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Chapter 1

Introduction

The adams-weka module offers most of the functionality found in WEKA [2]:
pre-processing, classification and regression, clustering, attribute selection, data
visualization and visualization of results/models. But it does not stop there:
the module also contains other features for optimization, experiment generation
that are not available from WEKA, be it Explorer or KnowledgeFlow. It is
assumed that you are familiar with WEKA1 and machine learning in general,
as common terms are not explained again.

If you have used WEKA’s KnowledgeFlow before, then you will have to
forget (mostly) everything that you know about setting up workflows. ADAMS
does things quite differently in comparison to the WEKA. Additionally, ADAMS
offers a range of general purpose actors that allow you to go further.

The manual is split into several sections, with: classification and regression
and clustering comprising the most important sections.

1If you haven’t used WEKA before, check out the Data Mining book [3], which gives you
a good introduction to machine learning, data mining and WEKA.
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Chapter 2

Flow

The adams-weka module has a comprehensive set of actors and conversions that
allow you to build powerful flows using WEKA’s functionality. The following
sections give a quick overview of available functionality. If you are interested in
flow examples, check out chapters 3 and 4.

2.1 Conversions

This module offers additional schemes for the Convert transformer:

• AdamsInstanceToWekaInstance – converts an ADAMS instance into a
WEKA one.

• MatchWekaInstanceAgainstFileHeader – uses a dataset header stored in
a file to convert the string attributes of the instance passing through into
nominal ones (and vice versa).

• MatchWekaInstanceAgainstStorageHeader – uses a dataset header obtained
from storage to convert the string attributes of the instance passing through
into nominal ones (and vice versa).

• ReportToWekaInstance – turns a Report object into a WEKA instance.

• SpreadSheetToWekaInstances – turns a spreadsheet object into a WEKA
dataset.

• WekaInstancesToSpreadSheet – turns a WEKA dataset into a spreadsheet
object.

• WekaInstanceToAdamsInstance – turns a WEKA instance into an ADAMS
one.

• WekaPredictionContainerToSpreadSheet – generates a spreadsheet object
from a predicition container (useful for display).

2.2 Conditions

The following boolean conditions, e.g., used in the IfThenElse or Switch control
actors, are available:

• AdamsInstanceCapabilities – checks an ADAMS intance against the spec-
ified capabilities that it must satisfy.

9
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• WekaCapabilities – checks a WEKA instance against the specified capa-
bilities.

• WekaClassification (used in conjunction with Switch) – uses the returned
classification index to determine which branch of the switch statement
should be used; for all other control actors, the condition evaluates to
“true” if an index is returnedl; condition works only with nominal classes.

2.3 Actors

The following sources are available:

• WekaClassifierGenerator – generates parameter sweeps for

• WekaClassifierSetup – outputs a single classifier setup.

• WekaClustererGenerator – generates parameter sweeps for

• WekaClustererSetup – outputs a single clusterer setup.

• WekaDatabaseReader – reads data from a database into WEKA’s internal
format.

• WekaDataGenerator – generates artificial data using WEKA’s data gen-
erators.

• WekaFilterGenerator – generates parameter sweeps for filters.

• WekaNewInstances – simple source for generating empty datasets.

These transformers:

• WekaAccumulatedError – extracts all the errors collected during an eval-
uation, sorted according to magnitude and creates plot output, for com-
paring classifier performances (most useful for numeric classes).

• WekaAggregatedEvaluations – aggregates incoming Evaluation objects and
forwards the current, aggregate state.

• WekaAttributeIterator – iterates through the names of a dataset and out-
puts them.

• WekaTrainClassifier – used for generating a trained model using a dataset.

• WekaChooseAttributes – allows the user to interactively select attributes
to keep in a dataset.

• WekaClassifierOptimizer – applies a classifier optimizer (e.g., GridSearch
or MultiSearch) to a dataset and then forwards the best (untrained) setup.

• WekaClassifierRanker – evaluates an array of classifier setups on a dataset
and outputs the top X performing setups.

• WekaClassifying – uses a serialized (or global) model to make predictions
on incoming data.

• WekaClassSelector – sets the class attribute in a dataset.

