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Chapter 1

Introduction

MOA (“Massive Online Analysis”, [2]) is a
framework for data stream mining. It includes a
collection of machine learning algorithms (clas-
sification, regression, and clustering) and tools
for evaluation. Related to the WEKA project,
MOA is also written in Java, while scaling to
more demanding problems.

Figure 1.1: MOA, the (ex-
tinct) New Zealand bird.
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Chapter 2

Flow

If you are familiar with the WEKA actors in ADAMS, then you won’t have
any problems getting up to speed with using MOA in the flow. The following
sections explain the various actors in more detail.

2.1 Data sources

Since MOA uses the WEKA data structures as backend, you can basically use
any actor that outputs weka.core.Instance tokens as source for the other
MOA actors. MOA also comes with a range of stream generators for artificial
data (or ARFF-file based ones), which you can make use of the MOAStream
source. Figure shows a ﬂowEl that generates some artificial data with a
stream generator and displays it (see Figure .
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Figure 2.1: Flow for generating and displaying artificial data.

ladams-moa-datastream.flow



10

CHAPTER 2. FLOW

Eile

Flow.WekalnstanceViewer

Internal value

8 11E0 ]

D

-2116036464

-272232865

1712203077

779996198

813282707

-1983542514

-1064616312

-1554671826

-807351053

-431553275

-2075680738

1355619864

1153164674

HEEEEEEEEREEEEREEEEEREEES

| |-602069548

Attribute Index

Figure 2.2: The generated data.
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2.2 Classification

Classification and regression in the flow work very similar to ones for WEKA.
But instead of performing cross-validation or train/test splits, you use a special
stream evaluator which performs an evaluation every X instances that come
through. The transformer performing the evaluation is MOA Classifier Evalua-
tion. It references a callable classifier of type MOAClassifierSetup to evaluate
on the data stream and also what type of MOA evaluation you want to per-
form. Figures and show a ﬂowﬂ and its associated output (kappa and
percentage correct). The classifier is being evaluated every 100 instances of the
10,000 that the stream generator outputs.

Flows

Cenerates a data stream using the Agrawal generator

with 10,000 examples, evaluates the DecisianStump
? classifier every 100 and displays the result of the

evaluation in textual farmat and the statistics in

sequence plots.

Clobalactors

cerMOACIassifierSetup  DecisionStump

<

(B Gricview x:1eft, V:top, W:B00, H-800, Rows: 3, Cals 1

-

4~V Kappa right, ¥otop, WiE00, H:350
=+ Percent correct Xright, Vitop, W.g00, H 350
<= Display ¥ left, ¥ top, W 640, H:480, font: Monospaced-PLAIN-12
S0 MOASTream generators AgrawalGenerator/10000
% MOACIassifierEvaluation MOACIassifiersetup, BasicClassificationPerformancefvaluator/100
Branch parallel, threads: #cares
9 {Sahtent
MOALearningEvaluation
63 Globalsink Display
¢ Gahkappa

Eﬁ MOAMeasurementsFilter Kappa*

<

(5F) MOAMeasuramentPlotGenarator
G5 Globalsink Kappa

¢ {Sahpercent correct
Eﬁ MOAMeasurementsFilter “correct
(5F) MOAMeasuramentPlotGenarator
83 Globalsink Percent correct

Figure 2.3: Flow for evaluating a classifier on a stream.

2adams-moa-classifier_evaluation.flow
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Figure 2.4: The evaluation result.
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Just like with WEKA, you can also use a serialized classifier to classify
incoming data. First, you need to train and serialize a classifier. How this is
done, is shown in the ﬂowﬂ in Figure This flow uses the MOAModelWriter
sink to save the trained classifier to a file. Then, you can use this serialized
model (e.g., loading it with the MOAModelReader) in conjunction with the
MOACClassifying transformer to make predictions on the incoming data. Figures
and show the ﬁowEI and the predicted class distributions for the incoming
data.

There are some transformers that help you turning the evaluation object
that the MOA ClassifierEvaluation outputs into useful output:

o MOA LearningEvaluation — generates a string represenation of the evalu-
ation object

o MOAMeasurementsFilter — picks the measurements from the evaluation
that match the regular expression (matching sense can be inverted).

o MOAMeasurementPlotGenerator — turns a measurement into a plot con-
tainer that can be displayed in the SequencePlotter sink.

Flow
? ﬂ This flow trains a MaiveBayes clascifier on the UC] "iris” dataset
and stores the generated model in "output/naivebayes.model”,

? GIoba\AJ:tors

EfMOAClassifierSetup NaiveRayes
F|SingleFileSupplier $IECAMPLE_FLOWS) data/iris.arff
[FR WekaFileReader automatic (INCREMENTAL)
WiekaClassselector last
(& MOACIassifier MoAClassifierSetup/150

R

3 MOAModelWriter ${EXAMPLE_FLOWS}H autput/naivebayes model

Figure 2.5: Flow for serializing a trained classifier.

3adams-moa-serialize_classifier_model.flow
4adams-moa-classifying_with_model.flow
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Figure 2.6: Flow for classifying data using a pre-built model.
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Figure 2.7: The classification result.
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2.3 Clustering

Clustering is still under active development in MOA and not yet ready for prime
time. The actors, however, are already in place. This means, as soon as MOA’s
API has stabilized, a full integration of stream clustering techniques will be
made available. Stay tuned!
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2.4 Filtering

Even though there is no filtering support in MOA at the time of writing, it is
possible using WEKA’s stream filters to filter data streams in MOA. You can
use the WekaStreamFilter transformer to apply one of WEKA'’s stream filters
to the stream of weka.core.Instance objects passing through.

