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Introduction

Massive Online Analysis (MOA) is a software environment for implementing al-
gorithms and running experiments for online learning from evolving data streams.

MOA includes a collection of offline and online methods as well as tools for
evaluation. In particular, it implements boosting, bagging, and Hoeffding Trees,
all with and without Naïve Bayes classifiers at the leaves.

MOA is related to WEKA, the Waikato Environment for Knowledge Analysis,
which is an award-winning open-source workbench containing implementations
of a wide range of batch machine learning methods. WEKA is also written in
Java. The main benefits of Java are portability, where applications can be run on
any platform with an appropriate Java virtual machine, and the strong and well-
developed support libraries. Use of the language is widespread, and features
such as the automatic garbage collection help to reduce programmer burden
and error.

This text explains the theoretical and practical foundations of the methods
and streams available in MOA. The moa and the weka are both birds native to
New Zealand. The weka is a cheeky bird of similar size to a chicken. The moa
was a large ostrich-like bird, an order of magnitude larger than a weka, that was
hunted to extinction.
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Introduction and Preliminaries
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1
Preliminaries

In today’s information society, extraction of knowledge is becoming a very im-
portant task for many people. We live in an age of knowledge revolution. Peter
Drucker [55], an influential management expert, writes “From now on, the key is
knowledge. The world is not becoming labor intensive, not material intensive,
not energy intensive, but knowledge intensive”. This knowledge revolution is
based in an economic change from adding value by producing things which is,
ultimately limited, to adding value by creating and using knowledge which can
grow indefinitely.

The digital universe in 2007 was estimated in [80] to be 281 exabytes or 281
billion gigabytes, and by 2011, the digital universe will be 10 times the size it
was 5 years before. The amount of information created, or captured exceeded
available storage for the first time in 2007.

To deal with these huge amount of data in a responsible way, green com-
puting is becoming a necessity. Green computing is the study and practice of
using computing resources efficiently. A main approach to green computing is
based on algorithmic efficiency. The amount of computer resources required for
any given computing function depends on the efficiency of the algorithms used.
As the cost of hardware has declined relative to the cost of energy, the energy
efficiency and environmental impact of computing systems and programs are
receiving increased attention.

1.1 MOA Stream Mining

A largely untested hypothesis of modern society is that it is important to record
data as it may contain valuable information. This occurs in almost all facets of
life from supermarket checkouts to the movements of cows in a paddock. To
support the hypothesis, engineers and scientists have produced a raft of inge-
nious schemes and devices from loyalty programs to RFID tags. Little thought
however, has gone into how this quantity of data might be analyzed.

Machine learning, the field for finding ways to automatically extract informa-
tion from data, was once considered the solution to this problem. Historically
it has concentrated on learning from small numbers of examples, because only
limited amounts of data were available when the field emerged. Some very
sophisticated algorithms have resulted from the research that can learn highly
accurate models from limited training examples. It is commonly assumed that
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CHAPTER 1. PRELIMINARIES

the entire set of training data can be stored in working memory.
More recently the need to process larger amounts of data has motivated the

field of data mining. Ways are investigated to reduce the computation time and
memory needed to process large but static data sets. If the data cannot fit into
memory, it may be necessary to sample a smaller training set. Alternatively,
algorithms may resort to temporary external storage, or only process subsets of
data at a time. Commonly the goal is to create a learning process that is linear
in the number of examples. The essential learning procedure is treated like a
scaled up version of classic machine learning, where learning is considered a
single, possibly expensive, operation—a set of training examples are processed
to output a final static model.

The data mining approach may allow larger data sets to be handled, but it still
does not address the problem of a continuous supply of data. Typically, a model
that was previously induced cannot be updated when new information arrives.
Instead, the entire training process must be repeated with the new examples
included. There are situations where this limitation is undesirable and is likely
to be inefficient.

The data stream paradigm has recently emerged in response to the continu-
ous data problem. Algorithms written for data streams can naturally cope with
data sizes many times greater than memory, and can extend to challenging real-
time applications not previously tackled by machine learning or data mining.
The core assumption of data stream processing is that training examples can be
briefly inspected a single time only, that is, they arrive in a high speed stream,
then must be discarded to make room for subsequent examples. The algorithm
processing the stream has no control over the order of the examples seen, and
must update its model incrementally as each example is inspected. An addi-
tional desirable property, the so-called anytime property, requires that the model
is ready to be applied at any point between training examples.

Studying purely theoretical advantages of algorithms is certainly useful and
enables new developments, but the demands of data streams require this to be
followed up with empirical evidence of performance. Claiming that an algorithm
is suitable for data stream scenarios implies that it possesses the necessary prac-
tical capabilities. Doubts remain if these claims cannot be backed by reasonable
empirical evidence.

Data stream classification algorithms require appropriate and complete eval-
uation practices. The evaluation should allow users to be sure that particular
problems can be handled, to quantify improvements to algorithms, and to deter-
mine which algorithms are most suitable for their problem. MOA is suggested
with these needs in mind.

Measuring data stream classification performance is a three dimensional prob-
lem involving processing speed, memory and accuracy. It is not possible to en-
force and simultaneously measure all three at the same time so in MOA it is
necessary to fix the memory size and then record the other two. Various mem-
ory sizes can be associated with data stream application scenarios so that basic
questions can be asked about expected performance of algorithms in a given
application scenario. MOA is developed to provide useful insight about classifi-
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1.2. ASSUMPTIONS

cation performance.

1.2 Assumptions

MOA is concerned with the problem of classification, perhaps the most com-
monly researched machine learning task. The goal of classification is to produce
a model that can predict the class of unlabeled examples, by training on ex-
amples whose label, or class, is supplied. To clarify the problem setting being
addressed, several assumptions are made about the typical learning scenario:

1. The data is assumed to have a small and fixed number of columns, or
attributes/features—several hundred at the most.

2. The number of rows, or examples, is very large—millions of examples at the
smaller scale. In fact, algorithms should have the potential to process an
infinite amount of data, meaning that they will not exceed memory limits
or otherwise fail no matter how many training examples are processed.

3. The data has a limited number of possible class labels, typically less than
ten.

4. The amount of memory available to a learning algorithm depends on the
application. The size of the training data will be considerably larger than
the available memory.

5. There should be a small upper bound on the time allowed to train or clas-
sify an example. This permits algorithms to scale linearly with the number
of examples, so users can process N times more than an existing amount
simply by waiting N times longer than they already have.

6. Stream concepts are assumed to be stationary or evolving. Concept drift
occurs when the underlying concept defining the target being learned be-
gins to shift over time.

The first three points emphasize that the aim is to scale with the number of
examples. Data sources that are large in other dimensions, such as numbers of
attributes or possible labels are not the intended problem domain. Points 4 and
5 outline what is needed from a solution. Regarding point 6, some researchers
argue that addressing concept drift is one of the most crucial issues in processing
data streams.

1.3 Requirements

The conventional machine learning setting, referred to in this text as the batch
setting, operates assuming that the training data is available as a whole set—
any example can be retrieved as needed for little cost. An alternative is to treat
the training data as a stream, a potentially endless flow of data that arrives in
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CHAPTER 1. PRELIMINARIES

an order that cannot be controlled. Note that an algorithm capable of learning
from a stream is, by definition, a data mining algorithm.

Placing classification in a data stream setting offers several advantages. Not
only is the limiting assumption of early machine learning techniques addressed,
but other applications even more demanding than mining of large databases
can be attempted. An example of such an application is the monitoring of high-
speed network traffic, where the unending flow of data is too overwhelming to
consider storing and revisiting.

A classification algorithm must meet several requirements in order to work
with the assumptions and be suitable for learning from data streams. The re-
quirements, numbered 1 through 4, are detailed below.

Requirement 1: Process an example at a time, and inspect it
only once (at most)

The key characteristic of a data stream is that data ‘flows’ by one example after
another. There is no allowance for random access of the data being supplied.
Each example must be accepted as it arrives in the order that it arrives. Once
inspected or ignored, an example is discarded with no ability to retrieve it again.

Although this requirement exists on the input to an algorithm, there is no
rule preventing an algorithm from remembering examples internally in the short
term. An example of this may be the algorithm storing up a batch of examples
for use by a conventional learning scheme. While the algorithm is free to operate
in this manner, it will have to discard stored examples at some point if it is to
adhere to requirement 2.

The inspect-once rule may only be relaxed in cases where it is practical to
re-send the entire stream, equivalent to multiple scans over a database. In this
case an algorithm may be given a chance during subsequent passes to refine
the model it has learned. However, an algorithm that requires any more than a
single pass to operate is not flexible enough for universal applicability to data
streams.

Requirement 2: Use a limited amount of memory

The main motivation for employing the data stream model is that it allows pro-
cessing of data that is many times larger than available working memory. The
danger with processing such large amounts of data is that memory is easily ex-
hausted if there is no intentional limit set on its use.

Memory used by an algorithm can be divided into two categories: memory
used to store running statistics, and memory used to store the current model.
For the most memory-efficient algorithm they will be one and the same, that is,
the running statistics directly constitute the model used for prediction.

This memory restriction is a physical restriction that can only be relaxed if
external storage is used, temporary files for example. Any such work-around
needs to be done with consideration of requirement 3.

8



1.4. MINING STRATEGIES

Requirement 3: Work in a limited amount of time

For an algorithm to scale comfortably to any number of examples, its runtime
complexity must be linear in the number of examples. This can be achieved in
the data stream setting if there is a constant, preferably small, upper bound on
the amount of processing per example.

Furthermore, if an algorithm is to be capable of working in real-time, it must
process the examples as fast if not faster than they arrive. Failure to do so in-
evitably means loss of data.

Absolute timing is not as critical in less demanding applications, such as when
the algorithm is being used to classify a large but persistent data source. How-
ever, the slower the algorithm is, the less value it will be for users who require
results within a reasonable amount of time.

Requirement 4: Be ready to predict at any point

An ideal algorithm should be capable of producing the best model it can from
the data it has observed after seeing any number of examples. In practice it is
likely that there will be periods where the model stays constant, such as when a
batch based algorithm is storing up the next batch.

The process of generating the model should be as efficient as possible, the
best case being that no translation is necessary. That is, the final model is directly
manipulated in memory by the algorithm as it processes examples, rather than
having to recompute the model based on running statistics.

The data stream classification cycle

Figure 1.1 illustrates the typical use of a data stream classification algorithm,
and how the requirements fit in. The general model of data stream classification
follows these three steps in a repeating cycle:

1. The algorithm is passed the next available example from the stream (re-
quirement 1).

2. The algorithm processes the example, updating its data structures. It does
so without exceeding the memory bounds set on it (requirement 2), and
as quickly as possible (requirement 3).

3. The algorithm is ready to accept the next example. On request it is able to
supply a model that can be used to predict the class of unseen examples
(requirement 4).

1.4 Mining Strategies

The task of modifying machine learning algorithms to handle large data sets is
known as scaling up [46]. Analogous to approaches used in data mining, there
are two general strategies for taking machine learning concepts and applying
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3 model
requirement 4

2 learning
requirements 2 & 3

1 input
requirement 1

examples
training

examples
test

predictions

Figure 1.1: The data stream classification cycle.

them to data streams. The wrapper approach aims at maximum reuse of existing
schemes, whereas adaptation looks for new methods tailored to the data stream
setting.

Using a wrapper approach means that examples must in some way be col-
lected into a batch so that a traditional batch learner can be used to induce a
model. The models must then be chosen and combined in some way to form
predictions. The difficulties of this approach include determining appropriate
training set sizes, and also that training times will be out of the control of a
wrapper algorithm, other than the indirect influence of adjusting the training
set size. When wrapping around complex batch learners, training sets that are
too large could stall the learning process and prevent the stream from being
processed at an acceptable speed. Training sets that are too small will induce
models that are poor at generalizing to new examples. Memory management
of a wrapper scheme can only be conducted on a per-model basis, where mem-
ory can be freed by forgetting some of the models that were previously induced.
Examples of wrapper approaches from the literature include Wang et al. [188],
Street and Kim [180] and Chu and Zaniolo [38].

Purposefully adapted algorithms designed specifically for data stream prob-
lems offer several advantages over wrapper schemes. They can exert greater
control over processing times per example, and can conduct memory manage-
ment at a finer-grained level. Common varieties of machine learning approaches
to classification fall into several general classes. These classes of method are dis-
cussed below, along with their potential for adaptation to data streams:
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decision trees This class of method is the main focus of the text . Chapter 3
studies a successful adaptation of decision trees to data streams [52] and
outlines the motivation for this choice.

rules Rules are somewhat similar to decision trees, as a decision tree can be
decomposed into a set of rules, although the structure of a rule set can
be more flexible than the hierarchy of a tree. Rules have an advantage
that each rule is a disjoint component of the model that can be evaluated
in isolation and removed from the model without major disruption, com-
pared to the cost of restructuring decision trees. However, rules may be
less efficient to process than decision trees, which can guarantee a single
decision path per example. Ferrer-Troyano et al. [60, 61] have developed
methods for inducing rule sets directly from streams.

lazy/nearest neighbour This class of method is described as lazy because in the
batch learning setting no work is done during training, but all of the effort
in classifying examples is delayed until predictions are required. The typ-
ical nearest neighbour approach will look for examples in the training set
that are most similar to the example being classified, as the class labels of
these examples are expected to be a reasonable indicator of the unknown
class. The challenge with adapting these methods to the data stream set-
ting is that training can not afford to be lazy, because it is not possible to
store the entire training set. Instead the examples that are remembered
must be managed so that they fit into limited memory. An intuitive solu-
tion to this problem involves finding a way to merge new examples with
the closest ones already in memory, the main question being what merging
process will perform best. Another issue is that searching for the nearest
neighbours is costly. This cost may be reduced by using efficient data struc-
tures designed to reduce search times. Nearest neighbour based methods
are a popular research topic for data stream classification. Examples of
systems include [133, 70, 121, 15].

support vector machines/neural networks Both of these methods are related
and of similar power, although support vector machines [33] are induced
via an alternate training method and are a hot research topic due to their
flexibility in allowing various kernels to offer tailored solutions. Memory
management for support vector machines could be based on limiting the
number of support vectors being induced. Incremental training of support
vector machines has been explored previously, for example [181]. Neu-
ral networks are relatively straightforward to train on a data stream. A
real world application using neural networks is given by Gama and Ro-
drigues [78]. The typical procedure assumes a fixed network, so there is
no memory management problem. It is straightforward to use the typi-
cal backpropagation training method on a stream of examples, rather than
repeatedly scanning a fixed training set as required in the batch setting.

Bayesian methods These methods are based around Bayes’ theorem and com-
pute probabilities in order to perform Bayesian inference. The simplest
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Bayesian method, Naive Bayes, is described in Section 5.2, and is a special
case of algorithm that needs no adaptation to data streams. This is because
it is straightforward to train incrementally and does not add structure to
the model, so that memory usage is small and bounded. A single Naive
Bayes model will generally not be as accurate as more complex models.
The more general case of Bayesian networks is also suited to the data stream
setting, at least when the structure of the network is known. Learning a
suitable structure for the network is a more difficult problem. Hulten and
Domingos [107] describe a method of learning Bayesian networks from
data streams using Hoeffding bounds. Bouckaert [22] also presents a so-
lution.

meta/ensemble methods These methods wrap around other existing methods,
typically building up an ensemble of models. Examples of this include [154,
133]. This is the other major class of algorithm studied in-depth by this
text , beginning in Chapter 6.

Gaber et al. [71] survey the field of data stream classification algorithms and
list those that they believe are major contributions. Most of these have already
been covered: Domingos and Hulten’s VFDT [52], the decision tree algorithm
studied in-depth by this text ; ensemble-based classification by Wang et al. [188]
that has been mentioned as a wrapper approach; SCALLOP, a rule-based learner
that is the earlier work of Ferrer-Troyano et al. [60]; ANNCAD, which is a near-
est neighbour method developed by Law and Zaniolo [133] that operates using
Haar wavelet transformation of data and small classifier ensembles; and LWClass
proposed by Gaber et al. [70], another nearest neighbour based technique, that
actively adapts to fluctuating time and space demands by varying a distance
threshold. The other methods in their survey that have not yet been mentioned
include on demand classification. This method by Aggarwal et al. [3] performs
dynamic collection of training examples into supervised micro-clusters. From
these clusters, a nearest neighbour type classification is performed, where the
goal is to quickly adapt to concept drift. The final method included in the survey
is known as an online information network (OLIN) proposed by Last [132]. This
method has a strong focus on concept drift, and uses a fuzzy technique to con-
struct a model similar to decision trees, where the frequency of model building
and training window size is adjusted to reduce error as concepts evolve.

Dealing with time-changing data requires strategies for detecting and quan-
tifying change, forgetting stale examples, and for model revision. Fairly generic
strategies exist for detecting change and deciding when examples are no longer
relevant.

1.5 Change Detection Strategies

The following different modes of change have been identified in the literature [182,
179, 192]:

• concept change
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– concept drift

– concept shift

• distribution or sampling change

Concept refers to the target variable, which the model is trying to predict.
Concept change is the change of the underlying concept over time. Concept drift
describes a gradual change of the concept and concept shift happens when a
change between two concepts is more abrupt.

Distribution change, also known as sampling change or shift or virtual concept
drift , refers to the change in the data distribution. Even if the concept remains
the same, the change may often lead to revising the current model as the model’s
error rate may no longer be acceptable with the new data distribution.

Some authors, as Stanley [179], have suggested that from the practical point
of view, it is not essential to differentiate between concept change and sampling
change since the current model needs to be changed in both cases.

Change detection is not an easy task, since a fundamental limitation ex-
ists [90]: the design of a change detector is a compromise between detecting
true changes and avoiding false alarms. See [90, 14] for more detailed surveys
of change detection methods.

The CUSUM Test

The cumulative sum (CUSUM algorithm), first proposed in [155], is a change
detection algorithm that gives an alarm when the mean of the input data is
significantly different from zero. The CUSUM input εt can be any filter residual,
for instance the prediction error from a Kalman filter.

The CUSUM test is as follows:

g0 = 0

gt =max (0, gt−1 + εt −υ)

if gt > h then alarm and gt = 0

The CUSUM test is memoryless, and its accuracy depends on the choice of pa-
rameters υ and h.

The Geometric Moving Average Test

The CUSUM test is a stopping rule. Other stopping rules exist. For example, the
Geometric Moving Average (GMA) test, first proposed in [164], is the following

g0 = 0

gt = λgt−1 + (1−λ)εt

if gt > h then alarm and gt = 0

The forgetting factor λ is used to give more or less weight to the last data arrived.
The treshold h is used to tune the sensitivity and false alarm rate of the detector.
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Statistical Tests

CUSUM and GMA are methods for dealing with numeric sequences. For more
complex populations, we need to use other methods. There exist some statistical
tests that may be used to detect change. A statistical test is a procedure for
deciding whether a hypothesis about a quantitative feature of a population is
true or false. We test an hypothesis of this sort by drawing a random sample
from the population in question and calculating an appropriate statistic on its
items. If, in doing so, we obtain a value of the statistic that would occur rarely
when the hypothesis is true, we would have reason to reject the hypothesis.

To detect change, we need to compare two sources of data, and decide if the
hypothesis H0 that they come from the same distribution is true. Let’s suppose
we have two estimates, µ̂0 and µ̂1 with variancesσ2

0 andσ2
1. If there is no change

in the data, these estimates will be consistent. Otherwise, a hypothesis test will
reject H0 and a change is detected. There are several ways to construct such a
hypothesis test. The simplest one is to study the difference

µ̂0 − µ̂1 ∈ N(0,σ2
0 +σ

2
1), under H0

or, to make a χ2 test

(µ̂0 − µ̂1)2

σ2
0 +σ

2
1

∈ χ2(1), under H0

from which a standard hypothesis test can be formulated.
For example, suppose we want to design a change detector using a statistical

test with a probability of false alarm of 5%, that is,

Pr

�

|µ̂0 − µ̂1|
Æ

σ2
0 +σ

2
1

> h

�

= 0.05

A table of the Gaussian distribution shows that P(X < 1.96) = 0.975, so the
test becomes

(µ̂0 − µ̂1)2

σ2
0 +σ

2
1

> 1.96

Note that this test uses the normality hypothesis. In Chapter 8 we will propose a
similar test with theoretical guarantees. However, we could have used this test
on the methods of Chapter 8.

The Kolmogorov-Smirnov test [117] is another statistical test used to com-
pare two populations. Given samples from two populations, the cumulative dis-
tribution functions can be determined and plotted. Hence the maximum value of
the difference between the plots can be found and compared with a critical value.
If the observed value exceeds the critical value, H0 is rejected and a change is
detected. It is not obvious how to implement the Kolmogorov-Smirnov test deal-
ing with data streams. Kifer et al. [122] propose a KS-structure to implement
Kolmogorov-Smirnov and similar tests, on the data stream setting.
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Drift Detection Method

The drift detection method (DDM) proposed by Gama et al. [72] controls the
number of errors produced by the learning model during prediction. It com-
pares the statistics of two windows: the first one contains all the data, and the
second one contains only the data from the beginning until the number of errors
increases. This method does not store these windows in memory. It keeps only
statistics and a window of recent data.