• WekaTrainClusterer – trains a cluster algorithm setup on a dataset.

• WekaClustering – applies a serialized (or global) model to incoming data.

• WekaCrossValidationEvaluator – performs cross-validation on an incom-
ing dataset using a referenced classifier setup.

• WekaCrossValidationSplot – generates train/test set splits like cross-validation
would generate.

• WekaEvaluationSummary – generates a summary for an Evaluation.
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• WekaEvaluationValuePicker – retrieves a single statistic from an Evalua-
tion.

• WekaEvaluationValues – generates a spreadsheet with the selected statis-
tics from an Evaluation.

• WekaExperiment – executes a WEKA experiment, like in the Experi-
menter.

• WekaExperimentEvaluation – evaluates a WEKA experiment, generating
text output of various sorts.

• WekaExtractArray – extracts a row or column from a WEKA dataset
(using the internal format).

• WekaFileReader – reads any dataset that WEKA can handle, either out-
puts the header, the complete dataset or row-by-row.

• WekaFilter – applies a WEKA filter to the data.

• WekaGetInstanceValue – retrieves an attribute’s value from a dataset row.

• WekaInstanceBuffer – buffers either incoming instance objects and out-
puts datasets or outputs instance objects when getting datasets.

• WekaInstanceDumper – for dumping dataset rows into files, one row at a
time (ARFF or CSV).

• WekaInstanceEvaluator – adds an attribute with the value returned by an
instance evaluator.

• WekaInstanceFileReader – outputs ADAMS instance objects.

• WekaInstancesAppend – creates one large dataset from multiple ones, by
appending them one after the other.

• WekaInstancesInfo – outputs information on a dataset.

• WekaInstancesMerge – allows the merging of several datasets (side-by-
side).

• WekaInstanceStreamPlotGenerator – generates plot containers from a range
of attributes of instance objects passing through (i.e., you can plot several
attributes in one go).

• WekaModelReader – reads a serialized model.

• WekaMultiLabelSplitter – splits a datasets with multiple class attributes
(“multi-label”) into ones with only a single class attribute.

• WekaNewInstance – creates an instance object with only missing values
using a dataset as template.

• WekaPredictionsToInstances – turns WEKA predictions into a WEKA
dataset (actual, predicted, etc).

• WekaRandomSplit – generates a random split of a dataset.

• WekaRegexToRange – generates a range string using a regular expression
applied to the names of a dataset.

• WekaRelationName – simply outputs the name of the dataset.

• WekaRenameRelation – renames a dataset.

• WekaSetInstanceValue – sets a specific attribute value in an instance ob-
ject.

• WekaStoreInstance – appends the passing through instance

• WekaStreamFilter – works the same as WekaFilter but only allows stream
filters to be selected.

• WekaSubsets – splits dataset into subsets using the unique values of an
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attribute to identify subsets.

• WekaTestSetEvaluator – evaluates a trained classifier on a dataset ob-
tained from a global actor.

• WekaTextDiectoryReader – reads in a directory with the documents in the
sub-directories representing different classes.

• WekaTrainTestSetEvaluator – evaluates a referenced classifier using the
incoming train/test split.

And these sinks:

• WekaClassifierErrors – displays the errors of a classifier.

• WekaCostCurve – generates a cost curve.

• WekaDatabaseWriter – writes a dataset to a database.

• WekaExperimentGenerator – generates a WEKA experiment by adding
the incoming classifier setups and writing it to disk.

• WekaFileWriter – writes a dataset to any file format that WEKA can
handle.

• WekaInstancesDisplay – displays datasets in table format.

• WekaInstanceViewer – visualizes incoming WEKA or ADAMS instance
objects the same way as the Instance Explorer tool does.

• WekaModelWriter – writes a model container or classifier/clusterer to
disk.

• WekaThresholdCurve – displays threshold curves like, receiver-operator
curve (ROC) or precision/recall.

2.4 Templates

Here are some templates that make the flow development for WEKA easier:

• InstanceDumperVariable – generates a variable for the WekaInstance-
Dumper actor which contains an ARFF/CSV filename prefix aligned with
the flow’s filename, i.e., the ARFF/CSV file will always get placed in the
same location as the flow.



