
D
RA
FT

ADAMS

Advanced Data mining And Machine learning System

Module: adams-imaging

Peter Reutemann

December 24, 2014



c©2009-2014



Contents

1 ADAMS 7

2 Java Advanced Imaging 9

3 ImageJ 11
3.1 Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 ImageMagick 15

5 BoofCV 17

6 LIRE 19

7 Object conversion 21

8 OCR 23

9 Interaction 25

10 Feature output 29

11 Miscellaneous actors 31

Bibliography 33

3



4 CONTENTS



List of Figures

1.1 Flow for blurring images stored in a directory. . . . . . . . . . . . 8
1.2 The original image. . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 The blurred image. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 ImageJ flow for turning images stored in a directory into greyscale
ones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 The original image. . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 The greyscale image. . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 ImageMagick flow for processing (resizing) a single image. . . . . 16
4.2 ImageMagick commands to resizing. . . . . . . . . . . . . . . . . 16
4.3 The original image. . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 The resized image. . . . . . . . . . . . . . . . . . . . . . . . . . . 16

8.1 Preferences for tesseract. . . . . . . . . . . . . . . . . . . . . . . . 23

9.1 Flow for generating ARFF file from user-labelled pixels. . . . . . 26
9.2 User interface for labelling pixels, displaying some pixels labelled

already. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.3 Example dataset generated using the PixelSelector. . . . . . . . . 27

10.1 Generating a CSV file using ImageJ. . . . . . . . . . . . . . . . . 29
10.2 The ImageJ generated CSV file. . . . . . . . . . . . . . . . . . . . 30

5



6 LIST OF FIGURES



Chapter 1

ADAMS

ADAMS has custom image processing support that does not rely on other li-
braries.

The following actors are available:

• sink.ImageWriter – writes an image container to a file using the specified
writer.

• transformer.BufferedImageTransformer – performs a transformation
using an existing transformer class on the incoming image and outputs
another image again.

• transformer.BufferedImageFeatureGenerator – turns a BufferedImageContainer
into an weka.core.Instance object to be used in WEKA. The attaced
meta-data in form of a report can be added to the output object as well.

• transformer.ImageReader – reads an image file using the specified image
reader.

Figure 1.1 shows a flow1 for reading images, blurring them using a gaussian
blur transformer and displaying them side-by-side. Figures 1.2 and 1.3 show
original and blurred image.

1adams-imaging-gaussian blur.flow

7



8 CHAPTER 1. ADAMS

Figure 1.1: Flow for blurring images stored in a directory.

Figure 1.2: The original image. Figure 1.3: The blurred image.



Chapter 2

Java Advanced Imaging

Java Advanced Imaging (JAI) is an API to provide a simple, high-level program-
ming model which allows developers to create their own image manipulation
routines1.

Reading and writing images are done using the ImageReader transformer
and ImageWriter sink:

• ImageReader – use the JAIImageReader

• ImageWriter – use the JAIImageWriter

Since the JAI actors, readers and writers use BufferedImageContainer,
the BufferedImageTransformer and BufferedImageFeatureGenerator trans-
formers can be used.

1http://en.wikipedia.org/wiki/Java_Advanced_Imaging

9

http://en.wikipedia.org/wiki/Java_Advanced_Imaging


10 CHAPTER 2. JAVA ADVANCED IMAGING



Chapter 3

ImageJ

ImageJ is a public domain software suite written in Java (using AWT, opposed
to Swing which ADAMS uses) for image processing, developed at National In-
stitutes of Health ([3]).

3.1 Flow

There are four ImageJ actors available:

• transformer.ImageJReader – for reading any image file that JAI sup-
ports1 and forwarding an ImagePlusContainer object.

• transformer.ImageJTransformer – performs a transformation using an
existing ImageJ transformer class on the incoming image and outputs
another image again. ImageJ plugin filters, commands and pre-recorded
macros can be used to perform transformations.

• transformer.ImageJFeatureGenerator – turns an ImagePlusContainer

into an weka.core.Instance object to be used in WEKA. The attaced
meta-data in form of a report can be added to the output object as well.

• transformer.ImageJReleaseAllImages – removes all images currently
listed in ImageJ’s batch mode list, freeing up memory.