The number of errors in a sample of n examples is modelized by a binomial
distribution. For each point i in the sequence that is being sampled, the error
rate is the probability of misclassifying (pi), with standard deviation given by
si =
p

pi(1− pi)/i. It assumes (as can be argued e.g. in the PAC learning model
[146]) that the error rate of the learning algorithm (pi) will decrease while the
number of examples increases if the distribution of the examples is stationary.
A significant increase in the error of the algorithm, suggests that the class dis-
tribution is changing and, hence, the actual decision model is supposed to be
inappropriate. Thus, it stores the values of pi and si when pi + si reaches its
minimum value during the process (obtaining ppmin and smin), and when the
following conditions triggers:

• pi+si ≥ pmin+2·smin for the warning level. Beyond this level, the examples
are stored in anticipation of a possible change of context.

• pi+ si ≥ pmin+3 · smin for the drift level. Beyond this level the concept drift
is supposed to be true, the model induced by the learning method is reset
and a new model is learnt using the examples stored since the warning
level triggered. The values for pmin and smin are reset too.

This approach has a good behaviour of detecting abrupt changes and gradual
changes when the gradual change is not very slow, but it has difficulties when
the change is slowly gradual. In that case, the examples will be stored for long
time, the drift level can take too much time to trigger and the example memory
can be exceeded.

Baena-García et al. proposed a new method EDDM in order to improve DDM.
EDDM [12] is shown to be better than DDM for some data sets and worse for
others. It is based on the estimated distribution of the distances between classifi-
cation errors. The window resize procedure is governed by the same heuristics.

Exponential Weighted Moving Average

An Estimator is an algorithm that estimates the desired statistics on the input
data, which may change over time. The simplest Estimator algorithm for the
expected is the linear estimator, which simply returns the average of the data
items contained in the Memory. Other examples of run-time efficient estimators
are Auto-Regressive, Auto Regressive Moving Average, and Kalman filters.

An exponentially weighted moving average (EWMA) estimator is an algo-
rithm that updates the estimation of a variable by combining the most recent
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measurement of the variable with the EWMA of all previous measurements:

X t = αzt + (1−α)X t−1 = X t−1 +α(zt − X t−1)

where X t is the moving average, zt is the latest measurement, and α is the weight
given to the latest measurement (between 0 and 1). The idea is to produce an
estimate that gives more weight to recent measurements, on the assumption that
recent measurements are more likely to be relevant. Choosing an adequate α is
a difficult problem, and it is not trivial.
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2
MOA Experimental Setting

This chapter establishes the settings under which stream mining experiments
may be conducted, presenting the framework MOA to place various learning
algorithms under test. This experimental methodology is motivated by the re-
quirements of the end user and their desired application.

Figure 2.1: Graphical user interface of MOA

A user wanting to classify examples in a stream of data will have a set of
requirements. They will have a certain volume of data, composed of a number
of features per example, and a rate at which examples arrive. They will have the
computing hardware on which the training of the model and the classification
of new examples is to occur. Users will naturally seek the most accurate pre-
dictions possible on the hardware provided. They are, however, more likely to
accept a solution that sacrifices accuracy in order to function, than no solution at
all. Within reason the user’s requirements may be relaxed, such as reducing the
training features or upgrading the hardware, but there comes a point at which
doing so would be unsatisfactory.

The behaviour of a data stream learning algorithm has three dimensions of
interest—the amount of space (computer memory) required, the time required
to learn from training examples and to predict labels for new examples, and
the error of the predictions. When the user’s requirements cannot be relaxed
any further, the last remaining element that can be tuned to meet the demands
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of the problem is the effectiveness of the learning algorithm—the ability of the
algorithm to output minimum error in limited time and space.

The error of an algorithm is the dimension that people would like to control
the most, but it is the least controllable. The biggest factors influencing error
are the representational power of the algorithm, how capable the model is at
capturing the true underlying concept in the stream, and its generalization power,
how successfully it can ignore noise and isolate useful patterns in the data.

Adjusting the time and space used by an algorithm can influence error. Time
and space are interdependent. By storing more pre-computed information, such
as look up tables, an algorithm can run faster at the expense of space. An algo-
rithm can also run faster by processing less information, either by stopping early
or storing less, thus having less data to process. The more time an algorithm has
to process, or the more information that is processed, the more likely it is that
error can be reduced.

The time and space requirements of an algorithm can be controlled by de-
sign. The algorithm can be optimised to reduce memory footprint and runtime.
More directly, an algorithm can be made aware of the resources it is using and
dynamically adjust. For example, an algorithm can take a memory limit as a
parameter, and take steps to obey the limit. Similarly, it could be made aware of
the time it is taking, and scale computation back to reach a time goal.

The easy way to limit either time or space is to stop once the limit is reached,
and resort to the best available output at that point. For a time limit, continuing
to process will require the user to wait longer, a compromise that may be accept-
able in some situations. For a space limit, the only way to continue processing
is to have the algorithm specifically designed to discard some of its informa-
tion, hopefully information that is least important. Additionally, time is highly
dependent on physical processor implementation, whereas memory limits are
universal. The space requirement is a hard overriding limit that is ultimately
dictated by the hardware available. An algorithm that requests more memory
than is available will cease to function, a consequence that is much more serious
than either taking longer, or losing accuracy, or both.

It follows that the space dimension should be fixed in order to evaluate al-
gorithmic performance. Accordingly, to evaluate the ability of an algorithm to
meet user requirements, a memory limit is set, and the resulting time and error
performance of the algorithm is measured on a data stream. Different memory
limits have been chosen to gain insight into general performance of algorithmic
variations by covering a range of plausible situations.

Several elements are covered in order to establish the evaluation framework
used in this text. Evaluation methods already established in the field are sur-
veyed in Section 2.1. Possible procedures are compared in 2.2 and the final
evaluation framework is described in Section 2.3. The memory limits used for
testing are motivated in Section 2.4, and Section 2.5 describes the data streams
used for testing. Finally, Section 2.6 analyzes the speeds and sizes of the data
streams involved. The particular algorithms under examination are the focus of
the remainder of the text.
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2.1 Previous Evaluation Practices

This section assumes that the critical variable being measured by evaluation pro-
cesses is the accuracy of a learning algorithm. Accuracy, or equivalently its con-
verse, error, may not be the only concern, but it is usually the most pertinent
one. Accuracy is typically measured as the percentage of correct classifications
that a model makes on a given set of data, the most accurate learning algorithm
is the one that makes the fewest mistakes when predicting labels of examples.
With classification problems, achieving the highest possible accuracy is the most
immediate and obvious goal. Having a reliable estimate of accuracy enables
comparison of different methods, so that the best available method for a given
problem can be determined.

It is very optimistic to measure the accuracy achievable by a learner on the
same data that was used to train it, because even if a model achieves perfect ac-
curacy on its training data this may not reflect the accuracy that can be expected
on unseen data—its generalization accuracy. For the evaluation of a learning al-
gorithm to measure practical usefulness, the algorithm’s ability to generalize to
previously unseen examples must be tested. A model is said to overfit the data if
it tries too hard to explain the training data, which is typically noisy, so performs
poorly when predicting the class label of examples it has not seen before. One of
the greatest challenges of machine learning is finding algorithms that can avoid
the problem of overfitting.

2.1.1 Batch Setting

Previous work on the problem of evaluating batch learning has concentrated on
making the best use of a limited supply of data. When the number of examples
available to describe a problem is in the order of hundreds or even less then
reasons for this concern are obvious. When data is scarce, ideally all data that
is available should be used to train the model, but this will leave no remaining
examples for testing. The following methods discussed are those that have in
the past been considered most suitable for evaluating batch machine learning
algorithms, and are studied in more detail by Kohavi [126].

The holdout method divides the available data into two subsets that are mu-
tually exclusive. One of the sets is used for training, the training set, and the
remaining examples are used for testing, the test or holdout set. Keeping these
sets separate ensures that generalization performance is being measured. Com-
mon size ratios of the two sets used in practice are 1/2 training and 1/2 test, or
2/3 training and 1/3 test. Because the learner is not provided the full amount
of data for training, assuming that it will improve given more data, the perfor-
mance estimate will be pessimistic. The main criticism of the holdout method
in the batch setting is that the data is not used efficiently, as many examples
may never be used to train the algorithm. The accuracy estimated from a single
holdout can vary greatly depending on how the sets are divided. To mitigate
this effect, the process of random subsampling will perform multiple runs of the
holdout procedure, each with a different random division of the data, and aver-
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age the results. Doing so also enables measurement of the accuracy estimate’s
variance. Unfortunately this procedure violates the assumption that the train-
ing and test set are independent—classes over-represented in one set will be
under-represented in the other, which can skew the results.

In contrast to the holdout method, cross-validation maximizes the use of ex-
amples for both training and testing. In k-fold cross-validation the data is ran-
domly divided into k independent and approximately equal-sized folds. The eval-
uation process repeats k times, each time a different fold acts as the holdout set
while the remaining folds are combined and used for training. The final accuracy
estimate is obtained by dividing the total number of correct classifications by the
total number of examples. In this procedure each available example is used k−1
times for training and exactly once for testing. This method is still susceptible to
imbalanced class distribution between folds. Attempting to reduce this problem,
stratified cross-validation distributes the labels evenly across the folds to approxi-
mately reflect the label distribution of the entire data. Repeated cross-validation
repeats the cross-validation procedure several times, each with a different ran-
dom partitioning of the folds, allowing the variance of the accuracy estimate to
be measured.

The leave-one-out evaluation procedure is a special case of cross-validation
where every fold contains a single example. This means with a data set of n
examples that n-fold cross validation is performed, such that n models are in-
duced, each of which is tested on the single example that was held out. In spe-
cial situations where learners can quickly be made to ‘forget’ a single training
example this process can be performed efficiently, otherwise in most cases this
procedure is expensive to perform. The leave-one-out procedure is attractive be-
cause it is completely deterministic and not subject to random effects in dividing
folds. However, stratification is not possible and it is easy to construct examples
where leave-one-out fails in its intended task of measuring generalization accu-
racy. Consider what happens when evaluating using completely random data
with two classes and an equal number of examples per class—the best an al-
gorithm can do is predict the majority class, which will always be incorrect on
the example held out, resulting in an accuracy of 0%, even though the expected
estimate should be 50%.

An alternative evaluation method is the bootstrap method introduced by
Efron [56]. This method creates a bootstrap sample of a data set by sampling
with replacement a training data set of the same size as the original. Under the
process of sampling with replacement the probability that a particular example
will be chosen is approximately 0.632, so the method is commonly known as the
0.632 bootstrap. All examples not present in the training set are used for testing,
which will contain on average about 36.8% of the examples. The method com-
pensates for lack of unique training examples by combining accuracies measured
on both training and test data to reach a final estimate:

accurac ybootst rap = 0.632× accurac ytest + 0.368× accurac yt rain (2.1)

As with the other methods, repeated random runs can be averaged to increase
the reliability of the estimate. This method works well for very small data sets

20



2.1. PREVIOUS EVALUATION PRACTICES

but suffers from problems that can be illustrated by the same situation that
causes problems with leave-one-out, a completely random two-class data set—
Kohavi [126] argues that although the true accuracy of any model can only be
50%, a classifier that memorizes the training data can achieve accurac yt rain of
100%, resulting in accurac ybootst rap = 0.632× 50%+ 0.368× 100% = 68.4%.
This estimate is more optimistic than the expected result of 50%.

Having considered the various issues with evaluating performance in the
batch setting, the machine learning community has settled on stratified ten-fold
cross-validation as the standard evaluation procedure, as recommended by Ko-
havi [126]. For increased reliability, ten repetitions of ten-fold cross-validation
are commonly used. Bouckaert [21] warns that results based on this standard
should still be treated with caution.

2.1.2 Data Stream Setting

The data stream setting has different requirements from the batch setting. In
terms of evaluation, batch learning’s focus on reusing data to get the most out
of a limited supply is not a concern as data is assumed to be abundant. With
plenty of data, generalization accuracy can be measured via the holdout method
without the same drawbacks that prompted researchers in the batch setting to
pursue other alternatives. The essential difference is that a large set of examples
for precise accuracy measurement can be set aside for testing purposes without
starving the learning algorithms of training examples.

Instead of maximizing data use, the focus shifts to trends over time—in the
batch setting a single static model is the final outcome of training, whereas in
the stream setting the model evolves over time and can be employed at different
stages of growth. In batch learning the problem of limited data is overcome
by analyzing and averaging multiple models produced with different random
arrangements of training and test data. In the stream setting the problem of
(effectively) unlimited data poses different challenges. One solution involves
taking snapshots at different times during the induction of a model to see how
much the model improves with further training.

Data stream classification is a relatively new field, and as such evaluation
practices are not nearly as well researched and established as they are in the
batch setting. Although there are many recent computer science papers about
data streams, only a small subset actually deal with the stream classification
problem as defined in this text. A survey of the literature in this field was done
to sample typical evaluation practices. Eight papers were found representing
examples of work most closely related to this study. The papers are Domingos
and Hulten [52], Gama et al. [77], Gama et al. [75], Jin and Agrawal [115],
Oza and Russell [153], Street and Kim [180], Fern and Givan [59], and Chu and
Zaniolo [38]. Important properties of these papers are summarized in Tables 2.1
and 2.2.

The ‘evaluation methods’ column of Table 2.1 reveals that the most common
method for obtaining accuracy estimates is to use a single holdout set. This
is consistent with the argument that nothing more elaborate is required in the
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Table 2.1: Paper survey part 1—Evaluation methods and data sources.
enforced max # of max # of

paper evaluation memory training test
ref. methods limits data sources examples examples
[52] holdout 40MB, 14 custom syn. 100m 50k

80MB 1 private real 4m 267k
[77] holdout none 3 public syn. (UCI) 1m 250k
[75] holdout none 4 public syn. (UCI) 1.5m 250k
[115] holdout? 60MB 3 public syn. (genF1/6/7) 10m ?
[153] 5-fold cv, none 10 public real (UCI) 54k 13.5k

holdout 3 custom syn. 80k 20k
2 public real (UCIKDD) 465k 116k

[180] 5-fold cv, none 2 public real (UCI) 45k (5-fold cv)
holdout 1 private real 33k (5-fold cv)

1 custom syn. 50k 10k
[59] various strict 4 public real (UCI) 100k

hardware 8 public real (spec95) 2.6m
[38] holdout none 1 custom syn. 400k 50k

1 private real 100k ?

Table 2.2: Paper survey part 2—Presentation styles.
paper

ref. presentation of results and comparisons
[52] 3 plots of accuracy vs examples

1 plot of tree nodes vs examples
1 plot of accuracy vs noise
1 plot of accuracy vs concept size
extra results (timing etc.) in text

[77] 1 table of error, training time & tree size
(after 100k, 500k & 1m examples)
1 plot of error vs examples
1 plot of training time vs examples
extra results (bias variance decomp., covertype results) in text

[75] 1 table of error, training time & tree size
(after 100k, 500k, 750k/1m & 1m/1.5m examples)

[115] 1 plot of tree nodes vs noise
2 plots of error vs noise
3 plots of training time vs noise
6 plots of examples vs noise
1 plot of training time vs examples
1 plot of memory usage vs examples

[153] 3 plots of online error vs batch error
3 plots of accuracy vs examples
2 plots of error vs ensemble size
2 plots of training time vs examples

[180] 8 plots of error vs examples
[59] 25 plots of error vs ensemble size

13 plots of error vs examples
6 plots of error vs tree nodes

[38] 3 plots of accuracy vs tree leaves
2 tables of accuracy for several parameters and methods
3 plots of accuracy vs examples
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stream setting, although some papers use five-fold cross-validation, and Fern
and Givan [59] use different repeated sampling methods.

In terms of memory limits enforced during experimentation, the majority
of papers do not address the issue and make no mention of explicit memory
limits placed on algorithms. Domingos and Hulten [52] makes the most effort
to explore limited memory, and the followup work by Jin and Agrawal [115] is
consistent by also mentioning a fixed limit. The paper by Fern and Givan [59] is
a specialized study in CPU branch prediction that carefully considers hardware
memory limitations.

The ‘data sources’ column lists the various sources of data used for evaluat-
ing data stream algorithms. Synthetic data (abbreviated syn. in the table), is
artificial data that is randomly generated, so in theory is unlimited in size, and
is noted as either public or custom. Custom data generators are those that are
described for the first time in a paper, unlike public synthetic data that have been
used before and where source code for their generation is freely available. Real
data is collected from a real-world problem, and is described as being either pub-
lic or private. All public sources mention where they come from, mostly from
UCI [9], although Jin and Agrawal [115] make use of the generator described
in Section 2.5.5, and Fern and Givan [59] use benchmarks specific to the CPU
branch prediction problem. Section 2.5 has more discussion about common data
sources.

Reviewing the numbers of examples used to train algorithms for evaluation
the majority of previous experimental evaluations use less than one million train-
ing examples. Some papers use more than this, up to ten million examples, and
only very rarely is there any study like Domingos and Hulten [52] that is in the
order of tens of millions of examples. In the context of data streams this is disap-
pointing, because to be truly useful at data stream classification the algorithms
need to be capable of handling very large (potentially infinite) streams of ex-
amples. Only demonstrating systems on small amounts of data does not build a
convincing case for capacity to solve more demanding data stream applications.

There are several possible reasons for the general lack of training data for
evaluation. It could be that researchers come from a traditional machine learn-
ing background with entrenched community standards, where results involving
cross-validation on popular real-world data sets are expected for credibility, and
alternate practices are less understood. Emphasis on using real-world data will
restrict the sizes possible, because there is very little data freely available that is
suitable for data stream evaluation. Another reason could be that the methods
are being directly compared with batch learning algorithms, as several of the
papers do, so the sizes may deliberately be kept small to accommodate batch
learning. Hopefully no evaluations are intentionally small due to proposed data
stream algorithms being too slow or memory hungry to cope with larger amounts
of data in reasonable time or memory, because this would raise serious doubts
about the algorithm’s practical utility.

In terms of the sizes of test sets used, for those papers using holdout and
where it could be determined from the text, the largest test set surveyed was
less than 300 thousand examples in size, and some were only in the order of
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tens of thousands of examples. This suggests that the researchers believe that
such sizes are adequate for accurate reporting of results.

Table 2.2 summarizes the styles used to present and compare results in the
papers. The most common medium used for displaying results is the graphical
plot, typically with the number of training examples on the x-axis. This obser-
vation is consistent with the earlier point that trends over time should be a focus
of evaluation. The classic learning curve plotting accuracy/error versus training
examples is the most frequent presentation style. Several other types of plot are
used to discuss other behaviours such as noise resistance and model sizes. An
equally reasonable but less common style presents the results as figures in a ta-
ble, perhaps not as favoured because less information can be efficiently conveyed
this way.

In terms of claiming that an algorithm significantly outperforms another, the
accepted practice is that if a learning curve looks better at some point during the
run (attains higher accuracy, and the earlier the better) and manages to stay that
way by the end of the evaluation, then it is deemed a superior method. Most
often this is determined from a single holdout run, and with an independent
test set containing 300 thousand examples or less. It is rare to see a serious
attempt at quantifying the significance of results with confidence intervals or
similar checks. Typically it is claimed that the method is not highly sensitive to
the order of data, that is, doing repeated random runs would not significantly
alter the results.

A claim of [123] is that in order to adequately evaluate data stream clas-
sification algorithms they need to be tested on large streams, in the order of
hundreds of millions of examples where possible, and under explicit memory
limits. Any less than this does not actually test algorithms in a realistically chal-
lenging setting. This is claimed because it is possible for learning curves to cross
after substantial training has occurred, as discussed in Section 2.3.

Almost every data stream paper argues that innovative and efficient algo-
rithms are needed to handle the substantial challenges of data streams but the
survey shows that few of them actually follow through by testing candidate al-
gorithms appropriately. The best paper found, Domingos and Hulten [52], rep-
resents a significant inspiration for this text because it also introduces the base
algorithm expanded upon in Chapter 3 onwards. The paper serves as a model of
what realistic evaluation should involve—limited memory to learn in, millions
of examples to learn from, and several hundred thousand test examples.

2.2 Evaluation Procedures for Data Streams

The evaluation procedure of a learning algorithm determines which examples
are used for training the algorithm, and which are used to test the model output
by the algorithm. The procedure used historically in batch learning has partly de-
pended on data size. Small data sets with less than a thousand examples, typical
in batch machine learning benchmarking, are suited to the methods that extract
maximum use of the data, hence the established procedure of ten repetitions of
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ten-fold cross-validation. As data sizes increase, practical time limitations pre-
vent procedures that repeat training too many times. It is commonly accepted
with considerably larger data sources that it is necessary to reduce the numbers
of repetitions or folds to allow experiments to complete in reasonable time. With
the largest data sources attempted in batch learning, on the order of hundreds
of thousands of examples or more, a single holdout run may be used, as this re-
quires the least computational effort. A justification for this besides the practical
time issue may be that the reliability lost by losing repeated runs is compensated
by the reliability gained by sheer numbers of examples involved.

When considering what procedure to use in the data stream setting, one of
the unique concerns is how to build a picture of accuracy over time. Two main
approaches were considered, the first a natural extension of batch evaluation,
and the second an interesting exploitation of properties unique to data stream
algorithms.

2.2.1 Holdout

When batch learning reaches a scale where cross-validation is too time consum-
ing, it is often accepted to instead measure performance on a single holdout set.
This is most useful when the division between train and test sets have been pre-
defined, so that results from different studies can be directly compared. Viewing
data stream problems as a large-scale case of batch learning, it then follows from
batch learning practices that a holdout set is appropriate.