Chapter 3

Classification and
Regression

WEKA’s main strength lies in its large number of classification and regression
schemes. Most of the documentation will cover this functionality therefore.

We start out with some basic WEKA functionality, like loading and prepro-
cessing data, building models and evaluating them. That includes visualization
of the results and models as well. After that we will cover more advanced fea-
tures like learning curves, experiment generation and evaluation, optimization
of classifiers and also the current provenance support in ADAMS.

13



14 CHAPTER 3. CLASSIFICATION AND REGRESSION

3.1 Basic

In this section we describe how to perform basic WEKA functionality that you
are used to perform with the Explorer, but in the workflow context. Instead of
having to repeat the same steps, like loading and preprocessing data, whenever
you update your data, a flow allows you to define the steps apriori and then
merely re-execute them time and time again. Also, flows make it very easy to
document all the steps that you perform, not just merely recording what you
are doing.

3.1.1 Loading data

Before we can build any models, we have to have data at hand, of course. So
the first step will be to obtain data from somewhere, whether that is by loading
a local dataset or by downloading a remote dataset.

To start, we will be loading files that are stored locally. The actor used
for loading datasets is the WekaFileReader transformer. This actor does not
have an option for the file to load. Instead, it expects a file name, string or
URL object to arrive at its input port. In order to supply a local file, we use
the SingleFileSupplier source, which allows us to specify a single file that gets
forwarded in the flow. If required, one can also use the MultiFileSupplier or
DirectoryLister sources1, which can forward multiple file names instead of just
one. The latter one is especially handy, if the files are not known in advance,
e.g., generated on the fly. In order to display the loaded data, we use the
WekaInstancesDisplay sink actor, which displays the data in a nice tabular
format. Figure 3.1 shows the flow for loading the dataset and Figure 3.2 the
generated output.

Figure 3.1: Flow for loading a local
dataset.

Figure 3.2: The dataset that got loaded
from disk.

In this example2 we let the WekaFileReader determine the correct file loader
automatically, based on the file extension. If this automatic determination
should fail, you can always check the “useCustomLoader” checkbox and then
configure the appropriate loader yourself.

Another feature of this actor is the ability to output the dataset row by row
(option “incremental”). This is very handy in case of very large files, where load-
ing into memory could pose a problem. Even though the incremental feature

1adams-weka-crossvalidate classifier multiple datasets.flow
2adams-weka-load dataset.flow
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works for any file type that WEKA can read, truly incremental, i.e., memory-
efficient, loading is only possible if the underlying loader also supports incre-
mental loading. In any other case, the dataset gets loaded fully into memory
before being forwarded row by row.

Nowadays, a lot of data is available online. Instead of relying on local files,
one can use the flow also to download remote files. Some of the WEKA file
loaders, like the ArffLoader, natively support the download via a URL. Figure
3.3 shows a flow3 that downloads (and displays) an ARFF file available from a
URL that was supplied by the URLSupplier. If the required dataset is encap-
sulated in an archive, e.g., a ZIP file and not just compressed with GZIP, then
one has to download the archive first and extract the correct file before working
with it. The flow4 in Figure 3.4 downloads an archive from WEKA’s source-
forge.net web site5 using the DownloadFile sink and extracts all the datasets
which filename fit a regular expression. The extracted files are then displayed
in a HistoryDisplay sink.

Figure 3.3: Flow for loading a local
dataset.

Figure 3.4: The dataset that got loaded
from disk.

Finally, artificial data can be generated within ADAMS as well. Using the
WekaDataGenerator source, any WEKA data generator can be used to output
data. The flow6 depicted in Figure 3.5 generates a small dataset using the
“Agrawal” data generator.

Figure 3.5: Flow for generating and displaying an artificial dataset.

