in the fact that it decouples software frame-
works and it is possible to communicate without having to worry about imple-
mentation or technology that each of the frameworks uses (see Figure .

The adams-webservice provides SOAP [5] web-service support using the
Apache CXF framework [6]. ADAMS uses the approach to generate code on-
the-fly based on a WSDL file [3]. This is also called WSDL first.

If you already have existing code, then you can use Apache CXF as well to
generate the WSDL from your code. See [8] on how to do this.

Service
Broker

* [
.

wspl) [wsoL)

*

COm e ¥
e N

Service Service
Requester Provider

*

Figure 1.1: Webservice schema.

CHAPTER 1. INTRODUCTION

Chapter 2

Creating a web-service

Creating a web-service involves the following steps:

1. Define the WSDL for the web-service.

2. Create a new ADAMS module, add the adams-webservice artifacts as
dependencies.

3. Place your WSDL in the src/main/resources/wsdl directory (best to
create a sub-directory there, e.g., mywsdl).

4. Configure the code-generation using the WSDL as basis.

5. Implementing the web-service functionaliy that processes the data (server
and client).

2.1 Defining the WSDL

If you start from scratch with a WSDL definition, check out the tutorial at [4].
On the other hand, if you already have existing code, then refer to [§] on how
to generate a WSDL from your code.

2.2 Creating a new module

For more details on this, please refer to the manual of the adams-core module.
In the Developing with ADAMS part, see section Creating a new module.

2.3 Configuring code-generation

Now you need to configure your pom.zml file to generate code from the WSDL
on-the-fly. You need to configure the cxf-codegen-plugin build plugin, i.e., where
the WSDL is located and what code to generate (you might have a bindings

XML file as well).
The following pom.xml snippet shows how to do this for the Apache CXF
customer service example (see “wsdl_first” example in the CXF download). The

WSDL CustomerService.wsdl is located in src/main/resources/wsdl/customerservice

and also comes with a bindings file CustomerService-binding.xml in the same
directory. We want to to create JAX-WS 2.1 compatible code out of it, which
we define using the -frontend parameter. And since we want to create Java code
from the WSDL, we need to use goal wsdl2java.

9

10 CHAPTER 2. CREATING A WEB-SERVICE

<plugin>
<groupld>org.apache.cxf</groupld>
<artifactId>cxf-codegen-plugin</artifactId>
<executions>
<execution>
<id>generate-sources</id>
<phase>generate-sources</phase>
<configuration>
<wsdlOptions>
<wsdlOption>
<wsdl>src/main/resources/wsdl/customerservice/CustomerService.wsdl</wsdl>
<wsdlLocation>classpath:wsdl/customerservice/CustomerService.wsdl</wsdlLocation>
<bindingFiles>
<bindingFile>src/main/resources/wsdl/customerservice/CustomerService-binding.xml</bindingFile>
</bindingFiles>
</wsdl0Option>
</wsdl0Options>
<extraargs>
<extraarg>-frontend</extraarg>
<extraarg>jaxws21</extraarg>
</extraargs>
</configuration>
<goals>
<goal>wsdl2java</goal>
</goals>
</execution>
</executions>
</plugin>

2.4 Implementing the web-service

Depending on your web-service you might have to implement the following func-
tionality:

e Server — processes requests and sends back responses
o Client — queries a server and processes the response

The following sections explain each in detail.

2.4.1 Dummy

In order to get a dummy implementation generated, you can use the wsd12java
tool that comes with the Apache CXF binary distribution. The dummy im-
plementation is generated using the -impl parameter. Here is an example of
generating JAX-WS 2.1 compatible output for the customer service example
WSDL:

./apache-cxf-2.6.3/bin/wsdl2java
-impl
-server
-client
-fe jaxws21
-wsdlLocation "classpath:wsdl/customerservice/CustomerService.wsdl“

CustomerService.wsdl

The -wsdlLocation parameter indicates where the Apache CXF code will
find the WSDL at runtime. This gets added to the wsdlLocation attribute of
the javax. jws.WebService annotation.

Three generated files are basically of interest here:

o (CustomerService_CustomerServicePort_Client.java — client code for that
shows how to query the webservice.

o (CustomerService_CustomerServicePort_Server.java — server code for start-
ing the web-service, makes use of CustomerServiceImpl.java.

2.4. IMPLEMENTING THE WEB-SERVICE 11

o CustomerServiceImpl.java — the dummy implementation that processes
the incoming request from the client and generates a response.