In Figure you can see a ﬂowﬂ that generates a data stream using the
RandomRBFGenerator class. It outputs a stream with 40 attributes and 4 class
labels. This flow applies the DownSample filter (only uses every nth attribute)
to the stream and plots the classifier performance, percentage correct and kappa,
in a graph (see Figure Three plots are generated: evaluation on the full
attribute range, down-sampled with using only every 2nd and 4th attribute.

? ?:Drmave: the perfortrance of & classiier an different data streams
& Downsample stream filter is used to reduce the number of
attributes for two of the three streams.
9 (68 Globalactors
EHM0ACIassifier Decisionstump
9 (B Gridvisw e, V:top, W00, 600, Rows: 2, Cols: 1
£+ Kappa. Kright, Yotop, w800, H:350
£+ Percent correct Yoright, ¥top, W00, H:350
3% MOAStream generators.RandomREFGenerator/10000
[ Branch parallel, threads: #cores
7 (i
MOA(IassmerEva\uannn MOAClassifier, BasicClassificationPerformanceBvaluator/100
9 Branch parallel, threads: #cores
7 {iheappa
(%) MoAMeasurementsFilter Kappa»
(89 MOAMeasurementPlotGenerator full
55 Globalsink Fappa.
¢ {Shpercent correct
(W) MOAMeasurementsFilter scorrects
(%) MoAMeasurementPlotGenerator full
5] Clobalsink Percent correct
¢ LBaownsample 2
[§if] WekaStreamFilter Downsample
(8 MOACIassifierEvaluation MOACIassifier, BasicClassificationPerformanceEvaluator100
o Branch parallel, threads #cores
¢ {Gahdownsample 4

(&) wekaStreamFilter DownSample
(&) MDACIassifierEvaluation MOAClassifier, BasicClassificationPerformance Evaluator/1 00

o [DhBranch parallel, threads: #cores

Figure 2.8: Filtering data streams.

5adams-moa-filtering.flow
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2.5 Provenance

Just like with WEKA, provenance is supported by MOA’s actors as well. In
Figure you can see a ﬂowﬁ that will display the provenance information
that the tokens accumulated, from generation through to evaluation. Figure
[2.11] then shows the visualization of the provenance trace.

|r Flow editor [adams-moa-classifier_provenance.flow - /[research/fracpete/de
File Edit Debug Execution View Window

[v[>]

| adams-moa- classifier_provenance |

Flowe

? Generates a data stream using the Agrawal generator
with just 1 example, evaluating the DecisionStump
classifier an it and displays the provenance information

¢ [BA) Clobalactors
MOACIaSSifiEr DecisionStump
(%7 MOAStream generatars AgrawalGenerator/1
(F] WelkaFiltar Remove
() MoAClassifierEvaluation MOACIassifier, BasicClassificationPerfarmanceFualuatorf always

ProvenanceDisplay left, ¥ top, W.E40, H:480

Flow finished.

Figure 2.10: Flow for displaying provenance information.

6adams-moa-classifier_provenance.flow
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File

Flow.ProvenanceDisplay — O

_ Output: moa.core. Measurement(]
T Lo EVALUATOR adams.flovw.transformer MOAC|assifierEvaluation -classifier "adams. flow. source. MOACIassif

Input: welka.core. Denselnstance
Output: weka.core.Denselnstance

Input; welka core.Denselnstance
Output: welka.core.Denselnstance

% L PREPROCESSOR adams.flow.transformer. WekaFilter —filter "weka.filters. unsupendsed. attribute Remo

DATAGENERATOR aclams. flow, source. M OAStream -num-exarples 1

Figure 2.11: The generated provenance trace.
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Chapter 3

Tools

The main interface for MOA is available from within ADAMS as well. You can

find it under the MOA menu. shows a screenshot of the user interface
in action.

— MOA -+ %
‘ Configure ‘EvaluatEPrEauenﬂa\ Run
command | stalus | time elapsed | current activit | % complete
EvaluatePrequential | paused | 49.39s |Evaluating learner... | 348
[ o] [ Remumme ] [ coneer ] [_peiee ]

preview (19.039 A rerresic [svery secona__[7]

learning evaluation instances,evaluation Time (cpu seconds),model cost (RAM-Hours),classified instances,classificatig~
100000.0, 2.87,0.0,100000.0, 72.39999999999999, 42, 96224 348508957, 100000.0,0.0
200000.0,4.87,0.0,200000.0,73.7,45.07422289423342, 200000.0,0.0

300000.0,6.73,0.0,300000.0,74.5,46. 44387317909169, 300000.0,0.0
1400000.0,8.57,0.0,400000.0,73.0,43. 5134626247411, 400000.0,0.0
500000.0,10.41,0.0,500000.0,76.5, 49, 8617464327166, 500000.0,0.0
$00000.0,12.22,0.0,600000.0,74.7,46.95260540286666,600000.0,0.0
700000.0,14.04,0.0,700000.0, 76.6, 50.842814548000945 , 700000.0,0.0
00000.0,15.85,0.0,800000.0,72.7,42,98579030466055,800000.0,0.0
©00000.0,17.67,0.0,900000.0, 72.89999999999959, 43, 59337274155348,900000.0,0.0

4] Il [

Export as .t file...

Evaluation

Values Plot

® Accuracy 73.60 - 7363 -

' Kappa 4511 - 4452 - o

) Ram-Hours 000 - 000 -

) Time 47.93 - 2005 - 83

) Memory 000 - 0.00 - 0.00 + T T T

i 5000000 10000000 15000000 20000000

Figure 3.1: The main MOA interface.
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