3adams-all-weka dataset download.flow
4adams-all-weka dataset download2.flow
5WEKA on sourceforge.net: http://sourceforge.net/projects/weka/
6adams-weka-data generator.flow

http://sourceforge.net/projects/weka/
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3.1.2 Building models

After having sorted out the loading of the data, it is time to check out how
to build models. Since we are using supervised algorithms, we have to make
sure that the datasets have a class attribute set. The WekaClassSelector actor
allows the setting of the class attribute, in the default setting it simply uses the
last attribute as the class attribute. With the WekaTrainClassifier actor you
can choose a globally defined classifier to be built. You define a global classifier
by adding a WekaClassifierSetup source to the GlobalActors standalone, which
you then reference in your WekaTrainClassifier actor. By default, the Weka-
TrainClassifier actor outputs a container that comprises the built model and the
header of the training set. In order to extract either of the container items, you
need to use the ContainerValuePicker control actor. Figure 3.6 demonstrates
how to train a J48 classifier on dataset and then displaying the built model (see
Figure 3.7)7.

Figure 3.6: Flow for building J48 model
on a dataset and outputting the model.

Figure 3.7: J48 model output.

A built model can be saved to disk (and then re-used later) using the
WekaModelWriter. The file generated can also be loaded in the WEKA Ex-
plorer again and applied to another test set there8.

3.1.3 Preprocessing

A very important, but often underrated step is preprocessing. Unless your
data is properly cleaned up and in the right format, your models will not be
very meaningful. Preprocessing steps can be done within the flow using the
WekaFilter transformer, which wraps around a single WEKA filter. One either
chains multiple actors together or uses the weka.filters.MultiFilter meta-filter
to executed several filter sequentially in a single actor.

In Figure 3.8 we are investigating the impact of preprocessing on the “slug”
dataset [4]. The flow9 cross-validates LinearRegression on the original and log-
transformed data. The log-transformed data is generated by applying the Ad-
dExpression filter on each of the two attributes of the dataset and then deleting
the original ones. In each case, original or preprocessed, it displays the evalua-
tion summary and classifier errors.

7adams-weka-build classifier-output only model.flow
8adams-weka-build classifier-save model.flow
9adams-weka-filter data.flow
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Figure 3.8: Flow for comparing results generated from original and preprocessed
“slug” data [4].

Figures 3.9 and 3.10 show the evaluation summary, for the original and
the log-transformed data. The log-transformed dataset gets not only a better
correlation coefficient, but also smaller errors.

Figure 3.9: Evaluation summary on
“slug” dataset (original).

Figure 3.10: Evaluation summary on
“slug” dataset (log-transformed).

Figures 3.11 and 3.12 display the classifier errors. It is obvious from the funy
log-shaped curve, that LinearRegression built on the original data is not a very
good model. Something that is not so obvious by just looking at the correlation
coefficient: 0.9056 is not bad.

Figure 3.11: Classifier errors on “slug”
dataset (original).

Figure 3.12: Classifier errors on “slug”
dataset (log-transformed).

This flow can be quickly extended to accommodate other preprocessing tech-
niques, all very easily comparable in the graphical output.



18 CHAPTER 3. CLASSIFICATION AND REGRESSION

In this example the preprocessing was rather specific. On the other hand, if
your are working mainly in a particular data domain, like spectral analysis of
some kind, then certain preprocessing steps will always be same. In this case,
it makes sense to store these externally in a preprocessing library which you
then link to using external actors (see manual for the adams-core module for
more details). This reduces duplication and you will only have to update the
preprocessing step in a single location.

Instead of batch-filtering data, you can also filter streams of weka.core.Instance
objects, using the WekaStreamFilter transformer. This filter offers a subset of
WEKA’s filters, which don’t need a batch of data to be initialized with before
being able to process data.
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3.1.4 Evaluation

Knowing how to build a model is good, but how can you tell whether the
model that you built is any good? Evaluation is the key to unlock this mystery.
ADAMS offers several types of evaluations:

• Cross-validation – if you only have a single dataset.

• Test set evaluation – evaluating an already trained classifier with a sepa-
rate dataset.

• Train/test set evaluation – training and evaluating a classifier with a train-
ing and test set. This can be either achieved using a RandomSplit actor
or reading two separate files from disk.