• sink.ImageJReleaseImage – removes the incoming image from ImageJ’s
batch mode list of images, freeing up memory.

• sink.ImageJWriter – for writing an ImagePlusContainer to a file format
that ImageJ supports. If the image type cannot be determined based on
the extension, you can also specify which type to generate.

Figure 3.1 shows a flow2 for reading images, turning them into greyscale
using a transformer and displaying them side-by-side. Figures 3.2 and 3.3 show
original and greyscale image.

1http://imagejdocu.tudor.lu/doku.php?id=faq:general:which_file_formats_are_

supported_by_imagej
2adams-imaging-transform to greyscale.flow

11

http://imagejdocu.tudor.lu/doku.php?id=faq:general:which_file_formats_are_supported_by_imagej
http://imagejdocu.tudor.lu/doku.php?id=faq:general:which_file_formats_are_supported_by_imagej


12 CHAPTER 3. IMAGEJ

Figure 3.1: ImageJ flow for turning images stored in a directory into greyscale
ones.

Figure 3.2: The original image. Figure 3.3: The greyscale image.



3.2. PLUGINS 13

3.2 Plugins

By default, ADAMS includes plugins located in the following directory on
Linux/Unix/Mac:

$HOME/.adams/imagej/plugins

and on Windows here:

%USERPROFILE%/_adams/imagej/plugins

You can override this directory by using the ADAMS IMAGEJ DIR environment
variable, which defines the directory one level above the plugins directory. For
instance, if your plugins directory is located at:

/home/user/imagej/plugins

You have to define the ADAMS IMAGEJ DIR environment variable as follows:

ADAMS_IMAGEJ_DIR=/home/user/imagej



14 CHAPTER 3. IMAGEJ



Chapter 4

ImageMagick

ImageMagick R© is a software suite to create, edit, compose, or convert bitmap
images ([4]). On Windows, in order to process images with ImageMagick, you
need to set the IM TOOLPATH environment variable, pointing to the installation.
Similar, for dcraw, you need to defined the DCRAW TOOLPATH variable and, for
ufraw, the UFRAW TOOLPATH one.

There are three ImageMagick actors available:

• transformer.ImageMagickOperation – performs the ImageMagick (con-
vert, dcraw, ufraw) operations that the user selected from the class hier-
archy.

• transformer.ImageMagickTransformer – performs any ImageMagick com-
mand on the incoming image that the convert tool1 supports and outputs
another image again.

Reading and writing images are done using the ImageReader transformer
and ImageWriter sink:

• ImageReader – use the ImageMagickImageReader or UIfrawImageReader

• ImageWriter – use the ImageMagickImageWriter

There is no separate transformer for generating a WEKA instance, since the
ImageMagick actors process and output BufferedImageContainer objects as
well, just like the JAI actors. You can use the BufferedImageFeatureGenerator
for generating WEKA output.

The example flow2 in Figure 4.1 loads a single photo from disk and then
uses ImageMagick to resize it to 90 by 90 pixels and scaling it by 200% (see
4.2). Finally, the modified image is displayed in the image viewer.

1http://www.imagemagick.org/script/convert.php
2adams-imaging-imagemagick script.flow

15

http://www.imagemagick.org/script/convert.php


16 CHAPTER 4. IMAGEMAGICK

Figure 4.1: ImageMagick flow for processing (resizing) a single image.

# resizing image

-resize 90x90

# scaling it up again

-scale 200%

Figure 4.2: ImageMagick commands to resizing.

Figure 4.3: The original image. Figure 4.4: The resized image.



Chapter 5

BoofCV

BoofCV is an API for real-time computer vision and robotics applications1.
There are two BoofCV actors available:

• transformer.BoofCVTransformer – performs a transformation using an
existing BoofCV transformer class on the incoming image and outputs
another image again.

• transformer.BoofCVDetectLines – detects lines in images using a Hough
line detector based on polar parametrization.

• transformer.BoofCVFeatureGenerator – turns a BoofCVImageContainer
into an weka.core.Instance object to be used in WEKA. The attaced
meta-data in form of a report can be added to the output object as well.

