Package moa.clusterers.streamkm
Class StreamKM
- java.lang.Object
-
- moa.AbstractMOAObject
-
- moa.options.AbstractOptionHandler
-
- moa.clusterers.AbstractClusterer
-
- moa.clusterers.streamkm.StreamKM
-
- All Implemented Interfaces:
Configurable
,Serializable
,Clusterer
,AWTRenderable
,MOAObject
,OptionHandler
public class StreamKM extends AbstractClusterer
- Author:
- Marcel R. Ackermann, Christiane Lammersen, Marcus Maertens, Christoph Raupach, Christian Sohler, Kamil Swierkot Modified by Richard Hugh Moulton (24 Jul 2017) Citation: Marcel R. Ackermann, Christiane Lammersen, Marcus Märtens, Christoph Raupach, Christian Sohler, Kamil Swierkot: StreamKM++: A Clustering Algorithms for Data Streams. ALENEX 2010: 173-187
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description protected Point[]
centresStreamingCoreset
protected MTRandom
clustererRandom
protected int
coresetsize
protected int
dimension
FlagOption
evaluateOption
protected boolean
initialized
protected int
length
IntOption
lengthOption
protected BucketManager
manager
protected int
numberInstances
protected int
numberOfCentres
IntOption
numClustersOption
IntOption
randomSeedOption
IntOption
sizeCoresetOption
-
Fields inherited from class moa.clusterers.AbstractClusterer
clustering, evaluateMicroClusteringOption, modelContext, randomSeed, trainingWeightSeenByModel
-
Fields inherited from class moa.options.AbstractOptionHandler
config
-
-
Constructor Summary
Constructors Constructor Description StreamKM()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description Clustering
getClusteringResult()
void
getModelDescription(StringBuilder out, int indent)
protected Measurement[]
getModelMeasurementsImpl()
double[]
getVotesForInstance(Instance inst)
boolean
isRandomizable()
CoresetCostTriple
lloydPlusPlus(int k, int n, int d, Point[] points)
void
resetLearningImpl()
double
targetFunctionValue(int k, int n, Point[] centres, Point[] points)
computes the target function for the given pointarray points[] (of size n) with the given array of centres centres[] (of size k)void
trainOnInstanceImpl(Instance inst)
-
Methods inherited from class moa.clusterers.AbstractClusterer
adjustParameters, contextIsCompatible, copy, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getMicroClusteringResult, getModelContext, getModelMeasurements, getNominalValueString, getPurposeString, getSubClusterers, implementsMicroClusterer, keepClassLabel, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, resetLearning, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance
-
Methods inherited from class moa.options.AbstractOptionHandler
getCLICreationString, getOptions, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
-
Methods inherited from class moa.AbstractMOAObject
copy, measureByteSize, measureByteSize, toString
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface moa.MOAObject
measureByteSize
-
Methods inherited from interface moa.options.OptionHandler
getCLICreationString, getOptions, prepareForUse, prepareForUse
-
-
-
-
Field Detail
-
sizeCoresetOption
public IntOption sizeCoresetOption
-
numClustersOption
public IntOption numClustersOption
-
lengthOption
public IntOption lengthOption
-
evaluateOption
public FlagOption evaluateOption
-
randomSeedOption
public IntOption randomSeedOption
-
clustererRandom
protected MTRandom clustererRandom
-
centresStreamingCoreset
protected Point[] centresStreamingCoreset
-
numberInstances
protected int numberInstances
-
dimension
protected int dimension
-
length
protected int length
-
numberOfCentres
protected int numberOfCentres
-
coresetsize
protected int coresetsize
-
manager
protected BucketManager manager
-
initialized
protected boolean initialized
-
-
Method Detail
-
resetLearningImpl
public void resetLearningImpl()
- Specified by:
resetLearningImpl
in classAbstractClusterer
-
trainOnInstanceImpl
public void trainOnInstanceImpl(Instance inst)
- Specified by:
trainOnInstanceImpl
in classAbstractClusterer
-
getModelMeasurementsImpl
protected Measurement[] getModelMeasurementsImpl()
- Specified by:
getModelMeasurementsImpl
in classAbstractClusterer
-
getModelDescription
public void getModelDescription(StringBuilder out, int indent)
- Specified by:
getModelDescription
in classAbstractClusterer
-
isRandomizable
public boolean isRandomizable()
-
getVotesForInstance
public double[] getVotesForInstance(Instance inst)
-
getClusteringResult
public Clustering getClusteringResult()
-
lloydPlusPlus
public CoresetCostTriple lloydPlusPlus(int k, int n, int d, Point[] points)
-
-