Cross-validation
We start with cross-validation, which is probably the most used type of evalua-
tion. The WekaCrossValidationEvaluator transformer is used for cross-validation.
In order to get around ADAMS’ limitation of allowing only one input, the
WekaCrossValidationEvaluator actor takes a dataset as input and obtains the
classifier to evaluate from a global actor. This approach hides how the classifier
is obtained, whether it is a simple WekaClassifierSetup definition or a more
complex scheme for outputting a Classifier object (e.g., loading it from a seri-
alized model file). Figure 3.13 shows a flow10 with simple cross-validation using
a global WekaClassifierSetup to obtain the classifier object from.

Figure 3.13: Cross-validating a classifier
and outputting the summary.

Figure 3.14: Summary output of a
cross-validated classifier.

Most of the time, you don’t just want to test a single classifier, but several
ones. With ADAMS you can, for instance, load classifier command-lines from a
text file and then evaluate them one after the after11. Reading the text file (see
Figure 3.15) is fairly straight-forward, using the TextFileReader transformer.

For updating the global classifier’s set up, we need to attach a variable to the
global WekaClassifierSetup actor’s “classifier” option and update this variable
with each set up that we are reading from the text file using the SetVariable
transformer. This update of the classifier set up has to happen before we are
triggering the cross-validation. Figures 3.16 and 3.17 show the full flow and the
generated output, when reading in three set ups from a text file (J48, filtered
J48, SMO).

10adams-weka-crossvalidate classifier.flow
11adams-weka-crossvalidate classifier setups from text file.flow
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Figure 3.15: Text file with command-lines of various classifiers.

Figure 3.16: Cross-validating classifier
set ups read from a text file and dis-
playing the evaluation summaries.

Figure 3.17: Summary outputs of cross-
validated classifiers.

Test set evaluation
Simply testing a built classifier on a test set is useful when you are always
intending to save the generated model to a file, but also want to keep an eye
on the performance. In this case, you can very easily extend your current flow
for building and saving the model. First, add a global actor that loads the
separate training set from disk. Second, add a Tee control actor that performs
the evaluation using the WekaTestSetEvaluator and WekaEvaluationSummary
transformers and a Display sink for showing the results12. The full flow and the
generated output are shown in Figures 3.18 and 3.19.

Figure 3.18: Flow for evaluating built
classifier on a separate test set.

Figure 3.19: Summary output of classi-
fier evaluated on separate test set.

12adams-weka-build classifier evaluate on testset.flow



3.1. BASIC 21

Train/test set evaluation
An evaluation using separate train and test set can be used, if you don’t want to
keep the evaluated model, but you are only interested in the evaluation output.
The evaluation actor in this case is the WekaTrainTestSetEvaluator transformer.
This actor accepts WekaTrainTestSetContainer data tokens. To generate this
container you have several options:

• WekaRandomSplit – splits a single dataset into a train and test set, based
on the percentage supplied by the user.

• WekaCrossValidationSplit – Generates train/test splits like they occur in
cross-validation. Useful, if you want to inspect the various models built
during cross-validation, not just the summary.

• MakeContainer – manually generating a container from two individually
loaded datasets.

Figures 3.20 and 3.21 show how to use the RandomSplit actor in the evalua-
tion process13. For simulating cross-validation, simply exchange the WekaRan-
domSplit actor with a WekaCrossValidationSplit one (you might also want to
change from Display to HistoryDisplay, to keep better track of the various eval-
uations).

Figure 3.20: Flow for build-
ing/evaluating classifier on a random
split.

Figure 3.21: Summary output of classi-
fier built/evaluated on random split.

Figures 3.22 and 3.23 display the flow14 for manually creating a container
using the general purpose MakeContainer source actor. In order to assemble a
container, you need to know what type of container you want to create (the
type is normally listed in the “Help” of an actor), where to obtain the data
from (i.e., the global actors) and how to store the data (i.e., under which name
in the container).

Visualization
You have already encountered the display of the classifier errors (in Figure
3.11). The sink for displaying these errors is WekaClassifierErrors, which takes
an Evaluation object as input. If you want to evaluate and display multiple
classifiers then you have to use the DisplayPanelManager with the WekaClas-

13adams-weka-evaluate classifier randomsplit.flow
14adams-weka-assemble traintestset container and evaluate classifier.flow
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Figure 3.22: Flow for evaluating classi-
fier on separate train/test set.