Parts of this example code will be used in implementing plugins for ADAMS.

2.4.2 Server

Your server component needs to implement the following interface:
adams.flow.webservice.WebServiceProvider

It is easiest to implement your class in the same package, otherwise you need to
tell ADAMS where to find your classes (see section Dynamic class discovery in
the adams-core manual).

For convenience, you can simply sub-class the following abstract superclass:

adams.flow.webservice.AbstractWebServiceProvider

If you need to process the query data with a sub-flow, see section

Using the example code generated earlier, we can now implement out server
component. You only need to specify the default URL that the web-service gets
published under (getDefaultURL()), how to start the web-service (doStart())
and how to stop it again (doStop()).

Here is a basic implementatiorﬂ

public class CustomerServiceWS extends AbstractWebServiceProvider {
protected EndpointImpl m_Endpoint;

@Override
public String globalInfo() {
return "Provides a customer service webservice.";

}

@Override
public String getDefaultURL() {

return "http://localhost:9090/CustomerServicePort";
}

@Override
protected void doStart() throws Exception {

m_Endpoint = (EndpointImpl) Endpoint.publish(getURL(), new CustomerServiceImpl(this));
}

@Override
protected void doStop() throws Exception {
if (m_Endpoint != null) {
m_Endpoint.getServer() .stop();
m_Endpoint = null;
}
}
}

As you can see, we make use of the dummy implementation created by
Apache CXF in the doStart () method:

new CustomerServiceImpl(this)

By default, the “dummy implementation” class (CustomerServiceImpl) only
has a default constructor. In order to give it access to the webservice and
integrate it with ADAMS, we need to add a custom constructor, to link it to
the webservice that it uses:

1

com.example.customerservice.flow.CustomerServiceWS, adams-webservice-server.flow

12 CHAPTER 2. CREATING A WEB-SERVICE

/** the ADAMS owner. */
protected CustomerServiceWS m_Owner;

/** Initializes the service. */

public CustomerServiceImpl(CustomerServiceWS owner) {
super () ;
m_Owner = owner;

}

2.4.3 Client

For the client component, you need to implement this interface:
adams.flow.webservice.WebServiceClient

Depending on whether your client can take input or generates output, you need
to implement the following interfaces as well:

o WebServiceClientConsumer — accepts input, which will get forwarded to
the web-service.

o WebServiceClientProducer — generates output based on the webs-service
response.

In order to make development of new web-service components faster, a bunch
of abstract classes is already available:

o AbstractWebServiceClientSource — for a client that outputs the web-service
reponseﬂ

o AbstractWebServiceClient Transformer — the client queries the web-service
with data it receives and outputs the web-service reponseﬂ

o Abstract WebServiceClientSink — sends the incoming data to the web-service
and generates no outpuﬂ

If some of the data requires pre- or post-processing with a sub-flow, check out
section 2.4.4] for more details on how to do this.

Using the previous customer service example again, we can now generate a
transformer client that queries the web-service with a customer name and then
outputs the results. You need to implement the following methods:

getWsdlLocation() — where to find the WSDL.
setRequestData(T) — for setting the query data.

doQuery () — how to perform the query.

hasResponseData() — whether there is any response data available.
getResponseData() — for obtaining the response data.

accepts() — what type of input data the client accepts.
generates () — what type of output data the client generates.

Here is an example implementation’}

2adams-webservice-client_as_source.flow
3adams-webservice-client_as_transformer.flow
4adams-webservice-client_as_sink.flow

5 1 ice.flow.C ByN
com.example.customerservice.flow.CustomersByName

2.4. IMPLEMENTING THE WEB-SERVICE 13

public class CustomersByName extends AbstractWebServiceClientTransformer<String,String> {

protected String m_CustomerName; // the name of the customers to look up
protected String m_ProvidedCustomerName; // the customer name received by actor
protected List<Customer> m_Customers; // the list of customers that were obtained from webservice

@Override
public String globalInfo() {
return "Returns customer names.";

}

@Override
public Class[] accepts() {
return new Class[]{String.class};

}

@Override
public void setRequestData(String value) {
m_ProvidedCustomerName = value;

}

@Q0verride
protected URL getWsdlLocation() {
return getClass().getClassLoader () .getResource("wsdl/customerservice/CustomerService.wsdl");