To track model performance over time, the model can be evaluated periodi-
cally, for example, after every one million training examples. Testing the model
too often has potential to significantly slow the evaluation process, depending
on the size of the test set.

A possible source of holdout examples is new examples from the stream that
have not yet been used to train the learning algorithm. A procedure can ‘look
ahead’ to collect a batch of examples from the stream for use as test examples,
and if efficient use of examples is desired they can then be given to the algo-
rithm for additional training after testing is complete. This method would be
preferable in scenarios with concept drift, as it would measure a model’s ability
to adapt to the latest trends in the data.

When no concept drift is assumed, a single static held out set should be suf-
ficient, which avoids the problem of varying estimates between potential test
sets. Assuming that the test set is independent and sufficiently large relative to
the complexity of the target concept, it will provide an accurate measurement
of generalization accuracy. As noted when looking at other studies, test set sizes
on the order of tens of thousands of examples have previously been considered
sufficient.

2.2.2 Interleaved Test-Then-Train or Prequential

An alternate scheme for evaluating data stream algorithms is to interleave testing
with training. Each individual example can be used to test the model before it
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Figure 2.2: Learning curves produced for the same learning situation by two
different evaluation methods, recorded every 100,000 examples.

is used for training, and from this the accuracy can be incrementally updated.
When intentionally performed in this order, the model is always being tested on
examples it has not seen. This scheme has the advantage that no holdout set is
needed for testing, making maximum use of the available data. It also ensures
a smooth plot of accuracy over time, as each individual example will become
increasingly less significant to the overall average.

The disadvantages of this approach are that it makes it difficult to accurately
separate and measure training and testing times. Also, the true accuracy that
an algorithm is able to achieve at a given point is obscured—algorithms will be
punished for early mistakes regardless of the level of accuracy they are eventually
capable of, although this effect will diminish over time.

With this procedure the statistics are updated with every example in the
stream, and can be recorded at that level of detail if desired. For efficiency
reasons a sampling parameter can be used to reduce the storage requirements
of the results, by recording only at periodic intervals like the holdout method.

2.2.3 Comparison

Figure 2.2 is an example of how learning curves can differ between the two
approaches given an identical learning algorithm and data source. The holdout
method measures immediate accuracy at a particular point, without memory
of previous performance. During the first few million training examples the
graph is not smooth. If the test set were small thus unreliable or the algorithm
more unstable then fluctuations in accuracy could be much more noticeable. The
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interleaved method by contrast measures the average accuracy achieved to a
given point, thus after 30 million training examples, the generalization accuracy
has been measured on every one of the 30 million examples, rather than the
independent one million examples used by the holdout. This explains why the
interleaved curve is smooth. It also explains why the estimate of accuracy is
more pessimistic, because during early stages of learning the model was less
accurate, pulling the average accuracy down.

The interleaved method makes measuring estimates of both time and accu-
racy more difficult. It could be improved perhaps using a modification that in-
troduces exponential decay, but this possibility is reserved for future work. The
holdout evaluation method offers the best of both schemes, as the averaged ac-
curacy that would be obtained via interleaved test-then-train can be estimated
by averaging consecutive ranges of samples together. Having considered the rel-
ative merits of the approaches, the holdout method constitutes the foundation
of the experimental framework described next.

2.3 Testing Framework

Algorithm 1 Evaluation procedure.
Fix mbound , the maximum amount of memory allowed for the model
Hold out ntest examples for testing
while further evaluation is desired do

start training timer
for i = 1 to nt rain do

get next example et rain from training stream
train and update model with et rain, ensuring that mbound is obeyed

end for
stop training timer and record training time
start test timer
for i = 1 to ntest do

get next example etest from test stream
test model on etest and update accuracy

end for
stop test timer and record test time
record model statistics (accuracy, size etc.)

end while

Algorithm 1 lists pseudo-code of the evaluation procedure used for experi-
mental work in this text. The process is similar to that used by Domingos and
Hulten [52], the study that was found to have the most thorough evaluation
practices of those surveyed in Section 2.1.2. It offers flexibility regarding which
statistics are captured, with the potential to track many behaviours of interest.

The nt rain parameter determines how many examples will be used for train-
ing before an evaluation is performed on the test set. A set of ntest examples is
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Figure 2.3: Learning curves demonstrating the problem of stopping early.

held aside for testing. In the data stream case without concept drift this set can
be easily populated by collecting the first ntest examples from the stream.

To get reliable timing estimates, nt rain and ntest need to be sufficiently large.
In the actual implementation, the timer measured the CPU runtime of the rele-
vant thread, in an effort to reduce problems caused by the multithreaded oper-
ating system sharing other tasks. In all experiments, ntest was set to one million
examples, which helps to measure timing but also ensures reliability of the ac-
curacy estimates, where according to Table 2.1 previous studies in the field have
typically used a tenth of this amount or even less.

The framework is designed to test an algorithm that tends to accumulate
information over time, so the algorithm will desire more memory as it trains
on more examples. The algorithm needs to be able to limit the total amount of
memory used, thus obey mbound , no matter how much training takes place.

One of the biggest issues with the evaluation is deciding when to stop training
and start testing. In small memory situations, some algorithms will reach a point
where they have exhausted all memory and can no longer learn new information.
At this point the experiment can be terminated, as the results will not change
from that point.

More problematic is the situation where time or training examples are ex-
hausted before the final level of performance can be observed. Consider Fig-
ure 2.3. Prior to 14 million examples, algorithm B is the clear choice in terms of
accuracy, however in the long run it does not reach the same level of accuracy
as algorithm A. Which algorithm is actually better depends on the application.
If there is a shortage of time or data, algorithm B may be the better choice. Not
only this, but if the models are employed for prediction during early stages of
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learning, then algorithm B will be more useful at the beginning.
To rule out any effect that data order may have on the learning process, the

evaluation procedure may be run multiple times, each time with a different set
of training data from the same problem. The observations gathered from each
run can then be averaged into a single result. An advantage of this approach is
that the variance of behaviour can also be observed. Ideally the data between
runs will be unique, as is possible with synthetically generated or other abundant
data sources. If data is lacking at least the training examples can be reordered.

An ideal method of evaluation would wait until an accuracy plateau is ob-
servable for every candidate before termination. It would also run multiple times
with different data orders to establish confidence in the results. Unfortunately
neither of these scenarios are feasible considering the large amount of experi-
mental work needed.

The question of when an algorithm is superior to another is decided by look-
ing at the final result recorded after the ten hour evaluation completed. The
accuracy results are reported as percentages to two decimal places, and if a
method’s final accuracy reading in this context is greater than another then it
is claimed to be superior. As with other similar studies there is no attempt to
strictly analyze the confidence of results, although differences of several per-
centages are more convincing than fractional differences.

Measuring the standard error of results via multiple runs would enable the
confidence of results to be more formally analyzed, but every additional run
would multiply time requirements. A less expensive but useful alternative might
be to examine differences between algorithms in another way, using McNemar’s
test [45] for example, which can be computed by tracking the agreement be-
tween competing methods on each test example. Extra analysis such as this
was not considered necessary for this text, but the idea presents opportunity for
future research into evaluation of data stream classification.

2.4 Environments

This section defines three environments that may be simulated using memory
limits, since memory limits cannot be ignored and can significantly limit capac-
ity to learn from data streams. Potential practical deployment of data stream
classification has been divided into scenarios of increasing memory utilization,
from the restrictive sensor environment, to a typical consumer grade handheld
PDA environment, to the least restrictive environment of a dedicated server.

Although technology advancements will mean that these environments are
something of a moving target, the insights gained about the scalability of al-
gorithms will still be valid. The environments chosen range from restrictive to
generous, with an order of magnitude difference between them.

Note that when referring to memory sizes, the traditional meaning of the
terms kilobyte and megabyte is adopted, such that 1 kilobyte = 1,024 bytes, and
1 megabyte = 10242 bytes = 1,048,576 bytes.
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2.4.1 Sensor Network

This environment represents the most restrictive case, learning in 100 kilobytes
of memory. Because this limit is so restrictive, it is an interesting test case for
algorithm efficiency.

Sensor networks [6, 74] are a hot topic of research, and typically the nodes
designed for these networks are low power devices with limited resources. In
this setting it is often impractical to dedicate more than hundreds of kilobytes to
processes because typically such devices do not support much working memory.

When memory limits are in the order of kilobytes, other applications requir-
ing low memory usage also exist, such as specialized hardware in which memory
is expensive. An example of such an application is CPU branch prediction, as ex-
plored by Fern and Givan [59]. Another example is a small ‘packet sniffer’ device
designed to do real-time monitoring of network traffic [8].

2.4.2 Handheld Computer

In this case the algorithm is allowed 32 megabytes of memory. This simulates
the capacity of lightweight consumer devices designed to be carried around by
users and fit into a shirt pocket.

The ability to do analysis on site with a handheld device is desirable for cer-
tain applications. The papers [118] and [119] describe systems for analysing
vehicle performance and stockmarket activity respectively. In both cases the au-
thors describe the target computing hardware as personal handheld devices with
32 megabytes. Horovitz et al. [104] describe a road safety application using a
device with 64 megabytes.

The promise of ubiquitous computing is getting closer with the widespread
use of mobile phones, which with each generation are evolving into increasingly
more powerful and multifunctional devices. These too fall into this category,
representing large potential for portable machine learning given suitable algo-
rithms. Imielinski and Nath [110] present a vision of this future ‘dataspace’.

2.4.3 Server

This environment simulates either a modern laptop/desktop computer or server
dedicated to processing a data stream. The memory limit assigned in this envi-
ronment is 400 megabytes. Although at the time of writing this text a typical
desktop computer may have several gigabytes of RAM, it is still generous to set
aside this much memory for a single process. Considering that several algorithms
have difficulty in fully utilizing this much working space, it seems sufficiently re-
alistic to impose this limit.

A practical reason for imposing this limit is that the experiments need to ter-
minate in reasonable time. In cases where memory is not filled by an algorithm
it is harder to judge what the behaviour will be in the theoretical limit, but the
practical ten hour limit is an attempt to run for sufficient time to allow accuracy
to plateau.
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There are many applications that fit into this higher end of the comput-
ing scale. An obvious task is analysing data arising from the Internet, as ei-
ther web searches [92], web usage [178], site logs [177] or click streams [89].
Smaller scale computer networks also produce traffic of interest [135], as do
other telecommunication activities [189], phone call logs for example. Banks
may be interested in patterns of ATM transactions [93], and retail chains and
online stores will want details about customer purchases [129]. Further still,
there is the field of scientific observation [86], which can be astronomical [151],
geophysical [144], or the massive volume of data output by particle accelerator
experiments [105]. All of these activities are sources of data streams that users
will conceivably want to analyze in a server environment.

2.5 Data Sources

For the purposes of research into data stream classification there is a shortage of
suitable and publicly available real-world benchmark data sets. The UCI ML [9]
and KDD [99] archives house the most common benchmarks for machine learn-
ing algorithms, but many of those data sets are not suitable for evaluating data
stream classification. The KDD archive has several large data sets, but not classi-
fication problems with sufficient examples. The Forest Covertype data set is one
of the largest, and that has less than 600,000 examples.

To demonstrate their systems, several researchers have used private real-
world data that cannot be reproduced by others. Examples of this include the
web trace from the University of Washington used by Domingos and Hulten to
evaluate VFDT [52], and the credit card fraud data used by Wang et al. [188]
and Chu and Zaniolo [38].

More typically, researchers publish results based on synthetically generated
data. In many of these cases, the authors have invented unique data generation
schemes for the purpose of evaluating their algorithm. Examples include the
random tree generator also used to evaluate VFDT, and the custom generators
described in Oza and Russell [153], Street and Kim [180] and Chu and Zan-
iolo [38]. Synthetic data has several advantages—it is easier to reproduce and
there is little cost in terms of storage and transmission. Despite these advantages
there is a lack of established and widely used synthetic data streams.

For this text, the data generators most commonly found in the literature have
been collected, and and an extra scheme (RBF) has been introduced. For ease of
reference, each data set variation is assigned a short name. The basic properties
of each are summarized in Table 2.3.

2.5.1 Random Tree Generator

This generator is based on that proposed by Domingos and Hulten [52], produc-
ing concepts that in theory should favour decision tree learners. It constructs a
decision tree by choosing attributes at random to split, and assigning a random
class label to each leaf. Once the tree is built, new examples are generated by as-
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Table 2.3: Properties of the data sources.
name nominal numeric classes
RTS/RTSN 10 10 2
RTC/RTCN 50 50 2
RRBFS 0 10 2
RRBFC 0 50 2
LED 24 0 10
WAVE21 0 21 3
WAVE40 0 40 3
GENF1-F10 6 3 2

signing uniformly distributed random values to attributes which then determine
the class label via the tree.

The generator has parameters to control the number of classes, attributes,
nominal attribute labels, and the depth of the tree. For consistency between
experiments, two random trees were generated and fixed as the base concepts
for testing—one simple and the other complex, where complexity refers to the
number of attributes involved and the size of the tree.

The simple random tree (RTS) has ten nominal attributes with five values
each, ten numeric attributes, two classes, a tree depth of five, with leaves starting
at level three and a 0.15 chance of leaves thereafter. The final tree has 741 nodes,
509 of which are leaves.

The complex random tree (RTC) has 50 nominal attributes with five values
each, 50 numeric attributes, two classes, a tree depth of ten, with leaves starting
at level five and a 0.15 chance of leaves thereafter. The final tree has 127,837
nodes, 90,259 of which are leaves.

A degree of noise can be introduced to the examples after generation. In the
case of discrete attributes and the class label, a probability of noise parameter
determines the chance that any particular value is switched to something other
than the original value. For numeric attributes, a degree of random noise is
added to all values, drawn from a random Gaussian distribution with standard
deviation equal to the standard deviation of the original values multiplied by
noise probability. The streams RTSN and RTCN are introduced by adding 10%
noise to the respective random tree data streams. It is hoped that experimenting
with both noiseless and noisy versions of a problem can give insight into how
well the algorithms manage noise.

2.5.2 Random RBF Generator

This generator was devised to offer an alternate concept type that is not neces-
sarily as easy to capture with a decision tree model.

The RBF (Radial Basis Function) generator works as follows: A fixed number
of random centroids are generated. Each center has a random position, a sin-
gle standard deviation, class label and weight. New examples are generated by
selecting a center at random, taking weights into consideration so that centers
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with higher weight are more likely to be chosen. A random direction is chosen
to offset the attribute values from the central point. The length of the displace-
ment is randomly drawn from a Gaussian distribution with standard deviation
determined by the chosen centroid. The chosen centroid also determines the
class label of the example. This effectively creates a normally distributed hyper-
sphere of examples surrounding each central point with varying densities. Only
numeric attributes are generated.

RRBFS refers to a simple random RBF data set—100 centers and ten at-
tributes. RRBFC is more complex—1000 centers and 50 attributes. Both are
two class problems.

2.5.3 LED Generator

This data source originates from the CART book [29]. An implementation in
C was donated to the UCI [9] machine learning repository by David Aha. The
goal is to predict the digit displayed on a seven-segment LED display, where
each attribute has a 10% chance of being inverted. It has an optimal Bayes
classification rate of 74%. The particular configuration of the generator used for
experiments (LED) produces 24 binary attributes, 17 of which are irrelevant.

2.5.4 Waveform Generator

This generator shares its origins with LED, and was also donated by David Aha to
the UCI repository. The goal of the task is to differentiate between three different
classes of waveform, each of which is generated from a combination of two or
three base waves. The optimal Bayes classification rate is known to be 86%.
There are two versions of the problem. WAVE21 has 21 numeric attributes, all of
which include noise. WAVE40 introduces an additional 19 irrelevant attributes.

2.5.5 Function Generator

This generator was introduced by Agrawal et al. in [4], and was a common
source of data for early work on scaling up decision tree learners [143, 175, 81].

The generator produces a stream containing nine attributes, six numeric and
three categorical, described in Table 2.4. Although not explicitly stated by the
authors, a sensible conclusion is that these attributes describe hypothetical loan
applications.

There are ten functions defined for generating binary class labels from the
attributes. The functions are listed in Figures 2.4 and 2.5. Presumably these
determine whether the loan should be approved. For the experiments the ten
functions are used as described, with a perturbation factor of 5% (referred to
as GENF1-GENF10). Perturbation shifts numeric attributes from their true value,
adding an offset drawn randomly from a uniform distribution, the range of which
is a specified percentage of the total value range.
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1. if (age < 40) ∨ (age ≥ 60) then
group = A

else
group = B

2. if ((age < 40) ∧ (50000≤ salary ≤ 100000)) ∨
((40≤ age < 60) ∧ (75000≤ salary ≤ 125000)) ∨
((age ≥ 60) ∧ (25000≤ salary ≤ 75000)) then
group = A

else
group = B

3. if ((age < 40) ∧ (elevel ∈ [0..1])) ∨
((40≤ age < 60) ∧ (elevel ∈ [1..3])) ∨
((age ≥ 60) ∧ (elevel ∈ [2..4])) then
group = A

else
group = B

4. if ((age < 40) ∧ (elevel ∈ [0..1] ?
(25000≤ salary ≤ 75000) : (50000≤ salary ≤ 100000))) ∨

((40≤ age < 60) ∧ (elevel ∈ [1..3] ?
(50000≤ salary ≤ 100000) : (75000≤ salary ≤ 125000))) ∨

((age ≥ 60) ∧ (elevel ∈ [2..4] ?
(50000≤ salary ≤ 100000) : (25000≤ salary ≤ 75000))) then

group = A
else

group = B

5. if ((age < 40) ∧ ((50000≤ salary ≤ 100000) ?
(100000≤ loan ≤ 300000) : (200000≤ loan ≤ 400000))) ∨

((40≤ age < 60) ∧ ((75000≤ salary ≤ 125000) ?
(200000≤ loan ≤ 400000) : (300000≤ loan ≤ 500000))) ∨

((age ≥ 60) ∧ ((25000≤ salary ≤ 75000) ?
(30000≤ loan ≤ 500000) : (100000≤ loan ≤ 300000))) then

group = A
else

group = B

Figure 2.4: Generator functions 1-5.
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6. if ((age < 40) ∧ (50000≤ (salary + commission) ≤ 100000)) ∨
((40≤ age < 60) ∧ (75000≤ (salary + commission) ≤ 125000)) ∨
((age ≥ 60) ∧ (25000≤ (salary + commission) ≤ 75000)) then
group = A

else
group = B

7. if (0.67 × (salary + commission) − 0.2 × loan − 20000 > 0) then
group = A

else
group = B

8. if (0.67 × (salary + commission) − 5000 × elevel − 20000 > 0) then
group = A

else
group = B

9. if (0.67 × (salary + commission) − 5000 × elevel
− 0.2 × loan − 10000 > 0) then
group = A

else
group = B

10. if (hyears ≥ 20) then
equity = 0.1 × hvalue × (hyears − 20)

else
equity = 0

if (0.67 × (salary + commission) − 5000 × elevel
− 0.2 × equity − 10000 > 0) then
group = A

else
group = B

Figure 2.5: Generator functions 6-10.
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Table 2.4: Function generator attributes.
name description values
salary salary uniformly distributed from 20K to 150K
commission commission if (salary < 75K) then 0 else

uniformly distributed from 10K to 75K
age age uniformly distributed from 20 to 80
elevel education level uniformly chosen from 0 to 4
car make of car uniformly chosen from 1 to 20
zipcode zip code of town uniformly chosen from 9 zipcodes
hvalue value of house uniformly distributed

from 0.5k100000 to 1.5k100000
where k ∈ {1...9} depending on zipcode

hyears years house owned uniformly distributed from 1 to 30
loan total loan amount uniformly distributed from 0 to 500K

2.6 Generation Speed and Data Size

During evaluation the data is generated on-the-fly. This directly influences the
amount of training examples that can be supplied in any given time period.

The speed of the MOA data generators was measured in the experimental
hardware/software environment. The results are shown in Table 2.5, where the
full speed possible for generating each stream was estimated by timing how long
it took to generate ten million examples. The possible speed ranges from around
nine thousand examples per second on RTCN to over 500 thousand examples per
second for the function generators GENFx . The biggest factor influencing speed
is the number of attributes being generated, hence the fastest streams are those
with the least attributes. The addition of noise to the streams also has a major
impact on the speeds—going from RTS to RTSN and from RTC to RTCN causes
the speed to roughly halve, where the only difference between these variants is
the addition of noise. This result is consistent with the notion that a dominant
cost of generating the streams is the time needed to generate random numbers,
as adding noise involves producing at least one additional random number per
attribute.

In terms of the sizes of the examples, the assumption is made that storage
of each attribute and class label requires eight bytes of memory, matching the
actual Java implementation where all values are stored as double precision float-
ing point numbers (Section 3.4). Certain attribute types could be stored more
efficiently, but this approach offers maximum flexibility, and storing continuous
values in less space would reduce precision.