Figure 3.23: Summary output of classi-
fier evaluated on separate train/test set.

sifierErrors actor as “panelProvider”. The DisplayPanelManager actor offers a
history of generated panels, like the HistoryDisplay does for plain text.

Another interesting visualization is the WekaAccumulatedError transformer.
This transformer takes also an Evaluation object and then turns it into a special
sequence of plot containers: it creates a sequence of the prediction errors that
were obtained during an evaluation and outputs them sorted, from smallest to
largest15. The Figures 3.24 and 3.25 show the flow and the generated output
respectively. As you can see from the graph, GaussianProcesses generates con-
sistently larger errors than LinearRegression, which only seems to have a few
big outliers (steep increase at the end).

Figure 3.24: Flow for displaying the
“accumulated error” of a two classifiers.

Figure 3.25: The “accumulated error”
of LinearRegression and GaussianPro-
cesses.

15adams-weka-accumulated error display.flow
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3.1.5 Making predictions

Of course, building models is only part of the picture. You will want to use this
model as well and make predictions with it. The actor for making predictions on
incoming data (i.e., single instance objects) is the WekaClassifying actor. This
actor can either use a serialized model or a global actor that generates a trained
classifier. The flow16 in Figure 3.26 uses the global actor approach, training a
classifier on a training set and then performing classifications on a test set, with
the class distributions shown on screen (see Figure 3.27).

Figure 3.26: Flow for classifying new
data and outputting the class distribu-
tions.

Figure 3.27: The generated class distri-
butions for the new data.

16adams-weka-classifying data.flow
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3.2 Advanced

3.2.1 Learning curves

Classifiers are susceptible to the order and amount of data that they are trained
with. Using learning curves, one can investigate how the data influences the
classifier performance.

Figures 3.28 and 3.29 show a flow and the generated output of an incremen-
tal NaiveBayes classifier, with the classifier being evaluated against a test set
every 10 training instances (ConditionalTee in conjunction with the Counting
condition).17

Figure 3.28: Flow for generating learning
curve for incremental classifier.

Figure 3.29: Generated learning
curve (incremental).

Incremental classifiers are great for generating these kind of graphs. But
even for batch classifiers you can generate learning curves. Using the WekaIn-
stanceBuffer transformer, it is possible to buffer instances as they come through
and output datasets with which the batch classifer can get trained (and eval-
uated). Figures 3.30 and 3.29 show how to generate a learning curve for the
decision tree classifier J48, being evaluated every 10 instances.18

3.2.2 Experiments

experiment generation19, execution and evaluation20

3.2.3 Optimization

setup generators21, ranker22, optimizer23

17adams-weka-build classifier incrementally.flow
18adams-weka-classifier learning curve.flow
19adams-weka-experiment generation.flow
20adams-weka-experiment.flow
21adams-weka-classifier setup generation.flow
22adams-weka-classifier setup ranking.flow
23adams-weka-classifier optimizer.flow
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Figure 3.30: Flow for generating learning
curve for batch classifier.

Figure 3.31: Generated learning
curve (batch).

3.2.4 Provenance

Machine learning related actors can keep track of what operations happened
along the way, or in other words, provenance.

Due to the additional load, provenance is turned off by default. You can
turn it on by placing a properties file called Provenance.props home directory
with the following content:

Enabled=true

Figure 3.32 shows the flow that cross-validates a classifier on a pre-processed
dataset. The provenance trace of loading the data, pre-processing and evaluat-
ing it, can be seen in Figure 3.33.

Figure 3.32: Flow for cross-validating a clas-
sifier on a pre-processed dataset.

Figure 3.33: Provenance display.

provenance display24

24adams-weka-crossvalidate classifier-display provenance.flow
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Chapter 4

Clustering

Clustering behaves very much like Classification/Regression, the only difference
being that it is an unsupervised learning process. This means that the flows
won’t contain a WekaClassSelector actor to set the class attribute in the loaded
data. Due to the similarity, the section here will cover only the basics of clus-
tering.

4.1 Building models

Building clustering models is as easy as building classification/regression mod-
els. Instead of the WekaTrainClassifier transformer, you use the WekaTrain-
Clusterer one. Similar, you use a WekaClustererSetup source instead of the
WekaClassifierSetup one to define (and output) a clusterer setup, placed inside
a GlobalActors standalone.

