Package moa.classifiers.meta
Class DynamicWeightedMajority
- java.lang.Object
-
- moa.AbstractMOAObject
-
- moa.options.AbstractOptionHandler
-
- moa.classifiers.AbstractClassifier
-
- moa.classifiers.meta.DynamicWeightedMajority
-
- All Implemented Interfaces:
Configurable
,Serializable
,CapabilitiesHandler
,Classifier
,MultiClassClassifier
,AWTRenderable
,Learner<Example<Instance>>
,MOAObject
,OptionHandler
public class DynamicWeightedMajority extends AbstractClassifier implements MultiClassClassifier
Dynamic weighted majority algorithm. Extends the Weighted Majority Algorithm to add and remove experts based on local and global accuracy.J. Zico Kolter and Marcus A. Maloof. Dynamic weighted majority: An ensemble method for drifting concepts. The Journal of Machine Learning Research, 8:2755-2790, December 2007. ISSN 1532-4435. URL http://dl.acm.org/citation.cfm?id=1314498.1390333.
Based on the source code provided by the author at http://people.cs.georgetown.edu/~maloof/pubs/jmlr07.php
- Author:
- Paulo Goncalves (paulogoncalves at recife dot ifpe dot edu dot br)
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description ClassOption
baseLearnerOption
FloatOption
betaOption
protected long
epochs
protected List<Classifier>
experts
IntOption
maxExpertsOption
IntOption
periodOption
FloatOption
thetaOption
protected List<Double>
weights
-
Fields inherited from class moa.classifiers.AbstractClassifier
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModel
-
Fields inherited from class moa.options.AbstractOptionHandler
config
-
-
Constructor Summary
Constructors Constructor Description DynamicWeightedMajority()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description void
getModelDescription(StringBuilder out, int indent)
Returns a string representation of the model.protected Measurement[]
getModelMeasurementsImpl()
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods.double[]
getVotesForInstance(Instance inst)
Predicts the class memberships for a given instance.boolean
isRandomizable()
Gets whether this learner needs a random seed.protected void
removeExperts()
protected void
removeWeakestExpert(int i)
void
resetLearningImpl()
Resets this classifier.protected void
scaleWeights(double maxWeight)
void
trainOnInstanceImpl(Instance inst)
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods.-
Methods inherited from class moa.classifiers.AbstractClassifier
contextIsCompatible, copy, correctlyClassifies, defineImmutableCapabilities, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModel, getModelContext, getModelMeasurements, getNominalValueString, getPredictionForInstance, getPredictionForInstance, getPurposeString, getSubClassifiers, getSublearners, getVotesForInstance, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance, trainOnInstance
-
Methods inherited from class moa.options.AbstractOptionHandler
getCLICreationString, getOptions, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
-
Methods inherited from class moa.AbstractMOAObject
copy, measureByteSize, measureByteSize, toString
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface moa.capabilities.CapabilitiesHandler
getCapabilities
-
Methods inherited from interface moa.MOAObject
measureByteSize
-
Methods inherited from interface moa.options.OptionHandler
getCLICreationString, getOptions, prepareForUse, prepareForUse
-
-
-
-
Field Detail
-
baseLearnerOption
public ClassOption baseLearnerOption
-
periodOption
public IntOption periodOption
-
betaOption
public FloatOption betaOption
-
thetaOption
public FloatOption thetaOption
-
maxExpertsOption
public IntOption maxExpertsOption
-
experts
protected List<Classifier> experts
-
epochs
protected long epochs
-
-
Method Detail
-
resetLearningImpl
public void resetLearningImpl()
Description copied from class:AbstractClassifier
Resets this classifier. It must be similar to starting a new classifier from scratch.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. Note that this will produce compiler errors if not overridden.- Specified by:
resetLearningImpl
in classAbstractClassifier
-
scaleWeights
protected void scaleWeights(double maxWeight)
-
removeExperts
protected void removeExperts()
-
removeWeakestExpert
protected void removeWeakestExpert(int i)
-
trainOnInstanceImpl
public void trainOnInstanceImpl(Instance inst)
Description copied from class:AbstractClassifier
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. Note that this will produce compiler errors if not overridden.- Specified by:
trainOnInstanceImpl
in classAbstractClassifier
- Parameters:
inst
- the instance to be used for training
-
isRandomizable
public boolean isRandomizable()
Description copied from interface:Learner
Gets whether this learner needs a random seed. Examples of methods that needs a random seed are bagging and boosting.- Specified by:
isRandomizable
in interfaceLearner<Example<Instance>>
- Returns:
- true if the learner needs a random seed.
-
getVotesForInstance
public double[] getVotesForInstance(Instance inst)
Description copied from interface:Classifier
Predicts the class memberships for a given instance. If an instance is unclassified, the returned array elements must be all zero.- Specified by:
getVotesForInstance
in interfaceClassifier
- Specified by:
getVotesForInstance
in classAbstractClassifier
- Parameters:
inst
- the instance to be classified- Returns:
- an array containing the estimated membership probabilities of the test instance in each class
-
getModelMeasurementsImpl
protected Measurement[] getModelMeasurementsImpl()
Description copied from class:AbstractClassifier
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. Note that this will produce compiler errors if not overridden.- Specified by:
getModelMeasurementsImpl
in classAbstractClassifier
- Returns:
- an array of measurements to be used in evaluation tasks
-
getModelDescription
public void getModelDescription(StringBuilder out, int indent)
Description copied from class:AbstractClassifier
Returns a string representation of the model.- Specified by:
getModelDescription
in classAbstractClassifier
- Parameters:
out
- the stringbuilder to add the descriptionindent
- the number of characters to indent
-
-