For example, considering an evaluation period of ten hours, the total num-
ber of examples that can be produced at full speed range from around 300 to
19,000 million. With the eight-byte-per-attribute assumption, this translates to
between approximately 0.25 to 1.7 terabytes of data. With data volumes of this
magnitude the choice of generating data on-the-fly is justified, a solution that is
cheaper than finding resources to store and retrieve several terabytes of data.
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Table 2.5: Generation speed and data size of the streams.
examples examples in

per second bytes per 10 hours terabytes in
stream (thousands) attributes example (millions) 10 hours

RTS 274 20 168 9866 1.50
RTSN 97 20 168 3509 0.53

RTC 19 100 808 667 0.49
RTCN 9 100 808 338 0.25

RRBFS 484 10 88 17417 1.39
RRBFC 120 50 408 4309 1.60

LED 260 24 200 9377 1.71
WAVE21 116 21 176 4187 0.67
WAVE40 56 40 328 2003 0.60

GENF1 527 9 80 18957 1.38
GENF2 531 9 80 19108 1.39
GENF3 525 9 80 18917 1.38
GENF4 523 9 80 18838 1.37
GENF5 518 9 80 18653 1.36
GENF6 524 9 80 18858 1.37
GENF7 527 9 80 18977 1.38
GENF8 524 9 80 18848 1.37
GENF9 519 9 80 18701 1.36

GENF10 527 9 80 18957 1.47

37



CHAPTER 2. MOA EXPERIMENTAL SETTING

2.7 Evolving Stream Experimental Setting

This section proposes a new experimental data stream framework for studying
concept drift using MOA. A majority of concept drift research in data streams
mining is done using traditional data mining frameworks such as WEKA [91].
As the data stream setting has constraints that a traditional data mining en-
vironment does not, we believe that MOA will help to improve the empirical
evaluation of these methods.

In data stream mining, we are interested in three main dimensions:

• accuracy

• amount of space necessary or computer memory

• the time required to learn from training examples and to predict

These properties may be interdependent: adjusting the time and space used
by an algorithm can influence accuracy. By storing more pre-computed infor-
mation, such as look up tables, an algorithm can run faster at the expense of
space. An algorithm can also run faster by processing less information, either by
stopping early or storing less, thus having less data to process. The more time
an algorithm has, the more likely it is that accuracy can be increased.

In evolving data streams we are concerned about

• evolution of accuracy

• probability of false alarms

• probability of true detections

• average delay time in detection

Sometimes, learning methods do not have change detectors implemented in-
side, and then it may be hard to define ratios of false positives and negatives, and
average delay time in detection. In these cases, learning curves may be a useful
alternative for observing the evolution of accuracy in changing environments.

To summarize, the main properties of an ideal learning method for mining
evolving data streams are the following: high accuracy and fast adaption to
change, low computational cost in both space and time, theoretical performance
guarantees, and minimal number of parameters.

2.7.1 Concept Drift Framework

We present the new experimental framework for concept drift in MOA. Our goal
was to introduce artificial drift to data stream generators in a straightforward
way.

The framework approach most similar to the one presented in this Chapter
is the one proposed by Narasimhamurthy et al. [150]. They proposed a general
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Figure 2.6: A sigmoid function f (t) = 1/(1+ e−s(t−t0)).

framework to generate data simulating changing environments. Their frame-
work accommodates the STAGGER and Moving Hyperplane generation strate-
gies. They consider a set of k data sources with known distributions. As these
distributions at the sources are fixed, the data distribution at time t, D(t) is speci-
fied through vi(t), where vi(t) ∈ [0, 1] specify the extent of the influence of data
source i at time t:

D(t) = {v1(t), v2(t), . . . , vk(t)},
∑

i

vi(t) = 1

Their framework covers gradual and abrupt changes. Our approach is more
concrete, we begin by dealing with a simple scenario: a data stream and two
different concepts. Later, we will consider the general case with more than one
concept drift events.

Considering data streams as data generated from pure distributions, we can
model a concept drift event as a weighted combination of two pure distributions
that characterizes the target concepts before and after the drift. In our frame-
work, we need to define the probability that every new instance of the stream
belongs to the new concept after the drift. We will use the sigmoid function, as
an elegant and practical solution.

We see from Figure 2.6 that the sigmoid function

f (t) = 1/(1+ e−s(t−t0))

has a derivative at the point t0 equal to f ′(t0) = s/4. The tangent of angle α
is equal to this derivative, tanα = s/4. We observe that tanα = 1/W , and as
s = 4 tanα then s = 4/W . So the parameter s in the sigmoid gives the length of W
and the angle α. In this sigmoid model we only need to specify two parameters
: t0 the point of change, and W the length of change. Note that

f (t0 + β ·W ) = 1− f (t0 − β ·W ),

and that f (t0 + β ·W ) and f (t0 − β ·W ) are constant values that don’t depend
on t0 and W :

f (t0 +W/2) = 1− f (t0 −W/2) = 1/(1+ e−2)≈ 88.08%
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f (t0 +W ) = 1− f (t0 −W ) = 1/(1+ e−4)≈ 98.20%

f (t0 + 2W ) = 1− f (t0 − 2W ) = 1/(1+ e−8)≈ 99.97%

Definition 1. Given two data streams a, b, we define c = a⊕W
t0

b as the data stream
built joining the two data streams a and b, where t0 is the point of change, W is
the length of change and

• Pr[c(t) = a(t)] = e−4(t−t0)/W/(1+ e−4(t−t0)/W )

• Pr[c(t) = b(t)] = 1/(1+ e−4(t−t0)/W ).

We observe the following properties, if a ̸= b:

• a⊕W
t0

b ̸= b⊕W
t0

a

• a⊕W
t0

a = a

• a⊕0
0 b = b

• a⊕W
t0
(b⊕W

t0
c) ̸= (a⊕W

t0
b)⊕W

t0
c

• a⊕W
t0
(b⊕W

t1
c)≈ (a⊕W

t0
b)⊕W

t1
c if t0 < t1 and W ≪ |t1 − t0|

In order to create a data stream with multiple concept changes, we can build
new data streams joining different concept drifts:

(((a⊕W0
t0

b)⊕W1
t1

c)⊕W2
t2

d) . . .

2.7.2 Datasets for concept drift

Synthetic data has several advantages – it is easier to reproduce and there is
little cost in terms of storage and transmission. For this framework, the data
generators most commonly found in the literature have been collected.

SEA Concepts Generator This dataset contains abrupt concept drift, first intro-
duced in [180]. It is generated using three attributes, where only the two
first attributes are relevant. All three attributes have values between 0 and
10. The points of the dataset are divided into 4 blocks with different con-
cepts. In each block, the classification is done using f1 + f2 ≤ θ , where f1

and f2 represent the first two attributes and θ is a threshold value. The
most frequent values are 9, 8, 7 and 9.5 for the data blocks. In our frame-
work, SEA concepts are defined as follows:

(((SEA9 ⊕W
t0

SEA8)⊕W
2t0

SEA7)⊕W
3t0

SEA9.5)

STAGGER Concepts Generator They were introduced by Schlimmer and Granger
in [171]. The concept description in STAGGER is a collection of elements,
where each individual element is a Boolean function of attribute-valued
pairs that is represented by a disjunct of conjuncts. A typical example of
a concept description covering either green rectangles or red triangles can
be represented by (shape rectangle and colour green) or (shape triangles
and colour red).
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Rotating Hyperplane This dataset was used as testbed for CVFDT versus VFDT
in [106]. A hyperplane in d-dimensional space is the set of points x that
satisfy

d
∑

i=1

wi x i = w0 =
d
∑

i=1

wi

where x i, is the ith coordinate of x . Examples for which
∑d

i=1 wi x i ≥ w0

are labeled positive, and examples for which
∑d

i=1 wi x i < w0 are labeled
negative. Hyperplanes are useful for simulating time-changing concepts,
because we can change the orientation and position of the hyperplane in a
smooth manner by changing the relative size of the weights. We introduce
change to this dataset adding drift to each weight attribute wi = wi + dσ,
where σ is the probability that the direction of change is reversed and d
is the change applied to every example.

Random RBF Generator This generator was devised to offer an alternate com-
plex concept type that is not straightforward to approximate with a de-
cision tree model. The RBF (Radial Basis Function) generator works as
follows: A fixed number of random centroids are generated. Each cen-
ter has a random position, a single standard deviation, class label and
weight. New examples are generated by selecting a center at random, tak-
ing weights into consideration so that centers with higher weight are more
likely to be chosen. A random direction is chosen to offset the attribute
values from the central point. The length of the displacement is randomly
drawn from a Gaussian distribution with standard deviation determined by
the chosen centroid. The chosen centroid also determines the class label of
the example. This effectively creates a normally distributed hypersphere of
examples surrounding each central point with varying densities. Only nu-
meric attributes are generated. Drift is introduced by moving the centroids
with constant speed. This speed is initialized by a drift parameter.

Data streams may be considered infinite sequences of (x , y) where x is the fea-
ture vector and y the class label. Zhang et al. [195] observe that p(x , y) =
p(x |t) · p(y|x) and categorize concept drift in two types:

• Loose Concept Drifting (LCD) when concept drift is caused only by the
change of the class prior probability p(y|x),

• Rigorous Concept Drifting (RCD) when concept drift is caused by the change
of the class prior probability p(y|x) and the conditional probability p(x |t)

Note that the Random RBF Generator has RCD drift, and the rest of the
dataset generators have LCD drift.

Real-World Data

It is not easy to find large real-world datasets for public benchmarking, espe-
cially with substantial concept change. The UCI machine learning repository [9]
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contains some real-world benchmark data for evaluating machine learning tech-
niques. We will consider three : Forest Covertype, Poker-Hand, and Electricity.

Forest Covertype dataset It contains the forest cover type for 30 x 30 meter
cells obtained from US Forest Service (USFS) Region 2 Resource Informa-
tion System (RIS) data. It contains 581, 012 instances and 54 attributes,
and it has been used in several papers on data stream classification [77,
153].

Poker-Hand dataset It consists of 1,000, 000 instances and 11 attributes. Each
record of the Poker-Hand dataset is an example of a hand consisting of five
playing cards drawn from a standard deck of 52. Each card is described
using two attributes (suit and rank), for a total of 10 predictive attributes.
There is one Class attribute that describes the “Poker Hand”. The order of
cards is important, which is why there are 480 possible Royal Flush hands
instead of 4.

Electricity dataset Another widely used dataset is the Electricity Market Dataset
described by M. Harries [95] and used by Gama [72]. This data was col-
lected from the Australian New South Wales Electricity Market. In this
market, the prices are not fixed and are affected by demand and supply
of the market. The prices in this market are set every five minutes. The
ELEC2 dataset contains 45, 312 instances. Each example of the dataset
refers to a period of 30 minutes, i.e. there are 48 instances for each time
period of one day. The class label identifies the change of the price related
to a moving average of the last 24 hours. The class level only reflect devi-
ations of the price on a one day average and removes the impact of longer
term price trends.

The size of these datasets is small, compared to tens of millions of training ex-
amples of synthetic datasets: 45,312 for ELEC2 dataset, 581, 012 for CoverType,
and 1, 000,000 for Poker-Hand. Another important fact is that we do not know
when drift occurs or if there is any drift. We may simulate RCD concept drift,
joining the three datasets, merging attributes, and supposing that each dataset
corresponds to a different concept.

CovPokElec= (CoverType⊕5,000
581,012 Poker)⊕5,000

1,000,000 ELEC2
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3
Hoeffding Trees

Hoeffding trees were introduced by Domingos and Hulten in the paper “Mining
High-Speed Data Streams” [52]. They refer to their implementation as VFDT,
an acronym for Very Fast Decision Tree learner. In that paper the Hoeffding
tree algorithm is the basic theoretical algorithm, while VFDT introduces several
enhancements for practical implementation. In this text the term Hoeffding tree
refers to any variation or refinement of the basic principle, VFDT included.

In further work Domingos and Hulten went on to show how their idea can
be generalized [107], claiming that any learner based on discrete search can be
made capable of processing a data stream. The key idea depends on the use of
Hoeffding bounds, described in Section 3.1. While from this point of view VFDT
may only be one instance of a more general framework, not only is it the original
example and inspiration for the general framework, but because it is based on
decision trees it performs very well, for reasons given shortly.

Hoeffding trees are being studied because they represent current state-of-
the-art for classifying high speed data streams. The algorithm fulfills the re-
quirements necessary for coping with data streams while remaining efficient, an
achievement that was rare prior to its introduction. Previous work on scaling
up decision tree learning produced systems such as SLIQ [143], SPRINT [175]
and RAINFOREST [81]. These systems perform batch learning of decision trees
from large data sources in limited memory by performing multiple passes over
the data and using external storage. Such operations are not suitable for high
speed stream processing.

Other previous systems that are more suited to data streams are those that
were designed exclusively to work in a single pass, such as the incremental sys-
tems ID5R [184] and its successor ITI [185], and other earlier work on incre-
mental learning. Systems like this were considered for data stream suitability by
Domingos and Hulten, who found them to be of limited practical use. In some
cases these methods require more effort to update the model incrementally than
to rebuild the model from scratch. In the case of ITI, all of the previous training
data must be retained in order to revisit decisions, prohibiting its use on large
data sources.

The Hoeffding tree induction algorithm induces a decision tree from a data
stream incrementally, briefly inspecting each example in the stream only once,
without need for storing examples after they have been used to update the tree.
The only information needed in memory is the tree itself, which stores sufficient
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information in its leaves in order to grow, and can be employed to form predic-
tions at any point in time between processing training examples.

Domingos and Hulten present a proof guaranteeing that a Hoeffding tree
will be ‘very close’ to a decision tree learned via batch learning. This shows that
the algorithm can produce trees of the same quality as batch learned trees, de-
spite being induced in an incremental fashion. This finding is significant because
batch learned decision trees are among the best performing machine learning
models. The classic decision tree learning schemes C4.5 [160] and CART [29],
two similar systems that were independently developed, are widely recognised
by the research community and regarded by many as de facto standards for batch
learning.

There are several reasons why decision tree learners are highly regarded.
They are fairly simple, the decision tree model itself being easy to comprehend.
This high level of interpretability has several advantages. The decision process
induced via the learning process is transparent, so it is apparent how the model
works. Questions of why the model works can lead to greater understanding of
a problem, or if the model manages to be successful without truly reflecting the
real world, can highlight deficiencies in the data used.

The quest for accuracy means that interpretability alone will not guarantee
widespread acceptance of a machine learning model. Perhaps the main rea-
son decision trees are popular is that they are consistently accurate on a wide
variety of problems. The classic decision tree systems recursively split the multi-
dimensional data into smaller and smaller regions, using greedily chosen axis-
orthogonal splits. This divide-and-conquer strategy is simple yet often successful
at learning diverse concepts.

Another strong feature of decision trees is their efficiency. With n examples
and m attributes, page 197 of [91] shows that the average cost of basic decision
tree induction is O(mn log n), ignoring complexities such as numeric attributes
and subtree raising. A more detailed study of tree induction complexity can be
found in [141]. The cost of making a decision is O(tree depth) in the worst case,
where typically the depth of a tree grows logarithmically with its size.

For the batch setting, recent studies [34] have shown that single decision
trees are no longer the best off-the-shelf method. However, they are competitive
when used as base models in ensemble methods. For this reason, ensemble
methods employing Hoeffding trees are explored later in chapters 6.

3.1 The Hoeffding Bound for Tree Induction

Each internal node of a standard decision tree contains a test to divide the exam-
ples, sending examples down different paths depending on the values of partic-
ular attributes. The crucial decision needed to construct a decision tree is when
to split a node, and with which example-discriminating test. If the tests used
to divide examples are based on a single attribute value, as is typical in classic
decision tree systems, then the set of possible tests is reduced to the number of
attributes. So the problem is refined to one of deciding which attribute, if any,
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is the best to split on.
There exist popular and well established criteria for selecting decision tree

split tests. Perhaps the most common is information gain, used by C4.5. In-
formation gain measures the average amount of ‘purity’ that is gained in each
subset of a split. The purity of the subsets is measured using entropy, which for
a distribution of class labels consisting of fractions p1, p2, ..., pn summing to 1, is
calculated thus:

entropy(p1, p2, ..., pn) =
n
∑

i=1

−pi log2 pi (3.1)

Gain in information is measured by subtracting the weighted average entropy
of the subsets of a split from the entropy of the class distribution before split-
ting. Entropy is a concept from information theory that measures the amount
of information conveyed by a message in bits. Throughout this text the split-
ting criterion is assumed to be information gain, but this does not rule out other
methods. As pointed out by Domingos and Hulten, other similar methods such
as the Gini index used by CART can be just as equally applied.

The estimated information gain resulting from a split on each attribute is the
heuristic used to guide split decisions. In the batch learning setting this decision
is straightforward, as the attribute with the highest information gain over all of
the available and applicable training data is the one used. How to make the same
(or very similar) decision in the data stream setting is the innovation contributed
by Domingos and Hulten. They employ the Hoeffding bound [102], otherwise
known as an additive Chernoff bound.

The Hoeffding bound states that with probability 1 − δ, the true mean of
a random variable of range R will not differ from the estimated mean after n
independent observations by more than:

ε=

√

√R2 ln(1/δ)
2n

(3.2)

This bound is useful because it holds true regardless of the distribution gen-
erating the values, and depends only on the range of values, number of obser-
vations and desired confidence. A disadvantage of being so general is that it is
more conservative than a distribution-dependent bound. An alternative bound
has been suggested by Jin and Agrawal [115]. The Hoeffding bound formulation
is well founded and works well empirically, so tighter bounds are not explored
in this text.

For the purposes of deciding which attribute to split on, the random variable
being estimated is the difference in information gain between splitting on the
best and second best attributes. For example, if the difference in gain between
the best two attributes is estimated to be 0.3, and ε is computed to be 0.1, then
the bound guarantees that the maximum possible change in difference will be
0.1. From this the smallest possible difference between them in the future must
be at least 0.2, which will always represent positive separation for the best at-
tribute.
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For information gain the range of values (R) is the base 2 logarithm of the
number of possible class labels. With R and δ fixed, the only variable left to
change the Hoeffding bound (ε) is the number of observations (n). As n in-
creases, ε will decrease, in accordance with the estimated information gain get-
ting ever closer to its true value.

A simple test allows the decision, with confidence 1−δ, that an attribute has
superior information gain compared to others—when the difference in observed
information gain is more than ε. This is the core principle for Hoeffding tree
induction, leading to the following algorithm.

3.2 The Basic Algorithm

Algorithm 2 Hoeffding tree induction algorithm.
1: Let HT be a tree with a single leaf (the root)
2: for all training examples do
3: Sort example into leaf l using HT
4: Update sufficient statistics in l
5: Increment nl , the number of examples seen at l
6: if nl mod nmin = 0 and examples seen at l not all of same class then
7: Compute G l(X i) for each attribute
8: Let Xa be attribute with highest G l

9: Let X b be attribute with second-highest G l

10: Compute Hoeffding bound ε=
Ç

R2 ln(1/δ)
2nl

11: if Xa ̸= X; and (G l(Xa)− G l(X b)> ε or ε < τ) then
12: Replace l with an internal node that splits on Xa

13: for all branches of the split do
14: Add a new leaf with initialized sufficient statistics
15: end for
16: end if
17: end if
18: end for

Algorithm 2 lists pseudo-code for inducing a Hoeffding tree from a data
stream. Line 1 initializes the tree data structure, which starts out as a single
root node. Lines 2-18 form a loop that is performed for every training example.

Every example is filtered down the tree to an appropriate leaf, depending
on the tests present in the decision tree built to that point (line 3). This leaf is
then updated (line 4)—each leaf in the tree holds the sufficient statistics needed
to make decisions about further growth. The sufficient statistics that are up-
dated are those that make it possible to estimate the information gain of split-
ting on each attribute. Exactly what makes up those statistics is discussed in
Section 3.2.2. Line 5 simply points out that nl is the example count at the leaf,
and it too is updated. Technically nl can be computed from the sufficient statis-
tics.

48



3.2. THE BASIC ALGORITHM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

H
oe

ffd
in

g 
bo

un
d 

(ε
)

number of observations (n)

Figure 3.1: Hoeffding bound on a two-class problem with default parameters.

For efficiency reasons the code block from lines 6-17 is only performed pe-
riodically, every nmin examples for a particular leaf, and only when necessary,
when a mix of observed classes permits further splitting. The delayed evalua-
tion controlled by nmin is discussed in Section 3.2.3.

Lines 7-11 perform the test described in the previous section, using the Ho-
effding bound to decide when a particular attribute has won against all of the
others. G is the splitting criterion function (information gain) and G is its esti-
mated value. In line 11 the test for X;, the null attribute, is used for pre-pruning
(Section 3.2.4). The test involving τ is used for tie-breaking (Section 3.2.5).

If an attribute has been selected as the best choice, lines 12-15 split the node,
causing the tree to grow. Preventing the tree from using too much memory is
the topic of Section 3.3.

3.2.1 Split Confidence

The δ parameter used in the Hoeffding bound is one minus the desired probabil-
ity that the correct attribute is chosen at every point in the tree. Because a high
likelihood of correctness is desired, with probability close to one, this parameter
is generally set to a small value. For the experiments described throughout the
text, δ is set to the VFDT default of 10−7.

Figure 3.1 shows a plot of the Hoeffding bound using the default parameters
for a two-class problem (R = log2(2) = 1, δ = 10−7). The bound rapidly drops
to below 0.1 within the first one thousand examples, and after ten thousand
examples is less than 0.03. This means that after ten thousand examples the
calculated information gain of an attribute needs to be 0.03 greater than the
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second best attribute for it to be declared the winner.