Figures 4.1 and 4.2 show a flow 1 that builds a SimpleKMeans clusterer on
a dataset (the class attribute gets removed using a WekaFilter actor) and the
generated model gets displayed.

Figure 4.1: Building a clusterer and out-
putting the model.

Figure 4.2: Cluster model output.

If the base cluster algorithm is an incremental one, i.e., one that implements

1adams-weka-build clusterer.flow

27
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the weka.clusterers.UpdateableClusterer interface, you can build your clustering
model incrementally as well. The flow 2 in Figure 4.3 builds the CobWeb cluster
algorithm incrementally and outputs the generated models every 25 instances
(see Figure 4.4).

Figure 4.3: Building a clusterer incre-
mentally and outputting the model.

Figure 4.4: Cluster model outputs, gen-
erated every 25 instances.

4.2 Evaluating clusterers

ADAMS offers transformers for evaluation clusterers on data similar to the ones
for classification:

• WekaClusterEvaluationSummary - generates a string representation of a
cluster evaluation (or container)

• WekaCrossValidationClustererEvaluator - cross-validates a clusterer on a
dataset, generates log-likelhood.

• WekaTestSetClustererEvaluator - evaluates a built clusterer on a test set.

• WekaTrainTestSetClustererEvaluator - builds and evaluates a clusterer on
the training and test set from a train/test-set container.

4.3 Clustering data

Clustering new data is done using the WekaClustering transformer, which takes
a single instance as input and outputs the generated clustering information
in form of a container (WekaClusteringContainer). You can either specify a
serialized clusterer model to use or a global actor to obtain the clusterer from.
The flow 3 in Figure 4.5 shows how to build a clusterer and use it to cluster
new data, outputting the cluster distributions (see Figure 4.6 for the generated
output).

2adams-weka-build clusterer incrementally.flow
3adams-weka-clustering data.flow
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Figure 4.5: Flow for clustering new
data.

Figure 4.6: Generated cluster.
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Chapter 5

Attribute selection

ADAMS also offers WEKA’s functionality for attribute selection and ranking.
The following transformers are available:

• WekaAttributeSelection – performs the attribute selection/ranking.

• WekaAttributeSelectionSummary – generates a summary from a attribute
selection step.

In Figure 5.1 you can see a flow1 that uses CfsSubsetEval as the attribute set
evaluator and BestFirst as the search method. The generated output, summary
and reduced dataset, are displayed in Figures 5.2 and 5.3.

Figure 5.1: Flow for performing attribute selection (reduction).

The WekaAttributeSelection transformer outputs a container which can con-
tain the following elements:

• Train – the training set.

• Reduced – the reduced dataset.

• Transformed – the transformed dataset, in case of evaluators that imple-
ment AttributeTransformer, like principal components.

• Evaluation – the generated attribute selection evaluation.

1adams-weka-attribute selection-subset.flow
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Figure 5.2: Summary of the reduction. Figure 5.3: The reduced dataset.

• Statistics – a spreadsheet with statistics, containing information whether
an attribute was selected (0 or 1) or for ranking results the rank of the
attribute.

• Seed – the seed value in case of cross-validation.

• Folds – the number of folds used in case of cross-validation.



Chapter 6

Visualization

6.1 Preview browser

The WEKA module comes with custom viewers for serialized files. Apart from
the default view (Figure 6.1), you can also view the trees (Figure 6.2) and graphs
(Figure 6.3) that some classifiers generate.

Figure 6.1: Default preview for classifier.

33
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Figure 6.2: Preview of tree-generating classifier.

Figure 6.3: Preview for graph generated by BayesNet classifier.
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6.2 Instance Compare

Quite often, you generate data with different or tweaked pre-processing tech-
niques and you wonder how different the generated data looks like. The Instance
Compare visualization allows you to graphically compare two datasets. You can
either compare them row by row, or using a common attribute that can be used
as unique row identifier.

Figure 6.4 shows a comparison of two datasets. Not only are the two rows
overlayed, you also see the absolute difference plotter and a the correlation
coefficient of the two being calculated.