1http://boofcv.org/

17

http://boofcv.org/


18 CHAPTER 5. BOOFCV



Chapter 6

LIRE

The Lucene Image Retrieval library [6] provides a wide range of feature gener-
ators that work on BufferedImageContainer objects.

19



20 CHAPTER 6. LIRE



Chapter 7

Object conversion

JAI and ImageMagick actors generate and accept a different type of token,
BufferedImageContainer namely, which cannot be processed by ImageJ actors.
Vice versa, the tokens generated by ImageJ actors, of type ImagePlusContainer,
are not accepted by JAI/ImagMagick actors. In order to exchange data between
the two domains, the Convert transformer can once again be used.

The following conversions are available to convert from one format into an-
other:

• BoofCVImageToBufferedImage – for BoofCV to JAI/ImageMagick con-
version.

• BufferedImageToBoofCV – for JAI/ImageMagick to BoofCV conversion.

• BufferedImageToImageJ – for JAI/ImageMagick to ImageJ conversion.

• ColorToHex – turns a Color object into its hexa-decimal notation.

• ImageJToBufferedImage – converting from ImageJ to JAI/ImageMagick.

• HexToColor – turns a color in hexa-decimal notation back into a Color
object.

21



22 CHAPTER 7. OBJECT CONVERSION



Chapter 8

OCR

A common task in image processing is optical character recognition (OCR).
ADAMS offers a simple wrapper around the open-source tesseract engine [9].
The engine is available for Windows, Linux and Mac OSX. It supports multiple
languages, however, these need to be installed in order to be actually available.

The follwoing actors are available:

• TesseractConfiguration – standalone for configuring OCR, mainly to define
where the tesseract executable is located.

• TesseractOCR – this transformer turns an image file into one or more text
files, which need to be further processed in the flow then.1

By default, the TesseractConfiguration standalone uses the globally defined
preferences as default values. In the preferences dialog (Main menu → Pro-
gram → Preferences → Tesseract) you can specify the location of the tesseract
executable and the default language (see Figure 8.1).

Figure 8.1: Preferences for tesseract.

1adams-imaging-ocr.flow

23



24 CHAPTER 8. OCR



Chapter 9

Interaction

The PixelSelector transformer allows the user to interact with the flow. The
interaction with the user works as follows: an image viewer instance is displayed
when the PixelSelector transformer receives an image token as input. The use
then right-clicks on a pixel that he wants to process, e.g., labelling for WEKA
data generation. After all the pixels have been selected and processed, the user
then hits the OK button to close the dialog. The PixelSelector then forwards
the image container with the attached, enriched report for further processing.

The PixelSelector transformer is very generic, which means the actor is re-
sponsible for the actions that the user can select from the right-click menu. This
is done by selecting the appropriate actions from the list of available ones, e.g.,
AddClassification (package adams.flow.transformer.pixelselector), which
is used for attaching classification labels to pixels. In order to make these se-
lections visible not just in the report that is displayed on the right-hand side
in the dialog, appropriate overlays can be selected as well, e.g., the Classi-
ficationOverlay (package adams.flow.transformer.pixelselector) overlay,
which displays the pixels with the associated labels on the screen.

Figure 9.1 shows a flow1 that lets the user hand-label all JPG images in a
directory and generated WEKA data from it. It uses a cropped region of 5x5
pixels around the selected pixels for the data generation. The user interface for
selecting the pixels is shown in Figure 9.2 and a resulting dataset in Figure 9.3.

Of course, due to the interactive nature, labelling is performed on-the-fly
and no record is kept. Once the image has been processed, the PixelSelector
will forget about it. If you want to preserve the attached report, you can use
the ReportFileWriter transformer to save the report to disk.

In order to re-use a previously saved report, you can use the SetReportFrom-
File or SetReportFromSource transformer to replace the default report in the
image container after you loaded the image with the one stored on disk. This
allows you to continue work with previously generated labels, saving you a lot
of work.

Since the SetReportFromFile and SetReportFromSource transformers gener-
ate ReportHandler tokens, you need to explicitly cast the type of the tokens to
the desired one, e.g., BufferedImageContainer, using the Cast control actor.

1adams-imaging-pixelselector.flow

25



26 CHAPTER 9. INTERACTION

Figure 9.1: Flow for generating ARFF file from user-labelled pixels.