3.2.2 Sufficient Statistics

The statistics in a leaf need to be sufficient to enable calculation of the infor-
mation gain afforded by each possible split. Efficient storage is important—it
is costly to store information in the leaves, so storing unnecessary information
would result in an increase in the total memory requirements of the tree.

For attributes with discrete values, the statistics required are simply counts of
the class labels that apply for each attribute value. If an attribute has v unique
attribute values and there are c possible classes, then this information can be
stored in a table with vc entries. The node maintains a separate table per dis-
crete attribute. Updating the tables simply involves incrementing the appropri-
ate entries according to the attribute values and class of the training example.
Table 5.1 on page 78, used as an example when looking at prediction methods,
shows what such tables can look like.

Continuous numeric attributes are more difficult to summarize. Chapter 4 is
dedicated to this topic.

3.2.3 Grace Period

It is computationally costly to evaluate the information gain of attributes after
each and every training example. Given that a single example will have little
influence on the results of the calculation, it is sensible to wait for more examples
before re-evaluating. The nmin parameter, or grace period, dictates how many
examples since the last evaluation should be seen in a leaf before revisiting the
decision.

This has the attractive effect of speeding up computation while not greatly
harming accuracy. The majority of training time will be spent updating the suf-
ficient statistics, a lightweight operation. Only a fraction of the time will splits
be considered, a more costly procedure. The worst impact that this delay will
have is a slow down of tree growth, as instead of splitting as soon as possible, a
split will delayed by as much as nmin − 1 examples.

For experimentation nmin is fixed at 200, the default setting found in the
original paper [52]. Figure 3.2 shows the impact this setting has on the accuracy
of trees induced from the RRBFC data. From the plot in the top-left it would
appear that considering split decisions after every training example does improve
the accuracy of the tree, at least within the first 30 million training examples
shown on this data. From an accuracy per example perspective, the non grace
period tree is superior. The plot to the top-right shows more of the picture,
where each tree was allowed ten hours to grow, the tree that had nmin set to 200
was able to process almost 800 million examples and achieve significantly better
accuracy within that time than the tree lacking a grace period. The plot to the
bottom-left shows the total number of examples that were processed over that
time—without a grace period 30 million examples in ten hours were possible,
with a grace period approximately 25 times more examples were processed in
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Figure 3.2: Effect of grace period on the RRBFC data with a 32MB memory limit.

the same time period. Viewing accuracy per time spent in the bottom-right plot
makes the advantage of using a grace period clear.

3.2.4 Pre-pruning

It may turn out more beneficial to not split a node at all. The Hoeffding tree
algorithm detects this case by also considering the merit of no split, represented
by the null attribute X;. A node is only allowed to split when an attribute looks
sufficiently better than X;, by the same Hoeffding bound test that determines
differences between other attributes.

All of the Hoeffding tree implementations used in experiments for this text
had pre-pruning enabled, but revisiting some of the results without pre-pruning
yielded no noticeable difference in size, speed or accuracy of trees. This raises
questions about the value of pre-pruning—it does not appear to be harmful and
has theoretical merit, but in practice may not have an effect. This question re-
mains open and is not further explored by this text.

Pre-pruning in the stream setting is not a permanent decision as it is in batch
learning. Nodes are prevented from splitting until it appears that a split will be
useful, so in this sense, the memory management strategy of disabling nodes
(Section 3.3) can also be viewed as a form of pre-pruning. Conventional knowl-
edge about decision tree pruning is that pre-pruning can often be premature and
is not as commonly used as post-pruning approaches. One reason for premature
pre-pruning could be lack of sufficient data, which is not a problem in abundant
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data streams.
In the batch learning setting it is very easy to induce a tree that perfectly fits

the training data but does not generalize to new data. This problem is typically
overcome by post-pruning the tree. On non-concept drifting data streams such
as those described here, it is not as critical to prevent overfitting via post-pruning
as it is in the batch setting. If concept drift were present, active and adaptive
post-pruning could be used to adjust for changes in concept, a topic outside the
scope of this text.

3.2.5 Tie-breaking

A situation can arise where two or more competing attributes cannot be sep-
arated. A pathological case of this would be if there were two attributes with
identical values. No matter how small the Hoeffding bound it would not be able
to separate them, and tree growth would stall.

If competing attributes are equally good, and are superior to some of the
other split options, then waiting too long to decide between them can do more
harm than good to the accuracy of the tree. It should not make a difference
which of the equal competitors is chosen. To alleviate this situation, Domingos
and Hulten introduce a tie breaking parameter, τ. If the Hoeffding bound is
sufficiently small, that is, less than τ, then the node is split on the current best
attribute regardless of how close the next best option is.

The effect of this parameter can be viewed in a different way. Knowing the
other variables used in the calculation of the Hoeffding bound, it is possible to
compute an upper limit on the number of examples seen by a leaf before tie-
breaking intervenes, forcing a split on the best observed attribute at that point.
The only thing that can prevent tie-breaking is if the best option turns out to be
not splitting at all, hence pre-pruning comes into effect.
τ is set to the literature default of 0.05 for the experiments. With this setting

on a two-class problem, ties will be broken after 3,224 examples are observed.
With nmin being set to 200, this will actually be delayed until 3,400 examples.

Tie-breaking can have a very significant effect on the accuracy of trees pro-
duced. An example is given in Figure 3.3, where without tie-breaking the tree
grows much slower, ending up around five times smaller after 700 million train-
ing examples and taking much longer to come close to the same level of accuracy
as the tie-breaking variant.

3.2.6 Skewed Split Prevention

There is another element present in the Hoeffding tree experimental implemen-
tation that is not mentioned in the pseudo-code. It is a small enhancement to
split decisions that was first introduced by Gama et al. [77] and originally formu-
lated for two-way numeric splits. In this text the concept has been generalized
to apply to any split including splits with multiple branches.

The rule is that a split is only allowed if there are at least two branches where
more than pmin of the total proportion of examples are estimated to follow the

52



3.3. MEMORY MANAGEMENT

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0  100  200  300  400  500  600  700

tr
ee

 s
iz

e 
(t

ot
al

 n
od

es
)

training instances processed (millions)

with tie-breaking
without tie-breaking

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0  100  200  300  400  500  600  700

ac
cu

ra
cy

 o
n 

te
st

 s
et

 (
%

)

training instances processed (millions)

with tie-breaking
without tie-breaking

Figure 3.3: Effect of tie-breaking on the RRBFC data with a 32MB memory limit.

branch. The pmin threshold is an arbitrary parameter that can be adjusted, where
a default value of 1% seems to work well enough. This prevents a highly skewed
split from being chosen, where less than 1% of examples go down one path
and over 99% of examples go down another. Such a split can potentially look
attractive from an information gain perspective if it increases the purity of the
subsets, but from a tree growth perspective is rather spurious.

In many cases this rule has no effect on tree classification accuracy, but Fig-
ure 3.4 shows it can have a positive effect in some cases.

3.3 Memory Management

The basic algorithm as described will continue to split the tree as needed, without
regard for the ever-increasing memory requirements. This text argues that a core
requirement of data stream algorithms is the ability to limit memory usage. To
limit Hoeffding tree memory size, there must be a strategy that limits the total
number of nodes in the tree. The node-limiting strategy used follows the same
principles that Domingos and Hulten introduced for the VFDT system.

When looking at the memory requirements of a Hoeffding tree, the dominant
cost is the storage of sufficient statistics in the leaves. Figure 3.5 is an example
of how closely, in unbounded memory, the number of leaves in a tree can reflect
its actual memory requirements. Section 3.4.1 describes in more detail how this
relationship is exploited to efficiently estimate the actual memory size of the tree
based on node counts.

The main idea behind the memory management strategy is that when faced
with limited memory, some of the leaves can be deactivated, such that their suf-
ficient statistics are discarded. Deciding which leaves to deactivate is based on
a notion of how promising they look in terms of yielding accuracy gains for the
tree.

In VFDT, the least promising nodes are defined to be the ones with the lowest
values of pl el , where pl is the probability that examples will reach a particular
leaf l, and el is the observed rate of error at l. Intuitively this makes sense, the
leaves considered most promising for further splitting are those that see a high
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Figure 3.4: Effect of preventing skewed splits on the RRBFC data with a 32MB
memory limit.
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tree on the LED data.
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number of examples and also make a high number of mistakes. Such leaves will
be the largest contributors to error in classification, so concentrating effort on
splitting these nodes should see the largest reduction in error.

The implementation created for this text measures the ‘promise’ of leaves in
an equivalent and straightforward way. Every leaf in the tree is capable of re-
turning the full count of examples it has observed for each class since creation.
The promise of a node is defined as the total remaining number of examples that
have been seen to fall outside the currently observed majority class. Like VFDT’s
pl el measure, this estimates the potential that a node has for misclassifying ex-
amples. If n is the number of examples seen in a leaf, and E is the number of
mistakes made by the leaf, and N is the total number of examples seen by the
tree, then pl el = n/N × E/n = E/N . Promise is measured using E, which is
equivalent to using E/N , as N is constant for all leaves.

To make memory management operate without introducing excessive run-
time overhead, the size is estimated approximately whenever new nodes are in-
troduced to the tree using the method described in Section 3.4.1. Periodically, a
full and precise memory check is performed. This is done after every mem-period
training examples are processed, where mem-period is a user defined constant.
The periodic memory check calculates the actual memory consumption of the
tree, a potentially costly process.

After checking memory usage, if there happen to be inactive nodes or if the
maximum memory limit has been exceeded then a scan of the leaves is per-
formed. The leaves are ordered from least promising to most promising, and
a calculation is made based on the current sizes of the nodes to determine the
maximum number of active nodes that can be supported. Once this threshold
has been established, any active leaves found below the threshold are deacti-
vated, and any inactive leaves above the threshold are reactivated. This process
ensures that the tree actively and dynamically adjusts its focus on growing the
most promising leaves first, while also keeping within specified memory bounds.

Figure 3.6 illustrates the process. The top part of the illustration shows
twenty leaf nodes from a hypothetical Hoeffding tree ordered from least to most
promising. The size of active nodes in memory can differ due to the method
used to track numeric attributes (Chapter 4) and when the sufficient statistics of
poor attributes have been removed (Section 3.3.1). The sizes of the dots indi-
cate the sizes of the active nodes, and inactive nodes are represented by crosses.
Based on the average size of the active nodes and the total memory allowed,
the threshold is determined in this case to allow a maximum of six active nodes.
The bottom row shows the outcome after memory management is complete—
below the threshold, the least promising nodes have all been deactivated, and
above the threshold nodes 15 and 18 have been activated to make all of the most
promising ones active.

For methods where the relative size between internal nodes, active leaves
and inactive leaves is relatively constant this method is very effective at keeping
the tree within a memory bound. For some methods where summary statistics
in leaves can grow rapidly and vary substantially in size, such as the exhaustive
binary tree numeric handling method (BINTREE) described in Chapter 4, it is

55



CHAPTER 3. HOEFFDING TREES

Figure 3.6: The memory management strategy employed after leaves of a tree
have been sorted in order of promise. Dots represent active leaves which store
sufficient statistics of various size, crosses represent inactive leaves which do not
store sufficient statistics.
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less successful in maintaining a strict memory bound. In these cases, the tree’s
memory usage has a chance to creep beyond the limit in the period between
memory checks, but will be brought back to the memory limit as soon as the
next check is performed. Figure 3.7 demonstrates a case of memory ‘creep’ that
occurred in the experiments—the target memory limit is 32 megabytes, and for
efficiency the memory usage is only precisely measured every one hundred thou-
sand examples, that is, mem-period= 100,000. In this case, the memory used by
BINTREE temporarily exceeds the memory bounds by as much as three megabytes
or roughly 9%, but all the while fluctuating close to and more often further be-
low the desired bound. The figure compares this with the memory requirements
of the HTNBA variant on the same data, a much more stable method described in
Chapter 5. The majority of the Hoeffding tree variants tested in the experiments
exhibit stable memory behaviour, so most cases look like this, where the memory
plot over time hits the target precisely before completely flattening out.

While the dominant storage cost is incurred for active nodes, limiting their
number will eventually cause the size of internal nodes and inactive leaves to
become significant. A point will be reached where no further growth of the tree
can occur without the memory limit being exceeded. Once this stage is reached,
all leaves of the tree will be made inactive, and the tree will no longer be able
to grow.

One element of memory usage that has not yet been accounted for is the tem-
porary working space needed to perform operations on the tree. Implemented
in a modern computer language, update and prediction operations will make
several function calls, and will store values and pointers in local memory, typi-
cally using some space on a working stack. This cost, which will partly depend
on implementation details, is assumed to be small and bounded such that it is
insignificant compared to storage of the tree itself.

3.3.1 Poor Attribute Removal

An additional strategy for saving space was also suggested by Domingos and
Hulten [52]. This strategy aims to reduce the size of the sufficient statistics in
each leaf. The idea is to discard sufficient statistics for individual attributes when
it looks very unlikely that they will be selected. When new leaves are formed,
all attributes are considered as candidates for splitting. During every evaluation
round that does not result in a decision to split, attributes are determined to be
poor if their information gain is less than the gain of the current best attribute
by more than the Hoeffding bound. According to the bound, such attributes
are unlikely to be selected in that particular node of the tree, so the information
tracking them in the leaf is discarded and they are ignored in split decisions from
that point onward.

This strategy is not as powerful as full node deactivation, the best it can
do is help to reduce the average size of leaf nodes. Theoretically this should
benefit the accuracy of trees, because it will allow more leaves to remain active
in limited memory. In practice the gains appear to be slight, as demonstrated in
Figure 3.8, where on RRBFC the plot to the left shows a significant increase in the
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Figure 3.8: Effect of poor attribute removal on RRBFC data with a 32MB limit.

number of leaves allowed to remain active in a 32MB limit, while the plot to the
right shows that this only translates to a small gain in accuracy. In this case the
accuracy is measured when the tree makes predictions using standard majority
class prediction. Removing poor attributes will affect the enhanced prediction
methods described in Chapter 5, where this is discussed further.

3.4 MOA Java Implementation Details

One of the key data structures used in MOA is the description of an example
from a data stream. This structure borrows from WEKA, where an example is
represented by an array of double precision floating point values. This provides
freedom to store all necessary type of values—numeric attribute values can be
stored directly, and discrete attribute values and class labels are represented by
integer index values that are stored as floating point values in the array. Double
precision floating point values require storage space of 64 bits, or 8 bytes. This
detail can have implications for memory utilization.

A challenge in developing the system has been measuring the total sizes of
objects in memory. Java deliberately hides details about how memory is allo-
cated. This frees programmers from the burden of maintaining direct memory
pointers that is otherwise typical in C programming, reducing dependence on a
particular platform and eliminating a common source of error. The downside is
that it makes the task of precisely measuring and limiting the memory usage of
algorithms more difficult.

Early attempts at memory measurement revolved around exploiting Java’s
automatic serialization mechanism. It is easy to make all objects capable of be-
ing serialized, which means that they can be written out as a flat stream of bytes
to be reconstructed later. The idea was to measure the size of the serialized
stream of an object, which must be related to its true size in memory. The mea-
suring process can be performed with minimum overhead by writing the object
to a dummy stream that allocates no memory but instead simply counts the total
number of bytes requested during write operations. It turns out that this method,
while suitable for approximate relative measurement of object size, was not pre-
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cise enough to achieve the level of control needed to confidently evaluate the
algorithms. Often the true size of objects would be underestimated, so that even
if the Java virtual machine was allocated a generous amount of memory it could
still run into problems, strongly indicating that the serialized size estimates were
inadequate.

Fortunately the release of Java 5 introduced a new mechanism allowing ac-
cess to more accurate memory allocation measurements that are implementation
specific. The instrumentation interface is harder to access as it requires extra
work to be done by invoking the virtual machine with an agent, but once cor-
rectly set up can be queried for the size of a single object in memory. The size
returned does not account for other sub-objects that are referenced, so it will not
immediately return the total size of a complex data structure in memory, but this
can be achieved by implementing additional code that uses reflection to traverse
an entire data structure and compute the total size.

The Java code listing in Figure 3.9 tests the two size measuring methods.
Five simple Java classes possessing an increasing number of fields are measured,
along with the size of those objects when replicated 100 times in an array. Fig-
ure 3.10 displays the result of running the test in the same software environment
as all of the experimental results reported in this text. The results show that the
serialization method has a tendency to over-estimate the size of single small ob-
jects in memory, which would be expected due to the overhead that must be
required to completely describe a serialized stream. Interestingly though, seri-
alization also has a tendency to underestimate the size of a collection of objects,
where for example the size of the classA array is estimated to be almost half
of the instrumentation size. This behaviour explains the problems encountered
when trying to rely on serialization measurements for experiments. The prob-
lem lies in hidden implementation details that make the serialization mechanism
store information more efficiently than the virtual machine. The instrumenta-
tion measurements expose other effects that could not otherwise be predicted.
There appears to be some form of byte padding effect present, where an object
with a single integer field (4 bytes worth) requires the same space as one with
two fields (16 bytes in both cases). The reason for this will be a technical deci-
sion on behalf of the virtual machine implementation, perhaps a byte alignment
issue for the sake of efficiency. Whatever the reason, this discovery serves to
highlight the value of an accurate measurement mechanism, enabling the abil-
ity to account for such nuances that could not be anticipated otherwise.

3.4.1 Fast Size Estimates

For the Java implementation, the number of active and inactive nodes in a Ho-
effding tree are used to estimate the total true size of the tree in memory. The
node counts of a growing tree are easily maintained—whenever a new node
is added an appropriate counter can be incremented, and when activating or
deactivating leaves the counters are appropriately adjusted.

The size estimation procedure requires that actual measurements be per-
formed every so often to establish and refine the parameters used for future
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...
public static class ClassA implements Serializable {

public int fieldA;
}
public static class ClassB implements Serializable {

public int fieldA, fieldB;
}
public static class ClassC implements Serializable {

public int fieldA, fieldB, fieldC;
}
public static class ClassD implements Serializable {

public int fieldA, fieldB, fieldC, fieldD;
}
public static class ClassE implements Serializable {

public int fieldA, fieldB, fieldC, fieldD, fieldE;
}
public static void main(String[] args) throws Exception {

ClassA classAobject = new ClassA();
ClassB classBobject = new ClassB();
ClassC classCobject = new ClassC();
ClassD classDobject = new ClassD();
ClassE classEobject = new ClassE();
ClassA[] classAarray = new ClassA[100];
ClassB[] classBarray = new ClassB[100];
ClassC[] classCarray = new ClassC[100];
ClassD[] classDarray = new ClassD[100];
ClassE[] classEarray = new ClassE[100];
for (int i = 0; i < 100; i++) {

classAarray[i] = new ClassA();
classBarray[i] = new ClassB();
classCarray[i] = new ClassC();
classDarray[i] = new ClassD();
classEarray[i] = new ClassE();

}
System.out.println("classAobject serialized size = "

+ serializedByteSize(classAobject)
+ " instrument size = "
+ instrumentByteSize(classAobject));

...

Figure 3.9: Java code testing two methods for measuring object sizes in memory.
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classAobject serialized size = 72 instrument size = 16
classBobject serialized size = 85 instrument size = 16
classCobject serialized size = 98 instrument size = 24
classDobject serialized size = 111 instrument size = 24
classEobject serialized size = 124 instrument size = 32
classAarray serialized size = 1124 instrument size = 2016
classBarray serialized size = 1533 instrument size = 2016
classCarray serialized size = 1942 instrument size = 2816
classDarray serialized size = 2351 instrument size = 2816
classEarray serialized size = 2760 instrument size = 3616

Figure 3.10: Output from running the code in Figure 3.9.

estimation. The actual byte size in memory is measured (trueSize), along with
the average byte size of individual active nodes (activeSize) and inactive nodes
(inactiveSize). From this an extra parameter is calculated:

overhead =
t rueSize

act ive× act iveSize+ inact ive× inact iveSize
(3.3)

To increase the precision of the estimate the number of internal nodes in the
tree, of similar size to inactive nodes, could also be included in the calculation.
The implementation did not do this however, as the procedure described worked
sufficiently well.

The estimated overhead is designed to account for the internal nodes of the
tree, small inaccuracies in the node estimation procedure and any other structure
associated with the tree that has otherwise not been accounted for, bringing the
final estimate closer to the true value. Once these values are established, the
actual byte size of the tree can be quickly estimated based solely on the number
of active and inactive nodes in the tree:

size = (act ive× act iveSize+ inact ive× inact iveSize)× overhead (3.4)

This calculation can be quickly performed whenever the number of inactive
or active leaves changes, sparing the need to do a complete rescan and measure-
ment of the tree after every change.
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4
Numeric Attributes

The ability to learn from numeric attributes is very useful because many at-
tributes needed to describe real-world problems are most naturally expressed
by continuous numeric values. The decision tree learners C4.5 and CART suc-
cessfully handle numeric attributes. Doing so is straightforward, because in the
batch setting every numeric value is present in memory and available for inspec-
tion. A learner that is unable to deal with numeric attributes creates more bur-
den for users. The data must first be pre-processed so that all numeric attributes
are transformed into discrete attributes, a process referred to as discretization.
Traditionally discretization requires an initial pass of the data prior to learning,
which is undesirable for data streams.