If you don’t want to compare all the attributes, you can restrict it to a
subset, by using the Att. range text field. “first”, “second”, “third”, “last”,
“last 1” (last minus 1) and “last 2” (last minus 2) are accepted indices. All
other indices must be 1-based.

Figure 6.4: Comparing two datasets.
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6.3 Instance Explorer

When generating datasets, it pays to check the generated output in multiple
ways. For instance, whether the data rows generated are actually aligning prop-
erly. The Instance Explorer allows you to select a range of rows and columns
from a dataset (see Figures 6.5 and 6.6), which are then displayed in a single
graph.

Figure 6.7 shows a subset of the UCI dataset waveform-5000. The top graph
of the two is a zoom into the full graph, with the bottom graph showing the
area that was zoomed into.

Figure 6.5: Viewing data in the Instance explorer.
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Figure 6.6: Viewing data in the Instance explorer.

Figure 6.7: Viewing data in the Instance explorer.
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Chapter 7

Tools

7.1 Explorer

ADAMS contains an extended version of the WEKA Explorer. The interface
uses menus instead of buttons to declutter the pre-process tab. Also, it keeps
track of the datasets that the user loads, to make re-loading recent files easier.
This saves a lot of time when working with the same files on a frequent basis.
Furthermore, the user can have an arbitrary number of Explorer sessions in the
same window, distinguished by names. Figure 7.1 shows the new interface with
the drop-down menu in action.

Figure 7.1: Explorer interface with menus.

One very useful feature is the notion of workspaces in this interface. You
can save the current setup (current dataset, classifiers, clusterers, evaluation set
up, results, etc.) to a file and restore all of it in one go again. Unfortunately,
not all data can be stored, such as the log, the undo history and the built
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models or visualizations associated with a results. See Figure 7.2 for the button
(highlighted in red) that allows you to load/save workspaces.

Figure 7.2: Saving/restoring of workspaces.

The extended interface also has a dedicated tab for running experiments,
using the currently loaded dataset and a single classifier. This allows you to
perform 10 runs of cross-validation instead of the Explorer’s default single run
(see Figure 7.3).

Figure 7.3: Experiment tab in the Explorer.
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7.2 Dataset compatibility

WEKA requires training and test sets to have the same structure, down to
the same name and order of nominal labels. Rather than relying on the error
message in the Explorer, you can use the Dataset compatibility tool to quickly
check whether two or more datasets are actually compatible.

The screenshot in Figure 7.4 shows the output when comparing two datases,
one being the original anneal UCI dataset and the other one a transformed
version.

Figure 7.4: Compatibility output for two datasets.



42 CHAPTER 7. TOOLS



Bibliography

[1] ADAMS – Advanced Data mining and Machine learning System
https://adams.cms.waikato.ac.nz/

[2] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, Ian H. Witten (2009); The WEKA Data Mining Software:
An Update; SIGKDD Explorations, Volume 11, Issue 1.
http://www.cms.waikato.ac.nz/ml/weka/

[3] Ian H. Witten, Eibe Frank, Mark A. Hall (2011); Data Mining: Practical
Machine Learning Tools and Techniques; Third Edition; Morgan Kauf-
mann; ISBN 978-0-12-374856-0
http://www.cs.waikato.ac.nz/ml/weka/book.html

[4] Barker, G, and McGhie, R (1984) The Biology of Introduced Slugs (Pul-
monata) in New Zealand: Introduction and Notes on Limax Maximus, NZ
Entomologist 8, pp 106-111

43

https://adams.cms.waikato.ac.nz/
http://www.cms.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/book.html

	Introduction
	Flow
	Conversions
	Conditions
	Actors
	Templates

	Classification and Regression
	Basic
	Loading data
	Building models
	Preprocessing
	Evaluation
	Making predictions

	Advanced
	Learning curves
	Experiments
	Optimization
	Provenance


	Clustering
	Building models
	Evaluating clusterers
	Clustering data

	Attribute selection
	Visualization
	Preview browser
	Instance Compare
	Instance Explorer

	Tools
	Explorer
	Dataset compatibility

	Bibliography