}

@Override

protected void doQuery() throws Exception {
m_Customers = null;
CustomerServiceService customerServiceService = new CustomerServiceService(getWsdlLocation());
CustomerService customerService = customerServiceService.getCustomerServicePort();
WebserviceUtils.configureClient(customerService, m_ConnectionTimeout, m_ReceiveTimeout);
m_Customers = customerService.getCustomersByName (m_ProvidedCustomerName) ;
m_ProvidedCustomerName = null;

}

@Override
public Class[] generates() {
return new Class[]{String.class};

}
public boolean hasResponseData() {
return (m_Customers '= null) && (m_Customers.size() > 0);
}
@Override
public String getResponseData() {
String result = m_Customers.get(0).getCustomerId() + ": " + m_Customers.get(0).getName()
+ ", " + Utils.flatten(m_Customers.get(0).getAddress(), " ");

m_Customers.remove (0) ;
return result;
}
}

2.4.4 Callable transformer support

In order to utilize the power of the workflow, you can also process data, in the

server and client alike, using a callable transformer. If your component needs to

take advantage of such functionality, it needs to implement the CallableTransformerSupport
interface. For convenience, there are already abstract classes in place:

o AbstractWebService Provider WithCallable Transformer — if the server needs
to process the incoming data with a sub-flow.

o AbstractWebServiceClientSource WithCallable Transformer — a source client
that pre-processes the query or post-processes the response.

o AbstractWebServiceClient Transformer WithCallable Transformer — a trans-

14 CHAPTER 2. CREATING A WEB-SERVICE

former client that post-processes the responseﬂ
o Abstract WebServiceClientSink WithCallable Transformer — a sink client that
pre-processes the incoming data before querying the service.

You can use the applyTransformer method to transform the data.

6adams-webservice-client_as_transformer-callable_transformer.flow

Chapter 3

Flow

This module contains generic actors in which you can simply plug your web-
services that you have implemented. In the following a short overview.
The following standalones are available:

e WSServer — runs a web-service. waiting for request{l]
The following sources are available:

e WSSource — queries a web-service and forwards the received dataP]
The following transformers are available:

o WSTransformer — sends the data it receives to a web-service and forwards
the data from the response in turr[f]

The following sinks are available:

e WSSink — simply sends data to a web-servicd’]

ladams-webservice-server.flow
2adams-webservice-client_as_source.flow
3adams-webservice-client_as_transformer.flow
4adams-webservice-client_as_transformer-callable_transformer.flow
5adams-webservice-client_as_sink.flow

15

16

CHAPTER 3. FLOW

Bibliography

[1] ADAMS — Advanced Data mining and Machine learning System

https://adams.cms.waikato.ac.nz/

[2] Web service — a method of communication between two electronic devices
over the World Wide Web

http://en.wikipedia.org/wiki/Web_service

[3] WSDL — Web Services Description Language

http://en.wikipedia.org/wiki/Web_Services_Description_Language

[4] WSDL Tutorial — w3c school’s tutorial on WSDL

http://www.w3schools.com/wsdl/

[5] SOAP — Simple Object Access Protocol
http://en.wikipedia.org/wiki/SOAP

[6] Apache CXF — an open source services framework
http://cxf.apache.org/

[7] Apache CXF — sample projects (included in the download)

http://cxf.apache.org/docs/sample-projects.html

[8] Contract first — how to generate a WSDL from code with Apache CXF

http://cxf.apache.org/docs/defining-contract-first-webservices-with-wsdl-generation-from-java.

html

[9] CXF Code generation — examples on how to use the Maven czf-codegen-
plugin

http://cxf.apache.org/docs/maven-cxf-codegen-plugin-wsdl-to-java.html

[10] wsdl2java tool — generates Java code from a WSDL
http://cxf.apache.org/docs/wsdl-to-java.html

17

https://adams.cms.waikato.ac.nz/
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://www.w3schools.com/wsdl/
http://en.wikipedia.org/wiki/SOAP
http://cxf.apache.org/
http://cxf.apache.org/docs/sample-projects.html
http://cxf.apache.org/docs/defining-contract-first-webservices-with-wsdl-generation-from-java.html
http://cxf.apache.org/docs/defining-contract-first-webservices-with-wsdl-generation-from-java.html
http://cxf.apache.org/docs/maven-cxf-codegen-plugin-wsdl-to-java.html
http://cxf.apache.org/docs/wsdl-to-java.html

	Introduction
	Creating a web-service
	Defining the WSDL
	Creating a new module
	Configuring code-generation
	Implementing the web-service
	Dummy
	Server
	Client
	Callable transformer support

	Flow
	Bibliography