The original Hoeffding tree algorithm demonstrated only how discrete at-
tribute values could be handled. Domingos and Hulten [52] claim that the ex-
tension to numeric attributes:

...is immediate, following the usual method of allowing tests of the
form “(X i < x i j)?” and computing G for each allowed threshold x i j.

While this statement is true, the practical implications warrant serious inves-
tigation. The storage of sufficient statistics needed to exactly determine every
potential numeric threshold, and the result of splitting on each threshold, grows
linearly with the number of unique numeric values. A high speed data stream
potentially has an infinite number of numeric values, and it is possible that every
value in the stream is unique. Essentially this means that the storage required
to precisely track numeric attributes is unbounded and can grow rapidly.

For a Hoeffding tree learner to handle numeric attributes, it must track them
in every leaf it intends to split. An effective memory management strategy will
deactivate some leaves in favour of more promising ones when facing memory
shortages, such as discussed in Section 3.3. This may reduce the impact of leaves
with heavy storage requirements but may also significantly hinder growth. In-
stead it could be more beneficial to save space via some form of approximation
of numeric distributions.

Section 4.1 looks at common methods used in batch learning. Several ap-
proaches for handling numeric attributes during Hoeffding tree induction have
been suggested before, and are discussed in Section 4.2.
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4.1 Batch Setting Approaches

Strategies for handling continuous attribute values have been extensively stud-
ied in the batch setting. Some algorithms, for example support vector machines [33],
naturally take continuous values as input due to the way they operate. Other
algorithms are more naturally suited to discrete inputs, but have common tech-
niques for accepting continuous values, Naive Bayes and C4.5 for example. It
is useful in the batch setting to separate the numeric attribute problem entirely
from the learning algorithm—a discretization algorithm can transform all in-
puts in the data to discrete values as a pre-processing step that is independent
from the learning algorithm. This way, any learning algorithm that accepts dis-
crete attributes can process data that originally contained continuous numeric
attributes, by learning from a transformed version of the data. In fact, it has been
claimed that in some cases, algorithms with built-in numeric handling abilities
can improve when learning from pre-discretized data [54].

Methods for discretizing data in the batch setting are surveyed by Dougherty
et al. [54]. They introduce three axes to categorize the various methods: global
vs local, supervised vs unsupervised and static vs dynamic.

Methods that are global work over an entire set of examples, as opposed to
local methods that work on smaller subsets of examples at a time. C4.5 is cate-
gorized as a local method, due to the example space being divided into smaller
regions with every split of the tree, and discretization performed on increasingly
smaller sets. Some methods can be either global or local depending on how they
are applied, for example Dougherty et al. [54] categorize the k-means clustering
method as local, while Gama and Pinto [76] say it is global.

Discretization that is supervised is influenced by the class labels of the ex-
amples, whereas unsupervised discretization is not. Methods that are supervised
can exploit class information to improve the effectiveness of discretization for
classification algorithms.

Dougherty et al. also believe that the distinction between static and dynamic
methods is important (otherwise known as uni-variate and multi-variate), al-
though they do not consider dynamic methods in their survey, which are much
less common than static ones. A static discretization treats each attribute inde-
pendently. A dynamic discretization considers dependencies between attributes,
for example a method that optimizes a parameter by searching for the best set-
ting over all attributes simultaneously.

Gama and Pinto [76] add a fourth useful distinction: parametric vs non-
parametric. Methods considered parametric require extra parameters from the
user to operate, and non-parametric methods use the data alone.

The following subsections detail several well-known approaches to batch dis-
cretization. Table 4.1 summarizes the properties of each. All methods are static,
apart from k-means clustering which is also capable of dynamic discretization.
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Table 4.1: Summary of batch discretization methods, categorized in four axes.
global/ supervised/ static/ parametric/

method local unsupervised dynamic non-parametric
equal width global unsupervised static parametric
equal frequency global unsupervised static parametric
k-means clustering either unsupervised either parametric
Fayyad & Irani either supervised static non-parametric
C4.5 local supervised static non-parametric

4.1.1 Equal Width

This global unsupervised parametric method divides the continuous numeric range
into k bins of equal width. There is no overlap between bins, so that any given
value will lie in exactly one bin. Once the boundaries of the bins are determined,
which is possible knowing only the minimum and maximum values, a single scan
of the data can count the frequency of observations for each bin. This is perhaps
the simplest method of approximating a distribution of numeric values, but is
highly susceptible to problems caused by skewed distributions and outliers. A
single outlier has potential to influence the approximation, as an extreme value
can force a distribution that is otherwise reasonably approximated into repre-
sentation with many values in a single bin, where most of the remaining bins
are empty.

4.1.2 Equal Frequency

This method is similar to equal width, it is also a global unsupervised paramet-
ric method that divides the range of values into k bins. The difference is that
the bin boundaries are positioned so that the frequency of values in each bin is
equal. With n values, the count in each bin should be n/k, or as close to this as
possible if duplicate values and uneven divisions cause complications. Comput-
ing the placement of bins is more costly than the equal width method because a
straightforward algorithm needs the values to be sorted first.

4.1.3 k-means Clustering

This method is unsupervised, parametric, and can be either local or global. It is
based on the well-known k-means clustering algorithm [96]. The clustering al-
gorithm can work on multi-dimensional data and aims to minimize the distance
within clusters while maximizing the distance between clusters. With an arbi-
trary starting point of k centers, the algorithm proceeds iteratively by assigning
each point to its nearest center based on Euclidean distance, then recomputing
the central points of each cluster. This continues until convergence, where every
cluster assignment has stabilized. When used for static discretization the clus-
tering will be performed on a single attribute at a time. Dynamic discretization
is possible by clustering several attributes simultaneously.
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4.1.4 Fayyad and Irani

This method [58] is quite different from those described above as it is supervised
and non-parametric. The algorithm is categorized [54] as capable of both global
and local operation. The values of an attribute are first sorted, then a cut-point
between every adjacent pair of values is evaluated, with n values and no repeated
values this involves n− 1 evaluations. The counts of class labels to either side
of each split candidate determine the information gain in the same way that
attributes are chosen during tree induction (Section 3.1). The information gain
has been found to be a good heuristic for dividing values while taking class labels
into consideration. The cut-point with the highest gain is used to divide the
range into two sets, and the procedure continues by recursively cutting both sets.
Fayyad and Irani show [58] that this procedure will never choose a cut-point
between consecutive examples of the same class, leading to an optimization of
the algorithm that avoids evaluation of such points.

A stopping criterion is necessary to avoid dividing the range too finely, failure
to terminate the algorithm could potentially continue division until there is a
unique interval per value. If an interval is pure, that is, has values all of the same
class, then there is no reason to continue splitting. If an interval has a mixture
of labels, Fayyad and Irani apply the principle of minimum description length
(MDL) [163] to estimate when dividing the numeric range ceases to provide
any benefit.

4.1.5 C4.5

The procedure for discretizing numeric values in Quinlan’s C4.5 [160] decision
tree learner is local, supervised and non-parametric. It essentially uses the same
procedure described in Fayyad and Irani’s method, only it is not recursively ap-
plied in the same manner. For the purposes of inducing a decision tree, a single
two-way split is chosen and evaluated for every numeric attribute. The cut-
points are decided locally on the respective subset of every node, in the same
way as described above—scanning through the values in order and calculating
the information gain of candidate cut-points to determine the point with the
highest gain. The difference is that the scan is carried out only once per nu-
meric attribute to find a single split into two subsets, and no further recursion is
performed on those subsets at that point. The recursive nature of decision tree
induction means however that numeric ranges can be cut again further down
the tree, but it all depends on which attributes are selected during tree growth.
Splits on different attributes will affect the subsets of examples that are subse-
quently evaluated.

Responding to results in [54] showing that global pre-discretization of data
using Fayyad and Irani’s method could produce better C4.5 trees than using
C4.5’s local method, Quinlan improved the method in C4.5 release 8 [161] by
removing some bias in the way that numeric cut-points were chosen.
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4.2 Data Stream Approaches

The first thing to consider are ways in which the batch methods from the previous
section could be applied to the data stream setting.

The equal width method is simple to perform in a single pass and limited
memory provided that the range of values is known in advance. This require-
ment could easily violate the requirements of a data stream scenario because
unless domain knowledge is provided by the user the only way to determine
the true range is to do an initial pass of the data, turning the solution into a
two-pass operation. This text only considers solutions that work in a single pass.
Conceivably an adaptive single-pass version of the algorithm could be used, such
as described by Gama and Pinto [76], where any values outside of the known
range would trigger a reorganization of the bins. However, even if a single-pass
solution were available, it would still be prone to the problem of outliers.

Equal frequency appears more difficult to apply to data streams than equal
width because the most straightforward implementation requires the data to be
sorted. The field of database optimization has studied methods for constructing
equal frequency intervals, or equivalently equi-depth histograms or computation
of quantiles, from a single pass. The literature related to this is surveyed in
Section 4.2.3.

A method similar to k-means discretization for data streams would require a
clustering algorithm that is capable of working on a stream. Data stream clus-
tering is outside the scope of this text, but the problem has been worked on by
several researchers such as Guha et al. [88, 87].

Fayyad and Irani’s discretization algorithm and the similar method built into
C4.5 require the data to be sorted in order to search for the best cut-point.

A rare example of a discretization method specifically intended to operate on
data streams for machine learning purposes is presented by Gama and Pinto [76].
It works by maintaining two layers—the first layer simplifies the data with an
equal width summary that is incrementally updated and the second layer builds
the final histogram, either equal width or equal frequency, and is only updated
as needed.

Methods that are global are applied as a separate pre-processing step before
learning begins, while local methods are integrated into a learning algorithm,
where discretization happens during learning as needed. Since only single-pass
solutions to learning are considered, straightforward implementation of global
discretization is not viable, as this would require an initial pass to discretize the
data, to be followed by a second pass for learning. Unfortunately this discounts
direct application of all global solutions looked at thus far, leaving few options
apart from C4.5. The attractive flexibility afforded in the batch setting by sepa-
rating discretization as a pre-processing step does not transfer to the demands
of the data stream setting.

For Hoeffding tree induction the discretization can be integrated with learn-
ing by performing local discretization on the subsets of data found at active
leaves, those in search of splits. The number of examples that contribute to
growth decisions at any one time are limited, depending on the total number
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Table 4.2: Summary of stream discretization methods. All methods are local,
static, and involve two stages, the second of which is supervised.

per-class all-class
parametric quantile summaries VFML

Gaussian approx. (2nd stage)
non-parametric Gaussian approx. (1st stage) exhaustive binary tree

of active leaves in the tree. A brute-force approach stores every example in a
leaf until a split decision is made. Without memory management the number of
active leaves in the tree can grow without bound, making it impossible to use
brute force without a suitable memory management scheme.

The methods discussed in the following subsections represent various pro-
posals from the literature for handling numeric values during Hoeffding tree in-
duction. At a higher level they are all trying to reproduce the C4.5 discretization
method in the stream setting, so in this sense they are all supervised methods.
The difference between them is that they approximate the C4.5 process in dif-
ferent ways. The exhaustive binary tree approach (Section 4.2.2) represents the
brute-force approach of remembering all values, thus is a recreation of the batch
technique. Awareness of space-efficiency as a critical concern in processing data
streams has led to other methods applying a two-stage approach. Discretization
methods at the first stage are used to reduce space costs, intended to capture the
sorted distribution of class label frequencies. These are then used as input for
the second stage, which makes a supervised C4.5-style two-way split decision.

In addition to the distinctions introduced earlier, a final dimension is intro-
duced to help distinguish between the methods: all-class vs per-class. The all-
class methods produce a single approximation of the distribution of examples,
such as a single set of boundaries, recording the frequency of all classes over one
approximation. In contrast, the per-class methods produce a different approxi-
mation per class, so for example each class is represented by an independent set
of boundaries. The per-class methods are supervised in the sense that the class la-
bels influence the amount of attention given to certain details—by allocating the
same amount of space to the approximation of each class the per-class methods
studied here enforce equal attention to each class.

The discretization methods for Hoeffding trees are discussed next, with prop-
erties summarized in Table 4.2.

4.2.1 VFML Implementation

Although Domingos and Hulten have not published any literature describing a
method for handling numeric attributes, they have released working source code
in the form of their VFML package [108]. VFML is written in C and includes an
implementation of VFDT that is capable of learning from streams with numeric
attributes.

This method is all-class and parametric, although the original implementation
hides the single parameter. Numeric attribute values are summarized by a set
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of ordered bins, creating a histogram. The range of values covered by each
bin is fixed at creation and does not change as more examples are seen. The
hidden parameter is a limit on the total number of bins allowed—in the VFML
implementation this is hard-coded to allow a maximum of one thousand bins.
Initially, for every new unique numeric value seen, a new bin is created. Once the
fixed number of bins have been allocated, each subsequent value in the stream
updates the counter of the nearest bin.

There are two potential issues with the approach. The first is that the method
is sensitive to data order. If the first one thousand examples seen in a stream
happen to be skewed to one side of the total range of values, then the final
summary will be incapable of accurately representing the full range of values.

The other issue is estimating the optimal number of bins. Too few bins will
mean the summary is small but inaccurate, and many bins will increase accuracy
at the cost of space. In the experimental comparison the maximum number of
bins is varied to test this effect.

4.2.2 Exhaustive Binary Tree

This method represents the case of achieving perfect accuracy at the necessary
expense of storage space. It is non-parametric and all-class. The decisions made
are the same that a batch method would make, because essentially it is a batch
method—no information is discarded other than the observed order of values.

Gama et al. present this method in their VFDTc system [77]. It works by
incrementally constructing a binary tree structure as values are observed. The
path a value follows down the tree depends on whether it is less than, equal to or
greater than the value at a particular node in the tree. The values are implicitly
sorted as the tree is constructed.

This structure saves space over remembering every value observed at a leaf
when a value that has already been recorded reappears in the stream. In most
cases a new node will be introduced to the tree. If a value is repeated the counter
in the binary tree node responsible for tracking that value can be incremented.
Even then, the overhead of the tree structure will mean that space can only be
saved if there are many repeated values. If the number of unique values were
limited, as is the case in some data sets, then the storage requirements will be less
intensive. In all of the synthetic data sets used for this study the numeric values
are generated randomly across a continuous range, so the chance of repeated
values is almost zero.

The primary function of the tree structure is to save time. It lowers the com-
putational cost of remembering every value seen, but does little to reduce the
space complexity. The computational considerations are important, because a
slow learner can be even less desirable than one that consumes a large amount
of memory.

Beside memory cost, this method has other potential issues. Because every
value is remembered, every possible threshold is also tested when the informa-
tion gain of split points is evaluated. This makes the evaluation process more
costly than more approximate methods.
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This method is also prone to data order issues. The layout of the tree is
established as the values arrive, such that the value at the root of the tree will
be the first value seen. There is no attempt to balance the tree, so data order is
able to affect the efficiency of the tree. In the worst case, an ordered sequence
of values will cause the binary tree algorithm to construct a list, which will lose
all the computational benefits compared to a well balanced binary tree.

4.2.3 Quantile Summaries

The field of database research is also concerned with the problem of summarizing
the numeric distribution of a large data set in a single pass and limited space.
The ability to do so can help to optimize queries over massive databases [174].

Researchers in the field of database research are concerned with accuracy
guarantees associated with quantile estimates, helping to improve the quality
of query optimizations. Random sampling is often considered as a solution to
this problem. Vitter [187] shows how to randomly sample from a data stream,
but the non-deterministic nature of random sampling and the lack of accuracy
guarantees motivate search for other solutions. Munro and Paterson [147] show
how an exact quantile can be deterministically computed from a single scan of
the data, but that this requires memory proportional to the number of elements
in the data. Using less memory means that quantiles must be approximated.
Early work in quantile approximation includes the P2 algorithm proposed by
Jain and Chlamtac [112], which tracks five markers and updates them as values
are observed via piecewise fitting to a parabolic curve. The method does not
provide guarantees on the accuracy of the estimates. Agrawal and Swami [5]
propose a method that adaptively adjusts the boundaries of a histogram, but
it too fails to provide strong accuracy guarantees. More recently, the method
of Alsabti et al. [7] provides guaranteed error bounds, continued by Manku et
al. [138] who demonstrate an improved method with tighter bounds.

The quantile estimation algorithm of Manku et al. [138] was the best known
method until Greenwald and Khanna [85] proposed a quantile summary method
with even stronger accuracy guarantees, thus representing the best current known
solution. The method works by maintaining an ordered set of tuples, each of
which records a value from the input stream, along with implicit bounds for the
range of each value’s true rank. An operation for compressing the quantile sum-
mary is defined, guaranteeing that the error of the summary is kept within a
desired bound. The quantile summary is said to be ε-approximate, after seeing
N elements of a sequence any quantile estimate returned will not differ from the
exact value by more than εN . The worst-case space requirement is shown by the
authors to be O(1

ε log(εN)), with empirical evidence showing it to be even better
than this in practice.

Greenwald and Khanna mention two variants of the algorithm. The adaptive
variant is the basic form of the algorithm, that allocates more space only as error
is about to exceed the desired ε. The other form, used by this text, is referred
to as the pre-allocated variant, which imposes a fixed limit on the amount of
memory used. Both variants are parametric—for adaptive the parameter is ε,
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for pre-allocated the parameter is a tuple limit. The pre-allocated method was
chosen because it guarantees stable approximation sizes throughout the tree,
and is consistent with the majority of other methods by placing upper bounds
on the memory used per leaf.

When used to select numeric split points in Hoeffding trees, a per-class ap-
proach is used where a separate quantile summary is maintained per class label.
When evaluating split decisions, all values stored in the tuples are tested as po-
tential split points.

4.2.4 Gaussian Approximation

This method approximates a numeric distribution on a per-class basis in small
constant space, using a Gaussian (commonly known as normal) distribution.
Such a distribution can be incrementally maintained by storing only three num-
bers in memory, and is completely insensitive to data order. A Gaussian distribu-
tion is essentially defined by its mean value, which is the center of the distribu-
tion, and standard deviation or variance, which is the spread of the distribution.
The shape of the distribution is a classic bell-shaped curve that is known by sci-
entists and statisticians to be a good representation of certain types of natural
phenomena, such as the weight distribution of a population of organisms.

Algorithm 3 describes a method for incrementally computing the mean and
variance of a stream of values. It is a method that can be derived from standard
statistics textbooks. The method only requires three numbers to be remembered,
but is susceptible to rounding errors that are a well-known limitation of com-
puter number representation.

Algorithm 3 Textbook incremental Gaussian.
weightSum= 0
valueSum= 0
valueSqSum= 0
for all data points (value, weight) do

weightSum= weightSum+weight
valueSum= valueSum+ value×weight
valueSqSum= valueSqSum+ value× value×weight

end for

anytime output:
return mean= valuesSum

weightSum

return variance = valueSqSum−mean×valueSum
weightSum−1

A more robust method that is less prone to numerical error is given as Al-
gorithm 4. It also requires only three values in memory, but maintains them in
a way that is less vulnerable to rounding error. This method was derived from
the work of Welford [191], and its advantages are studied in [37]. This is the
method used in the experimental implementation.
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Algorithm 4 Numerically robust incremental Gaussian.
weightSum= weight f irst

mean= value f irst

varianceSum= 0
for all data points (value, weight) after first do

weightSum= weightSum+weight
lastMean= mean
mean= mean+ value−lastMean

weightSum
varianceSum= varianceSum+ (value− lastMean)× (value−mean)

end for

anytime output:
return mean= mean
return variance = varianceSum

weightSum−1

For each numeric attribute the numeric approximation procedure maintains
a separate Gaussian distribution per class label. A method similar to this is de-
scribed by Gama et al. in their UFFT system [75]. To handle more than two
classes, the system builds a forest of trees, one tree for each possible pair of
classes. When evaluating split points in that case, a single optimal point is com-
puted as derived from the crossover point of two distributions. It is possible to
extend the approach, however, to search for split points, allowing any number
of classes to be handled by a single tree. The possible values are reduced to a set
of points spread equally across the range, between the minimum and maximum
values observed. The number of evaluation points is determined by a parameter,
so the search for split points is parametric, even though the underlying Gaussian
approximations are not. For each candidate point the weight of values to ei-
ther side of the split can be approximated for each class, using their respective
Gaussian curves, and the information gain is computed from these weights.

The process is illustrated in Figures 4.1-4.3. At the top of each figure are
Gaussian curves, each curve approximates the distribution of values seen for a
numeric attribute and labeled with a particular class. The curves can be de-
scribed using three values; the mean value, the standard deviation or variance
of values, and the total weight of examples. For example, in Figure 4.1 the class
shown to the left has a lower mean, higher variance and higher example weight
(larger area under the curve) than the other class. Below the curves the range of
values has been divided into ten split points, labeled A to J. The horizontal bars
show the proportion of values that are estimated to lie on either side of each split,
and the vertical bar at the bottom displays the relative amount of information
gain calculated for each split. For the two-class example (Figure 4.1), the split
point that would be chosen as the best is point E, which according to the evalu-
ation has the highest information gain. In the three-class example (Figure 4.2)
the preferred split point is point D. In the four-class example (Figure 4.3) the
split point C is chosen which nicely separates the first class from the others.

A refinement to this method, found to increase precision at low additional
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Figure 4.1: Gaussian approximation of 2 classes.

