Package moa.clusterers.outliers.AnyOut
Class AnyOutCore
- java.lang.Object
-
- moa.AbstractMOAObject
-
- moa.options.AbstractOptionHandler
-
- moa.clusterers.AbstractClusterer
-
- moa.clusterers.clustree.ClusTree
-
- moa.clusterers.outliers.AnyOut.AnyOutCore
-
- All Implemented Interfaces:
Configurable
,Serializable
,Clusterer
,AWTRenderable
,MOAObject
,OptionHandler
public class AnyOutCore extends ClusTree
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description IntOption
confidenceChoiceOption
IntOption
confKOption
IntOption
oScoreKOption
FloatOption
threshholdOption
IntOption
trainingSetSizeOption
FlagOption
UseMeanScoreOption
-
Fields inherited from class moa.clusterers.clustree.ClusTree
breadthFirstStrat, breadthFirstStrategyOption, horizonOption, maxHeight, maxHeightOption, negLambda, root
-
Fields inherited from class moa.clusterers.AbstractClusterer
clustererRandom, clustering, evaluateMicroClusteringOption, modelContext, randomSeed, randomSeedOption, trainingWeightSeenByModel
-
Fields inherited from class moa.options.AbstractOptionHandler
config
-
-
Constructor Summary
Constructors Constructor Description AnyOutCore()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description double
getConfidence(int id)
double
getOutlierScore(int id)
void
improveObjectOnce(int objectId)
void
initObject(int objectId, double[] features)
boolean
isOutlier(int id)
void
learnObject(double[] features)
boolean
moreImprovementsPossible(int objectId, double depthPercentage)
void
removeObject(int objectId)
void
resetLearning()
void
train(DataSet trainingSet)
-
Methods inherited from class moa.clusterers.clustree.ClusTree
adjustParameters, getClustering, getClusteringResult, getDefaultHeight, getHeight, getMicroClusteringResult, getModelDescription, getModelMeasurementsImpl, getNumRootSplits, getVotesForInstance, implementsMicroClusterer, insert, isRandomizable, resetLearningImpl, trainOnInstanceImpl
-
Methods inherited from class moa.clusterers.AbstractClusterer
contextIsCompatible, copy, getAttributeNameString, getAWTRenderer, getClassLabelString, getClassNameString, getDescription, getModelContext, getModelMeasurements, getNominalValueString, getPurposeString, getSubClusterers, keepClassLabel, modelAttIndexToInstanceAttIndex, modelAttIndexToInstanceAttIndex, prepareForUseImpl, setModelContext, setRandomSeed, trainingHasStarted, trainingWeightSeenByModel, trainOnInstance
-
Methods inherited from class moa.options.AbstractOptionHandler
getCLICreationString, getOptions, getPreparedClassOption, prepareClassOptions, prepareForUse, prepareForUse
-
Methods inherited from class moa.AbstractMOAObject
copy, measureByteSize, measureByteSize, toString
-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface moa.MOAObject
measureByteSize
-
Methods inherited from interface moa.options.OptionHandler
getCLICreationString, getOptions, prepareForUse, prepareForUse
-
-
-
-
Field Detail
-
trainingSetSizeOption
public IntOption trainingSetSizeOption
-
oScoreKOption
public IntOption oScoreKOption
-
confKOption
public IntOption confKOption
-
confidenceChoiceOption
public IntOption confidenceChoiceOption
-
UseMeanScoreOption
public FlagOption UseMeanScoreOption
-
threshholdOption
public FloatOption threshholdOption
-
-
Method Detail
-
resetLearning
public void resetLearning()
- Specified by:
resetLearning
in interfaceClusterer
- Overrides:
resetLearning
in classAbstractClusterer
-
train
public void train(DataSet trainingSet)
-
initObject
public void initObject(int objectId, double[] features)
-
learnObject
public void learnObject(double[] features)
-
removeObject
public void removeObject(int objectId)
-
moreImprovementsPossible
public boolean moreImprovementsPossible(int objectId, double depthPercentage)
-
improveObjectOnce
public void improveObjectOnce(int objectId)
-
isOutlier
public boolean isOutlier(int id)
-
getOutlierScore
public double getOutlierScore(int id)
-
getConfidence
public double getConfidence(int id)
-
-