Package moa.learners
Class ChangeDetectorLearner
- java.lang.Object
-
- moa.AbstractMOAObject
-
- moa.options.AbstractOptionHandler
-
- moa.classifiers.AbstractClassifier
-
- moa.learners.ChangeDetectorLearner
-
- All Implemented Interfaces:
Configurable
,Serializable
,CapabilitiesHandler
,Classifier
,AWTRenderable
,Learner<Example<Instance>>
,MOAObject
,OptionHandler
public class ChangeDetectorLearner extends AbstractClassifier
Class for detecting concept drift and to be used as a learner.data Valid options are:
-l classname
Specify the full class name of a classifier as the basis for the concept drift classifier.- Version:
- $Revision: 7 $
- Author:
- Albert Bifet (abifet at cs dot waikato dot ac dot nz)
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description protected ChangeDetector
driftDetectionMethod
ClassOption
driftDetectionMethodOption
-
Fields inherited from class moa.classifiers.AbstractClassifier
classifierRandom, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModel
-
Fields inherited from class moa.options.AbstractOptionHandler
config
-
-
Constructor Summary
Constructors Constructor Description ChangeDetectorLearner()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description void
getModelDescription(StringBuilder out, int indent)
Returns a string representation of the model.protected Measurement[]
getModelMeasurementsImpl()
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods.double[]
getVotesForInstance(Instance inst)
Predicts the class memberships for a given instance.boolean
isRandomizable()
Gets whether this learner needs a random seed.void
resetLearningImpl()
Resets this classifier.void
trainOnInstanceImpl(Instance inst)
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods.-
Methods inherited from class moa.classifiers.AbstractClassifier
contextIsCompatible, copy, correctlyClassifies, defineImmutableCapabilities, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModel, getModelContext, getModelMeasurements, getNominalValueString, getPredictionForInstance, getPredictionForInstance, getPurposeString, getSubClassifiers, getSublearners, getVotesForInstance, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance, trainOnInstance
-
Methods inherited from class moa.options.AbstractOptionHandler
getCLICreationString, getOptions, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
-
Methods inherited from class moa.AbstractMOAObject
copy, measureByteSize, measureByteSize, toString
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface moa.capabilities.CapabilitiesHandler
getCapabilities
-
Methods inherited from interface moa.MOAObject
measureByteSize
-
Methods inherited from interface moa.options.OptionHandler
getCLICreationString, getOptions, prepareForUse, prepareForUse
-
-
-
-
Field Detail
-
driftDetectionMethodOption
public ClassOption driftDetectionMethodOption
-
driftDetectionMethod
protected ChangeDetector driftDetectionMethod
-
-
Method Detail
-
resetLearningImpl
public void resetLearningImpl()
Description copied from class:AbstractClassifier
Resets this classifier. It must be similar to starting a new classifier from scratch.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. Note that this will produce compiler errors if not overridden.- Specified by:
resetLearningImpl
in classAbstractClassifier
-
trainOnInstanceImpl
public void trainOnInstanceImpl(Instance inst)
Description copied from class:AbstractClassifier
Trains this classifier incrementally using the given instance.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. Note that this will produce compiler errors if not overridden.- Specified by:
trainOnInstanceImpl
in classAbstractClassifier
- Parameters:
inst
- the instance to be used for training
-
getVotesForInstance
public double[] getVotesForInstance(Instance inst)
Description copied from interface:Classifier
Predicts the class memberships for a given instance. If an instance is unclassified, the returned array elements must be all zero.- Specified by:
getVotesForInstance
in interfaceClassifier
- Specified by:
getVotesForInstance
in classAbstractClassifier
- Parameters:
inst
- the instance to be classified- Returns:
- an array containing the estimated membership probabilities of the test instance in each class
-
isRandomizable
public boolean isRandomizable()
Description copied from interface:Learner
Gets whether this learner needs a random seed. Examples of methods that needs a random seed are bagging and boosting.- Returns:
- true if the learner needs a random seed.
-
getModelDescription
public void getModelDescription(StringBuilder out, int indent)
Description copied from class:AbstractClassifier
Returns a string representation of the model.- Specified by:
getModelDescription
in classAbstractClassifier
- Parameters:
out
- the stringbuilder to add the descriptionindent
- the number of characters to indent
-
getModelMeasurementsImpl
protected Measurement[] getModelMeasurementsImpl()
Description copied from class:AbstractClassifier
Gets the current measurements of this classifier.
The reason for ...Impl methods: ease programmer burden by not requiring them to remember calls to super in overridden methods. Note that this will produce compiler errors if not overridden.- Specified by:
getModelMeasurementsImpl
in classAbstractClassifier
- Returns:
- an array of measurements to be used in evaluation tasks
-
-