Figure 4.2: Gaussian approximation of 3 classes.
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Figure 4.3: Gaussian approximation of 4 classes.

cost in early experiments, is used in the final implementation. It involves also
tracking the minimum and maximum values of each class. This requires storing
an extra two counts per class, but precisely maintaining these values is simple
and fast. When evaluating split points the per-class minimum and maximum
information is exploited to determine when class values lie completely to one
side of a split, eliminating the small uncertainty otherwise present in the tails of
the Gaussian curves. From the per-class minimum and maximum, the minimum
and maximum of the entire range of values can be established, which helps to
determine the position of split points to evaluate.

Intuitively it may seem that split points will only occur between the lowest
and highest class mean, but this is not true. Consider searching for a split on
the age attribute of the GENF1 data stream. The function is defined on page 34,
where the first class has age values that are less than 40 and greater than 60,
and the second class has age values between 40 and 60. Obviously either 40 or
60 are the optimal split points, but the means of both class distributions will lie
somewhere between 40 and 60—the first class will have a large variance esti-
mate, and the second will be much narrower. This motivates searching across
the entire range of values for a split. Using the absolute minimum and maxi-
mum value makes the procedure susceptible to outliers similar to the weakness
of equal width discretization. A more robust search may instead consider each
mean plus or minus several standard deviations to determine the potential split-
ting range. This possibility is reserved for future work.

Simple Gaussian approximation will almost certainly not capture the full de-
tail of an intricate numeric distribution, but is highly efficient in both computa-
tion and memory. Where the binary tree method uses extreme memory costs to
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be as accurate as possible, this method employs the opposite approach—using
gross approximation to use as little memory as possible.

This simplified view of numeric distributions is not necessarily harmful to the
accuracy of the trees it produces. There will be further opportunities to refine
split decisions on a particular attribute by splitting again further down the tree.
All methods have multiple attempts at finding values, where each subsequent
attempt will be in a more focused range of values thus based on increasingly
confident information. The more approximate Gaussian method relies on this
more than the less approximate approaches. Also, the Gaussian approximation
may prove more robust and resistant to noisy values than more complicated
methods, which concentrate on finer details.

4.2.5 Numerical Interval Pruning

Another contribution is the work of Jin and Agrawal [115] who present an ap-
proach called numerical interval pruning (NIP). The authors claim it is an ef-
ficient method “which significantly reduces the processing time for numerical
attributes, without loss in accuracy.” Unfortunately insufficient details for repro-
ducing the technique are provided in the paper. The numeric attribute range
is divided into equal width intervals, and the intervals are then pruned if sta-
tistical tests determine that they are not likely to contain the best split point.
Information is maintained in three ways—small class histograms, concise class
histograms and detailed information (which can be in one of two formats, de-
pending on which is most efficient). Without access to an actual implementa-
tion of their approach it is hard to be sure that any attempted reproduction of
the technique, based on information provided in their paper, will be sufficiently
faithful to the original. In their experimental evaluation, they found that the NIP
method had more impact on computational cost than memory, in which they saw
an average 39% reduction in runtime compared to an exhaustive search for split
points. Based on these findings, it should be possible to relate NIP performance
to that of the binary tree. Judging by the reports, both methods are highly accu-
rate, but in terms of memory NIP would be more efficient than the binary tree
by a small amount. The experimental results show that even if a method is sev-
eral times more space efficient than the exhaustive method it is still unlikely to
compete with methods that use small and constant space per node.
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5
Prediction Strategies

The previous chapters have considered the induction of Hoeffding trees. Chap-
ter 3 covered the basic induction of Hoeffding trees, followed by Chapter 4 which
investigated the handling of continuous numeric attributes in the training data.
This chapter focuses on the use of models once they have been induced—how
predictions are made by the trees. Section 5.1 describes the standard majority
class prediction method. Attempts to outperform this method are described in
Section 5.2 and 5.3.

5.1 Majority Class

Prediction using decision trees is straightforward. Examples with unknown label
are filtered down the tree to a leaf, and the most likely class label retrieved from
the leaf. An obvious and straightforward way of assigning labels to leaves is to
determine the most frequent class of examples that were observed there during
training. This method is used by the batch methods C4.5/CART and is naturally
replicated in the stream setting by Hoeffding trees. If the likelihood of all class
labels is desired, an immediate extension is to return a probability distribution
of class labels, once again based on the distribution of classes observed from the
training examples.

Table 5.1 is used to illustrate different prediction schemes throughout the
chapter. In the case of majority class, the leaf will always predict class C2 for ev-
ery example, because most examples seen before have been of that class. There
have been 60 examples of class C2 versus 40 examples of class C1, so the leaf
will estimate for examples with unknown class that the probability of class C2 is
0.6, and the probability of C1 is 0.4.

5.2 Naive Bayes Leaves

There is more information available during prediction in the leaves of a Ho-
effding tree than is considered using majority class classification. The attribute
values determine the path of each example down the tree, but once the appro-
priate leaf has been established it is possible to use the same attribute values to
further refine the classification. Gama et al. call this enhancement functional
tree leaves [75, 77].
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Table 5.1: Example sufficient statistics in a leaf after 100 examples have been
seen. There are two class labels: C1 has been seen 40 times, and C2 has been
seen 60 times. There are three attributes: A1 can either have value A or B, A2

can be C, D or E, and A3 can be F, G, H or I. The values in the table track how
many times each of the values have been seen for each class label.

A1 A2 A3

A B C D E F G H I class total
12 28 5 10 25 13 9 3 15 C1 40
34 26 21 8 31 11 21 19 9 C2 60

If P(C) is the probability of event C occurring, and P(C |X ) is the probability
of event C given that X occurs, then from Bayes’ theorem:

P(C |X ) =
P(X |C)P(C)

P(X )
(5.1)

This rule is the foundation of the Naive Bayes classifier [131]. The classifier
is called ‘naive’ because it assumes independence of the attributes. The indepen-
dence assumption means that for each example the value of any attribute will
not have a bearing on the value of any other attribute. It is not realistic to expect
such simplistic attribute relationships to be common in practice, but despite this
the classifier works surprisingly well in general [53, 100].

By collecting the probabilities of each attribute value with respect to the class
label from training examples, the probability of the class for unlabeled examples
can be computed. Fortunately, the sufficient statistics being maintained in leaves
of a Hoeffding tree for the purpose of choosing split tests are also the statistics
required to perform Naive Bayes classification.

Returning to the example in Table 5.1, if an example being classified by the
leaf has attribute values A1=B, A2=E and A3=I then the likelihood of the class
labels is calculated using Equation 5.1:

P(C1|X ) =
P(X |C1)P(C1)

P(X )

=
[P(B|C1)× P(E|C1)× P(I |C1)]× P(C1)

P(X )

=
28
40 ×

25
40 ×

15
40 ×

40
100

P(X )

=
0.065625

P(X )
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P(C2|X ) =
P(X |C2)P(C2)

P(X )

=
[P(B|C2)× P(E|C2)× P(I |C2)]× P(C2)

P(X )

=
26
60 ×

31
60 ×

9
60 ×

60
100

P(X )

=
0.02015

P(X )

Normalizing the likelihoods means that the common P(X ) denominator is elim-
inated to reach the final probabilities:

probability of C1 =
0.065625

0.065625+ 0.02015
= 0.77

probability of C2 =
0.02015

0.065625+ 0.02015
= 0.23

So in this case the Naive Bayes prediction chooses class C1, contrary to the ma-
jority class.

A technicality omitted from the example is the zero frequency problem that
occurs if one of the counts in the table is zero. The Naive Bayes calculation
cannot be performed with a probability of zero, so the final implementation
overcomes this by using a Laplace estimator of 1. This adjustment, based on
Laplace’s Law of Succession, means for example that the class prior probabilities
in the example above are instead treated as 41

102 and 61
102 .

In batch learning the combination of decision trees and Naive Bayes classi-
fication has been explored by Kohavi in his work on NBTrees [127]. Kohavi’s
NBTrees are induced by specifically choosing tests that give an accuracy advan-
tage to Naive Bayes leaves. In that setting he found that the hybrid trees could
often outperform both single decision trees and single Naive Bayes models. He
noted that the method performs well on large data sets, although the meaning
of large in the batch setting can differ greatly from the modern stream context—
most of the training sets he tested had less than 1,000 examples, with the largest
set having under 50,000 examples.

Use of Naive Bayes models in Hoeffding tree induction has implications for
the memory management strategy. Firstly, the act of deactivating leaf nodes is
more significant, because throwing away the sufficient statistics will also elimi-
nate a leaf’s ability to make a Naive Bayes prediction. The heuristic used to select
the most promising nodes does not take this into account, as it does not consider
the possibility that a leaf may be capable of yielding better accuracy than ma-
jority class. For simplicity and consistency in the experimental implementation,
the memory management strategy is not changed when Naive Bayes leaves are
enabled. This makes sense if the use of Naive Bayes leaves are considered as a
prediction-time enhancement to Hoeffding trees. Otherwise changes to memory
management behaviour intended to better suit Naive Bayes prediction will sig-
nificantly impact on overall tree induction, making it harder to interpret direct
comparisons with majority class trees.
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The outcome of this approach is that when memory gets tight and fewer of
the leaves are allowed to remain active, then fewer of the leaves will be capable
of Naive Bayes prediction. The fewer the active leaves, the closer the tree will
behave to a tree that uses majority class only. By the time the tree is frozen and
can no longer afford to hold any active leaves in memory then the tree will have
completely reverted to majority class prediction. This behaviour is noted when
looking at the experimental results.

The other issue is the secondary memory management strategy of remov-
ing poor attributes (Section 3.3.1). This too will alter the effectiveness of Naive
Bayes models, because removing information about attributes removes some of
the power that the Naive Bayes models use to predict, regardless of whether the
attributes are deemed a poor candidate for splitting or not. As the removal strat-
egy has been shown to not have a large bearing on final tree accuracy, whenever
Naive Bayes leaves are employed the attribute removal strategy is not used.

Memory management issues aside, the Naive Bayes enhancement adds no
cost to the induction of a Hoeffding tree, neither to the training speed nor mem-
ory usage. All of the extra work is done at prediction time. The amount of
prediction-time overhead is quantified in the experimental comparison.

Early experimental work confirmed that Naive Bayes predictions are capable
of increasing accuracy as Gama et al. observed [75, 77], but also exposed cases
where Naive Bayes prediction fares worse than majority class. The first response
to this problem was to suspect that some of the leaf models are immature. In the
early stages of a leaf’s development the probabilities estimated may be unreliable
because they are based on very few observations. If that is the case then there
are two possible remedies; either (1) give them a jump-start to make them more
reliable from the beginning, or (2) wait until the models are more reliable before
using them.

Previous work [103] has covered several attempts at option (1) of ‘prim-
ing’ new leaves with better information. One such attempt, suggested by Gama
et al. [75] is to remember a limited number of the most recent examples from
the stream, for the purposes of training new leaves as soon as they are cre-
ated. A problem with this idea is that the number of examples able to be re-
trieved that apply to a particular leaf will diminish as the tree gets progressively
deeper. Other attempts at priming involved trying to inject more of the infor-
mation known prior to splitting into the resulting leaves of the split. Neither of
these attempts were successful at overcoming the problem so are omitted from
consideration.

5.3 Adaptive Hybrid

Cases where Naive Bayes decisions are less accurate than majority class are a
concern because more effort is being put in to improve predictions and instead
the opposite occurs. In those cases it is better to use the standard majority class
method, making it harder to recommend the use of Naive Bayes leaf predictions
in all situations.
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The method described here tries to make the use of Naive Bayes models more
reliable, by only trusting them on a per-leaf basis when there is evidence that
there is a true gain to be made. The adaptive method works by monitoring the
error rate of majority class and Naive Bayes decisions in every leaf, and choosing
to employ Naive Bayes decisions only where they have been more accurate in
past cases. Unlike pure Naive Bayes prediction, this process does introduce an
overhead during training. Extra time is spent per training example generating
both prediction types and updating error estimates, and extra space per leaf is
required for storing the estimates.

Algorithm 5 Adaptive prediction algorithm.
for all training examples do

Sort example into leaf l using HT
if ma jori t yC lassl ̸= true class of example then

increment mcErrorl

end if
if NaiveBa yesPredic t ionl(example) ̸= true class of example then

increment nbErrorl

end if
Update sufficient statistics in l
...

end for

for all examples requiring label prediction do
Sort example into leaf l using HT
if nbErrorl < mcErrorl then

return NaiveBa yesPredic t ionl(example)
else

return ma jori t yC lassl

end if
end for

The pseudo-code listed in Algorithm 5 makes the process explicit. During
training, once an example is filtered to a leaf but before the leaf is updated, both
majority class prediction and Naive Bayes prediction are performed and both are
compared with the true class of the example. Counters are incremented in the
leaf to reflect how many errors the respective methods have made. At predic-
tion time, a leaf will use majority class prediction unless the counters suggest
that Naive Bayes prediction has made fewer errors, in which case Naive Bayes
prediction is used instead.

In terms of the example in Table 5.1, the class predicted for new examples
will depend on extra information. If previous training examples were more accu-
rately classified by majority class than Naive Bayes then class C2 will be returned,
otherwise the attribute values will aid in Naive Bayes prediction as described in
the previous subsection.
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6
Hoeffding Tree Ensembles

In machine learning classification, an ensemble of classifiers is a collection of
several models combined together. Algorithm 6 lists a generic procedure for
creating ensembles that is commonly used in batch learning.

Algorithm 6 Generic ensemble training algorithm.
1: Given a set of training examples S
2: for all models hm in the ensemble of M models, m ∈ {1, 2, ..., M} do
3: Assign a weight to each example in S to create weight distribution Dm

4: Call base learner, providing it with S modified by weight distribution Dm

to create hypothesis hm

5: end for

This procedure requires three elements to create an ensemble:

1. A set S of training examples

2. A base learning algorithm

3. A method of assigning weights to examples (line 3 of the pseudo-code)

The third requirement, the weighting of examples, forms the major differ-
ence between ensemble methods. Another potential difference is the voting
procedure. Typically each member of the ensemble votes towards the predic-
tion of class labels, where voting is either weighted or unweighted. In weighted
voting individual classifiers have varying influence on the final combined vote,
the models that are believed to be more accurate will be trusted more than those
that are less accurate on average. In unweighted voting all models have equal
weight, and the final predicted class is the label chosen by the majority of en-
semble members. Ensemble algorithms, algorithms responsible for inducing an
ensemble of models, are sometimes known as meta-learning schemes. They per-
form a higher level of learning that relies on lower-level base methods to produce
the individual models.

Ensemble methods are attractive because they can often be more accurate
than a single classifier alone. The best ensemble methods are modular, capable
of taking any base algorithm and improving its performance—any method can
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be taken off the shelf and ‘plugged in’. Besides the added memory and compu-
tational cost of sustaining multiple models, the main drawback is loss of inter-
pretability. A single decision tree may be easily interpreted by humans, whereas
the combined vote of several trees will be difficult to interpret.

In batch learning, cases where the base model is already difficult to interpret
or a black-box solution is acceptable, the potential for improved accuracy easily
justifies the use of ensembles where possible. In the data stream setting, the
memory and time requirements of multiple models need more serious consider-
ation. The demands of a data stream application will be sensitive to the additive
effect of introducing more models, and there will be limits to the numbers of
models that can be supported. In limited memory learning—which is better, a
single large model or many smaller models of equivalent combined size?

An ensemble of classifiers will be more accurate than any of its individual
members if two conditions are met [94, 183]. Firstly, the models must be ac-
curate, that is, they must do better than random guessing. Secondly, they must
be diverse, that is, their errors should not be correlated. If these conditions are
satisfied Hansen and Salamon [94] show that as the number of ensemble mem-
bers increase, the error of the ensemble will tend towards zero in the limit. The
accuracy of an ensemble in practice will fall short of the improvement that is
theoretically possible, mostly because the members which have been trained on
variations of the same training data will never be completely independent.

Dietterich surveys ensemble methods for machine learning classification [47].
He mentions three possible reasons for the success of ensemble methods in prac-
tice: statistical, computational and representational. The statistical contribution
to success is that the risk of incorrect classification is shared among multiple
members, so that the average risk is lower than relying on a single member
alone. The computational contribution is that more than one attempt is made to
learn what could be a computationally intractable problem, where each attempt
guided by heuristics could get stuck in local minima, but the average of several
different attempts could better solve the problem than any individual attempt.
The representational contribution is that an ensemble of models may be more
capable of representing the true function in the data than any single model in
isolation.

Decision trees are the basic machine learning model being investigated by
this text, and they make an excellent base for ensemble methods, for several rea-
sons given below. This is verified in practice, where ensembles of decision trees
are ranked among the best known methods in contemporary machine learn-
ing [34].

The statistical reasoning and the uncorrelated errors theories both suggest
that member diversity is crucial to good ensemble performance. Ensemble meth-
ods typically exploit the lack of stability of a base learner to increase diversity,
thus achieve the desired effect of better accuracy in combination. Breiman [23]
defines stable methods as those not sensitive to small changes in training data—
the more sensitive a method is to data changes the more unstable it is said to be.
Decision trees are good candidates for ensembles because they are inherently
unstable. The greedy local decisions can easily be influenced by only slight dif-
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Figure 6.1: A simple model of the leaf count of combinations of decision trees
as a function of total memory size.

ferences in training data, and the effect of a single change will be propagated to
the entire subtree below. Naive Bayes in contrast is stable as it takes substantial
differences in training data to modify its outcome.

In the stream setting, the nature of the Hoeffding bound decision might sug-
gest that Hoeffding trees may not exhibit such instability. However, the bound
only guides local per-split decisions—Domingos and Hulten [52] prove that over-
all the algorithm approximates the batch induction of decision trees. The empir-
ical results of the tree ensembles in the next chapter demonstrate that Hoeffding
trees are indeed unstable.

Decision trees also suit the computational argument. Computing an optimal
decision tree is an NP-complete problem [109], so out of necessity the algorithm
performs a greedy local search. Several decision trees can approach the problem
based on different searches involving local greedy decisions, which on average
may form a better approximation of the true target than any single search.

It is interesting to consider the representational argument applied to ensem-
bles of decision trees, especially where memory is limited. In theory an ensemble
of decision trees can be represented by a single standard decision tree, but the
cost of constructing such a tree is expensive. Consider the process of combining
two trees, A and B. This can be achieved by replacing every leaf of A with a
subtree that is a complete copy of tree B, where the leaves copied from B are
merged with the leaf of A that was replaced. Quinlan [159] shows that the pro-
cedure is multiplicative, with only limited opportunity to simplify the resulting
combined tree in most cases.

Each leaf of a decision tree represents a particular region of the example
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space. The more leaves a tree has, the more regions are isolated by the tree,
and the more potential it has to reduce error. So the number of leaves in a tree
is in some way related to its “representational power”. The tree multiplication
argument above suggests that the effective number of leaves in an ensemble
of n trees, each having l leaves, should be approximately ln. Assume that the
number of leaves that can be supported is a linear function of memory size m.
Given that m is fixed, the average number of leaves in individual trees in an
ensemble of n trees is at least two, and at most m/n. Combining these simplifying
assumptions, the relative number of leaves in an ensemble of n trees can be
modeled by the function (m/n)n, where m/n≥ 2. Figure 6.1 plots this function
for ensemble sizes one to five. The figure shows for example that at memory size
ten, an ensemble of three or four trees will effectively have more leaves than an
ensemble of five trees, providing superior representation capacity.

These assumptions are unlikely to hold in practice. The leaf count of a tree is
unlikely to be a perfect linear function of m, and it is also questionable whether
the leaf count of tree combinations is perfectly multiplicative. The number
of leaves will not directly translate into accuracy, which is obviously bounded
and influenced by other factors. Despite these flaws the exercise demonstrates
something useful about the expected behaviour of tree ensembles in limited
memory—that a given number of combined trees will only be beneficial when
sufficient memory is available, and the more trees involved, the more memory
required.

A useful way to analyze ensemble behaviour is to consider the implications
of bias and variance [82, 130]. The typical formulation breaks the error of an
algorithm into three parts:

er ror = bias2 + variance+ noise (6.1)

Given a fixed learning problem, the first component of error is the bias of the
machine learning algorithm, that is, how closely it matches the true function of
the data on average over all theoretically possible training sets of a given size.
The second error component is the variance, that is, how much the algorithm
varies its model on different training sets of the given size. The third component
of error is the intrinsic noise of the data, which an algorithm will not be able
to overcome, thus setting an upper bound on the achievable accuracy. There
is often a tradeoff between bias and variance, where reducing one can come
at the expense of the other. Bias-variance decomposition [130] is a tool that
can help with understanding the behaviour of machine learning methods, and
is discussed where appropriate throughout the chapter.

The most common ensemble methods work like Algorithm 6, producing dif-
ferent models by manipulating the weight of each training example. This is
why the stability of the base learner is significant. Other approaches that fall
outside of this general model are not studied in this text. They include remov-
ing attributes, such as attempted by Tumer and Ghosh [183]; manipulating the
class labels, as used by Dietterich and Bakiri [49] in their error-correcting output
codes technique; and introducing randomness to the base model inducer, such
as Breiman’s popular random forest approach [28].
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The following sections look at promising methods for improving accuracy,
first in the batch setting (Section 6.1), followed by application to data streams
(Section 6.2). First bagging (Sections 6.1.1 & 6.2.1) and boosting (Section 6.1.2
& 6.2.2) are investigated, then a third alternative, option trees (Section 6.1.3
& 6.2.3) are explored which offer a compromise between a single model and an
ensemble of models. Section 6.3 considers the numbers of ensemble members
that can be supported in the batch and stream settings.