Figure 9.2: User interface for labelling pixels, displaying some pixels labelled
already.



27

Figure 9.3: Example dataset generated using the PixelSelector.



28 CHAPTER 9. INTERACTION



Chapter 10

Feature output

Of course, the data can be turned into a format that is suitable for machine
learning applications like WEKA ([10]). For JAI and ImageMagick transform-
ers, both generating BufferedImageContainer tokens, the BufferedImageFeature-
Generator can be used to generate such output. For ImageJ generated tokens,
outputting ImagePlusContainer tokens, you have to use the ImageJFeature-
Generator instead. What kind of output is generated, depends on the feature
converter defined in those feature generator transformers. By default, spread-
sheet data is generated, which can be stored in CSV files. Figure 10.1 shows a
flow1 that generates a CSV file from images using ImageJ. The resulting dataset,
as displayed in the spreadsheet viewer, is shown in Figure 10.2.

Figure 10.1: Generating a CSV file using ImageJ.

1adams-imaging-csv generation.flow

29



30 CHAPTER 10. FEATURE OUTPUT

Figure 10.2: The ImageJ generated CSV file.



Chapter 11

Miscellaneous actors

The imaging module offers some more actors that have not been introduced yet.
Available sources:

• ColorProvider – outputs Color objects generated by a configured color
provider.

• NewImage – creates an image with a specific color and user-defined dimen-
sions.

Available transformers:

• Draw – Performs draw operations on images, like setting pixels, drawing
lines, rectangles, ovals, text, images1.

• ImageInfo – Allows you to obtain width and height information from an
image.

• ImageMetaData – Extracts meta-data (EXIF or IPTC) from an image as
spreadsheet using various libraries (e.g., Sanselan[8], Meta-Data Extractor[7]).2

• LocateObjects – provides a framework for algorithms that locate objects
in images.

Available sinks:

• FFmpeg – actor for processing videos using ffmpeg[5]3.

1adams-imaging-draw.flow
2adams-imaging-meta data.flow
3adams-imaging-ffmpeg.flow

31



32 CHAPTER 11. MISCELLANEOUS ACTORS



Bibliography

[1] ADAMS – Advanced Data mining and Machine learning System
https://adams.cms.waikato.ac.nz/

[2] JAI – Java Advanced Imaging API
http://java.sun.com/javase/technologies/desktop/media/jai/

[3] ImageJ – Image Processing and Analysis in Java
http://rsbweb.nih.gov/ij/

[4] ImageMagick – Software suite to Convert, Edit, and Compose Images
http://www.imagemagick.org/

[5] FFmpeg – a complete, cross-platform solution to record, convert and
stream audio and video
http://ffmpeg.org/

[6] LIRE – Lucene Image Retrieval
http://code.google.com/p/lire/

[7] MetaData-Exrtactor – Library for reading metadata from image files.
https://code.google.com/p/metadata-extractor/

[8] Sanselan – Apache Imaging (formerly known as Sanselan)
http://commons.apache.org/proper/commons-imaging/

[9] tesseract – An OCR Engine that was developed at HP Labs between 1985
and 1995. . . and now at Google.
http://code.google.com/p/tesseract-ocr/

[10] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, Ian H. Witten (2009); The WEKA Data Mining Software:
An Update; SIGKDD Explorations, Volume 11, Issue 1.
http://www.cs.waikato.ac.nz/ml/weka/

33

https://adams.cms.waikato.ac.nz/
http://java.sun.com/javase/technologies/desktop/media/jai/
http://rsbweb.nih.gov/ij/
http://www.imagemagick.org/
http://ffmpeg.org/
http://code.google.com/p/lire/
https://code.google.com/p/metadata-extractor/
http://commons.apache.org/proper/commons-imaging/
http://code.google.com/p/tesseract-ocr/
http://www.cs.waikato.ac.nz/ml/weka/

	ADAMS
	Java Advanced Imaging
	ImageJ
	Flow
	Plugins

	ImageMagick
	BoofCV
	LIRE
	Object conversion
	OCR
	Interaction
	Feature output
	Miscellaneous actors
	Bibliography