6.1 Batch Setting

6.1.1 Bagging

Bagging (bootstrap aggregating) was introduced by Breiman [23]. The proce-
dure is simple—it combines the unweighted vote of multiple classifiers, each of
which is trained on a different bootstrap replicate of the training set. A bootstrap
replicate is a set of examples drawn randomly with replacement from the original
training data, to match the size of the original training data. The probability that
any particular example in the original training data will be chosen for a random
bootstrap replicate is 0.632, so each model in the ensemble will be trained on
roughly 63.2% of the full training set, and typically some examples are repeated
several times to make the training size match the original.

Viewed in terms of the generic ensemble algorithm (Algorithm 6), in deter-
mining the weight distribution of examples for a particular model Dm the weights
will correspond to the number of times that an example is randomly drawn—
those examples that are out-of-bag will have a weight of zero, while the majority
are likely to have a pre-normalized weight of one, with those examples randomly
selected more than once having a pre-normalized weight of more than one.

Bagging works best when the base algorithm is unstable, because the models
produced will differ greatly in response to only minor changes in the training
data, thus increasing the diversity of the ensemble. In terms of bias and vari-
ance, bagging greatly reduces the variance of a method, by averaging the diverse
models into a single result. It does not directly target the bias at all, so methods
whose variance is a significant component of error have the most to gain from
this method.

6.1.2 Boosting

Boosting emerged from the field of Computational Learning Theory, a field that
attempts to do mathematical analysis of learning. It tries to extract and formalize
the essence of machine learning endeavours, with the hope of producing mathe-
matically sound proofs about learning algorithms. The discovery and success of
boosting shows that such efforts can positively impact the practical application
of learning algorithms.

A framework that has become one of the main influences in the field is PAC
Learning (Probably Approximately Correct), proposed by Valiant [186]. Two
concepts were defined by Kearns and Valiant [120], the strong learner and the
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weak learner. A strong learner is one that is highly accurate. Formally, this is
defined as a learner that given training examples drawn randomly from a binary
concept space is capable of outputting a hypothesis with error no more than ε,
where ε > 0, and does so with probability of at least 1− δ, where δ > 0. The
defining requirement is that this must be achieved in runtime that is polynomial
in all of 1/ε, 1/δ, and complexity of the target concept. A weak learner has
the same requirements except that informally it needs only do slightly better
than chance. Formally this means that in the weak case ε ≤ 1/2 − γ where
0< γ < 1/2.

When these two notions of learning strength were introduced it was un-
known whether the two are in fact equivalent, that is, whether a weak learner is
also capable of strong learning. Schapire’s paper “The Strength of Weak Learn-
ability” [167] was the breakthrough that confirmed that this is indeed so. The
paper shows that in the PAC framework weak learners are equivalent to strong
learners by presenting an algorithm that is capable of “boosting” a weak learner
in order to achieve high accuracy. Henceforth, the formal definition of a boosting
algorithm is one that transforms a weak learner into a strong one.

Schapire’s original hypothesis boosting algorithm works by combining many
weak learners into a strong ensemble, as follows:

1. induce weak learner h1 as normal

2. train weak learner h2 with filtered examples, half of which h1 predicts
correctly and the other half which h1 predicts incorrectly

3. train weak learner h3 only with examples that h1 and h2 disagree on

4. combine the predictions of h1, h2 and h3 by majority vote; if h1 and h2
agree then output the agreed upon class, otherwise output h3’s prediction

Schapire proves with certain guarantees in the PAC framework that the com-
bined vote of the hypotheses will be more accurate than h1 alone. By recursively
applying this process, effectively creating a tree of hypotheses with three-way
branches that are combined by majority vote (see left hand side of Figure 6.2),
the weak learners can be progressively improved to form a classifier of combined
weak hypotheses that is just as powerful as a single strong hypo text.

Schapire’s work was improved by Freund [62], who presented an algorithm
that is more efficient than Schapire’s. In fact, Freund shows that the number of
hypotheses needed for his boost-by-majority algorithm to reach a given accuracy
is the smallest number possible. In this algorithm, the hypotheses are generated
in a single flat level in sequence (see right hand side of Figure 6.2), as opposed to
Schapire’s recursive tree structure. The number of boosting iterations are fixed
before induction begins, and there are two variants of the algorithm described,
boosting by sampling and boosting by filtering.

Boosting by sampling is a method that suits the batch learning scenario. The
first step of this process is to collect a training set from the concept space by
requesting an entire batch of training examples, thus generating the set S. The
goal of the process is then to create a hypothesis that is correct on all examples
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Figure 6.2: Left hand side: recursive tree structure used by original hypothesis
boosting. Right hand side: flat structure of boost-by-majority and AdaBoost.

in S. To do so, the most straightforward approach is to retain the entire set of S
in memory.

Boosting by filtering is a scenario that is more suited to incremental pro-
cessing of data streams. There are interesting parallels between the theoretical
learning situation proposed in the PAC framework and the challenges of data
stream classification. This version of the algorithm works by selectively filtering
the examples that are passed to the weak learners. The filter will either reject
examples and discard them, or accept an example and pass it on to the appro-
priate weak learner. This variant has theoretical advantages over the sampling
approach. In the filtering setting it is easier to analyze the expected amount of
generalization that can be achieved, and the method can have superior space
complexity due to not storing an entire training set.

The main problem with the boost-by-majority algorithm is that for it to work
correctly the error (γ) of the weak learner must be known in advance. That is,
how much better the base learner will perform over random guessing needs to
be known before learning begins. This problem is serious enough to prevent the
algorithm from being successful in practice.

The next advance in boosting algorithms was a combined effort of both Fre-
und and Schapire [65]. The AdaBoost algorithm adjusts adaptively to the errors
of weak hypotheses, thus overcoming the problem of boosting by majority. The
algorithm was introduced by taking an online allocation algorithm named Hedge,
generalized from the weighted majority algorithm [136], and transforming it into
a boosting algorithm. AdaBoost is a boosting by sampling method, and unfor-
tunately a complementary filtering variant was not proposed. Limited to the
sampling setting, it is shown that AdaBoost will drive training error exponen-
tially towards zero in the number of iterations performed. AdaBoost is the most
well known and successful boosting algorithm in practice. This is mostly due to
it showing empirical evidence of accurately generalizing to data not included in
the training set. Another reason for its popularity is that the algorithm is sim-
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ple and intuitive. Freund and Schapire were awarded the 2003 Gödel Prize for
their work in recognition of the significant influence AdaBoost has had on the
machine learning field and science in general.

Algorithm 7 AdaBoost. Input is a sequence of m examples, WeakLearn is the
base weak learner and T is the number of iterations.

1: Initialize D1(i) = 1/m for all i ∈ {1,2, ..., m}
2: for t = 1,2,...T do
3: Call WeakLearn, providing it with distribution Dt

4: Get back hypothesis ht : X → Y
5: Calculate error of ht : εt =

∑

i:ht (x i )̸=yi
Dt(i)

6: if εt ≥ 1/2 then
7: Set T = t − 1
8: Abort
9: end if

10: Set βt = εt/(1− εt)

11: Update distribution Dt : Dt+1(i) =
Dt (i)

Zt
×
§

βt if ht(x i) = yi

1 otherwise
where Zt is a normalization constant (chosen so Dt+1 is a probabilty dis-
tribution)

12: end for
13: return final hypothesis: h f in(x) = argmaxy∈Y

∑

t:ht (x)=y log1/βt

Algorithm 7 lists the AdaBoost pseudo-code. The intuitive understanding is
that each new model in sequence will concentrate more on correctly classify-
ing the examples that the previous models misclassified, and concentrate less
on those that are already correct. To start with, all examples have equal weight
(line 1). T is the number of boosting iterations preformed. Every iteration starts
by inducing a model on the data based on the weights currently assigned to
examples, and the error, ε, of the new model is estimated on the training data
(lines 3-5). Lines 6-9 handle the special case where the error of the weak learner
is worse than random guessing. A situation like this will confuse the weighting
process so the algorithm aborts to avoid invalid behaviour. Lines 10-11 reweight
the examples—those that are incorrectly classified retain their weight relative to
correctly classified examples whose weight is reduced by ε

1−ε , and the weights of
all examples are normalized. The process repeats until a sequence of T models
have been induced. To predict the class label of examples (line 13), each model
in the final boosted sequence votes towards a classification, where each model’s
vote is weighted by − log ε

1−ε so that models with lower error have higher influ-
ence on the final result.

The weak learner is influenced either by reweighting or resampling the train-
ing examples. Reweighting the examples requires that the weak learner respond
to different continuous weights associated with each example. Common learners
such as C4.5 and Naive Bayes have this capability. Resampling involves randomly
sampling a new training set from the original according to the weight distribu-
tion. The advantage of resampling is that the weak learner need not handle
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continuous example weights, but the resampling approach introduces a random
element to the process. When Breiman [24] compared the approaches he found
that accuracy did not significantly differ between the two.

Breiman looked at AdaBoost from a different perspective [24]. He introduced
his own terminology, describing the procedure as arcing (adaptively resample
and combine), and refers to AdaBoost as arc-fs (for Freund and Schapire). He
found arc-fs to be very promising and capable of significantly outperforming
bagging. As an exercise to test his theory that AdaBoost’s success is due to the
general adaptive resampling approach and not dependent on the precise for-
mulation of arc-fs, he introduced a simpler ad-hoc algorithm, arc-x4, listed in
Algorithm 8. The main differences from AdaBoost are:

1. A simpler weight update step. Each example is relatively weighted by 1+e4

where e is the number of misclassifications made on the example by the
existing ensemble.

2. Voting is unweighted.

In experimental comparison [24], arc-x4 performed on a comparable level to
arc-fs. Both were often more successful than bagging at reducing test set error.

Algorithm 8 Arc-x4, Breiman’s ad-hoc boosting algorithm.
1: Initialize D1(i) = 1/m for all i ∈ {1, 2, ..., m}
2: for t = 1,2,...T do
3: Call WeakLearn, providing it with distribution Dt

4: Get back hypothesis ht : X → Y
5: Count misclassifications: ei =

∑t
n=1 I(hn(x i) ̸= yi)

6: Update distribution Dt : Dt+1(i) =
1+e4

i
∑m

n=1 1+e4
n

7: end for
8: return final hypothesis: h f in(x) = arg maxy∈Y

∑T
t=1 I(ht(x) = y)

Breiman [24] employs bias and variance analysis as a tool to help explain
how boosting works. Whereas bagging reduces mostly variance, boosting has the
ability to reduce both bias and variance. An intuitive understanding of boosting’s
ability to reduce bias is that subsequent boosting iterations have an opportunity
to correct the bias of previous models in the ensemble. Breiman was still puzzled
by some aspects of the behaviour of boosting, prompting deeper investigation by
Freund and Schapire [66].

It is accepted and understood how AdaBoost reduces error on the training
set, but uncertainty remains as to why error on test examples, the generalization
error, continues to decrease after training set error reaches zero. Researchers in-
cluding Breiman were surprised at AdaBoost’s ability to generalize well beyond
any theoretical explanations and seemingly in contradiction to Occam’s razor,
which suggests that simpler solutions should be preferred over more complex
ones. Schapire and Freund et al. [169] tried to explain this phenomenon in
their paper “Boosting the Margin: A New Explanation for the Effectiveness of
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Voting Methods”. They suggest that the margin of the predictions, the differ-
ence between the confidence of the true class and the confidence of the highest
other class, continues to improve with additional boosting iterations, explain-
ing the ability to improve generalization. However the uncertainty continues, as
Breiman [25, 27] provides contrary evidence and claims that the margin expla-
nation is incomplete. The true explanation for AdaBoost’s generalization ability
remains uncertain, but this of course does not prevent its use in practice.

The statisticians Friedman, Hastie and Tibshirani [68] point out the similar-
ities between AdaBoost and additive logistic regression, a more established and
commonly understood statistical technique. From an optimization point of view
they show that AdaBoost performs gradient descent in function space that aims
to minimise the following exponential loss function:

exp

�

−yi

T
∑

t=1

αht(x i)

�

(6.2)

Friedman et al. question why exponential loss is used, suggesting other pos-
sibilities, and propose a boosting variant named LogitBoost. Their insight has
provided another perspective on AdaBoost, which further aids researchers in
understanding its workings. Another contribution they provide is the idea of
weight trimming—after several boosting iterations there can exist examples with
very low weight, so low in fact that ignoring them will not harm accuracy while
reducing computation.

Schapire and Singer [170] make further improvements to AdaBoost. The
original formulation only used binary votes of ensemble members to reweight
examples. The improved formulation generalizes the algorithm to make use of
confidences output by base members, potentially improving performance. They
show how to handle multiple class labels and also study how to best devise
algorithms to output confidences suiting the improved AdaBoost. Additionally,
they propose an alternative gain criterion, so that for example, decision trees
can be induced that aim to directly improve boosting performance.

Early enthusiasm for AdaBoost sometimes overlooked its shortcomings. Ob-
serving its spectacular ability to generalize on many data sets it was sometimes
suggested that AdaBoost is resistant to overfitting. Dietterich [48] addressed
such claims by demonstrating that AdaBoost can suffer from problems with
noise. In fact, his experiments show that with substantial classification noise,
bagging is much better than boosting. The explanation for this behaviour is that
AdaBoost will inevitably give higher weight to noisy examples, because they will
consistently be misclassified.

An interesting piece of follow-up work was conducted by Freund [63], who
revisited his boost-by-majority algorithm to make it adaptive like AdaBoost. The
result is the BrownBoost algorithm. BrownBoost considers the limit in which
each boosting iteration makes an infinitesimally small contribution to the whole
process, which can be modelled with Brownian motion. As with the original
boost-by-majority, the number of iterations, T , is fixed in advance. The algo-
rithm is optimized to minimize the training error in the pre-assigned number of
iterations—as the final iteration draws near, the algorithm gives up on examples
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that are consistently misclassified. This offers hope of overcoming the problems
with noise that are suffered by AdaBoost. In fact, Freund shows that AdaBoost
is a special case of BrownBoost, where T →∞. Despite the theoretical benefits
of BrownBoost it has failed to draw much attention from the community, per-
haps because it is much more complicated and less intuitive than AdaBoost. The
study [142] found that BrownBoost is more robust than AdaBoost in class noise,
but that LogitBoost performs at a comparable level.

6.1.3 Option Trees

Standard decision trees have only a single path that each example can follow1,
so any given example will apply to only one leaf in the tree. Option trees, in-
troduced by Buntine [32] and further explored by Kohavi and Kunz [128], are
more general, making it possible for an example to travel down multiple paths
and arrive at multiple leaves. This is achieved by introducing the possibility of
option nodes to the tree, alongside the standard decision nodes and leaf nodes.
An option node splits the decision path several ways—when an option node is
encountered several different subtrees are traversed, which could themselves
contain more option nodes, thus the potential for reaching different leaves is
multiplied by every option. Making a decision with an option tree involves com-
bining the predictions of the applicable leaves into a final result.

Option trees are a single general structure that can represent anything from a
single standard decision tree to an ensemble of standard decision trees to an even
more general tree containing options within options. An option tree without any
option nodes is clearly the same as a standard decision tree. An option tree with
only a single option node at the root can represent an ensemble of standard
trees. Option nodes below other option nodes take this a step further and have
the combinational power to represent many possible decision trees in a single
compact structure.

A potential benefit of option trees over a traditional ensemble is that the
more flexible representation can save space—consider as an extreme example an
ensemble of one hundred mostly identical large trees, where the only difference
between each tree lies at a single leaf node, in the same position in each tree.
The standard ensemble representation would require one hundred whole copies
of the tree where only the leaf would differ. Efficiently represented as an option
tree this would require almost a hundred times less space, where the varying
leaf could be replaced by an option node splitting one hundred ways leading to
the one hundred different leaf variants. The drive for diverse ensembles will of
course make such a scenario unlikely, but the illustration serves the point that
there are savings to be made by combining different tree permutations into a
single structure. Essentially every path above an option node can be saved from
repetition in memory, compared to explicitly storing every individual tree found
in combination.

1For simplicity, this statement ignores missing value approaches such as C4.5 that send ex-
amples down several paths when testing on unknown attribute values.
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Another possible benefit offered by option trees is retention of interpretabil-
ity. An accepted disadvantage of ensemble methods is that users will lose the
ability to understand the models produced. An option tree is a single structure,
and in some situations this can aid in interpreting the decision process, much
more so than trying to determine the workings of several completely separate
models in combination. An option tree containing many options at many levels
can be complex, but humans may not be as confused by a limited number of op-
tion nodes in small and simple option trees. Arguments for the interpretability
of option trees can be found in [128, 64].

In terms of accuracy, an option tree is just as capable of increasing accuracy
as any ensemble technique. Depending on how it is induced, an option tree
could represent the result of bagging or boosting trees, or something else entirely.
An example application of boosting to option tree induction is the alternating
decision tree (ADTree) learning algorithm by Freund and Mason [64].

The option tree induction approach by Kohavi and Kunz [128] seeks to ex-
plore and average additional split possibilities that a tree could make. Their
approach is closer to bagging than boosting, because bagging also draws out dif-
ferent possibilities from the trees, but operates in a random and less direct fash-
ion. It is less like boosting because it does not utilize classification performance
as feedback for improving on previous decisions, but blindly tries out promising-
looking paths that have previously not been explored. They provide two main
reasons why such trees should outperform a single decision tree, stability and
limited lookahead. The stability argument has already been discussed with other
ensemble methods—a single tree can differ wildly on small changes in training
data, but an option tree that combines several possibilities would vary less on
average. The limited lookahead argument refers to the fact that standard deci-
sion trees make greedy local decisions, and do not consider better decisions that
could be made if the search looked ahead before committing. Looking ahead
is expensive and studies suggest that looking ahead a few steps is futile [148],
but when the tree considers attributes in isolation it will be unaware of potential
interactions between attributes that could greatly increase accuracy. By explor-
ing several alternative options, an option tree increases the chance of utilizing
rewarding attribute combinations.

A significant difficulty with inducing option trees is that they will grow very
rapidly if not controlled. This is due to their powerful combinatorial nature
which gives them high representational power, but which can also easily explore
too many options if left unchecked. Kohavi and Kunz employ several strategies to
prevent a combinatorial explosion of possibilities. Firstly, they set a parameter
that controls how close other tests must be to the best test to be considered
as extra options. The larger the option factor, the more potential there is for
additional options to be explored. Secondly, they impose an arbitrary limit of five
options per node. Because this is enforced locally per node, it will slow down but
not completely prevent excessive combinations. Thirdly, they experimented with
restricting splits to certain depths of the tree, either the lowest three levels or
the top two levels, and also tried altering the frequency of options as a function
number of supporting examples or tree depth.
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Kohavi and Kunz [128] compared their option trees to bagged trees in experi-
ments, showing that option trees are superior. Their hypothesis was that options
nearer the root are more useful than options further down the tree, which was
confirmed in their experiments. Interestingly, this opinion differs from that of
Buntine [32], who argued that options are more effective nearer the leaves.

6.2 Data Stream Setting

6.2.1 Bagging

Bagging as formulated by Breiman does not seem immediately applicable to data
streams, because it appears that the entire data set is needed in order to construct
bootstrap replicates. Oza and Russell [154] show how the process of sampling
bootstrap replicates from training data can be simulated in a data stream context.
They observe that the probability that any individual example will be chosen for
a replicate is governed by a Binomial distribution, so the sampling process can be
approximated by considering each example in turn and randomly deciding with
a Binomial probability distribution how many times to include the example in the
formation of a replicate set. The difficulty with this solution is that the number
of examples, N , needs to be known in advance. Oza and Russell get around this
by considering what happens when N →∞, which is a reasonable assumption
to make with data streams of arbitrary length, and conclude that the Binomial
distribution tends to a Poisson(1) distribution. Following these observations the
algorithm is straightforward to implement, listed in Algorithm 9. It requires a
base learner that is also capable of processing data streams.

Algorithm 9 Oza and Russell’s Online Bagging. M is the number of models in
the ensemble and I(·) is the indicator function.

1: Initialize base models hm for all m ∈ {1, 2, ..., M}
2: for all training examples do
3: for m= 1,2, ..., M do
4: Set k = Poisson(1)
5: for n= 1, 2, ..., k do
6: Update hm with the current example
7: end for
8: end for
9: end for

10: anytime output:
11: return hypothesis: h f in(x) = arg maxy∈Y

∑T
t=1 I(ht(x) = y)

Oza and Russell construct proofs to demonstrate that their “online” bagging
algorithm converges towards the original batch algorithm [154], and have col-
lected experimental evidence to show this [153]. One issue they have not ad-
dressed is memory management, a consideration that is paramount in this text.
Assuming that a memory-limited base algorithm is available, such as the Ho-
effding tree algorithm studied in Chapter 3, then the memory requirements of
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an ensemble of trees can be controlled by limits on individual members. The ex-
perimental implementation of bagged Hoeffding trees takes a simple approach
to controlling total memory usage—with an overall memory limit of m and a
total of n trees, each tree is limited to a maximum size of m/n.

6.2.2 Boosting

Existing literature for the problem of applying boosting to data stream classifi-
cation has mainly focussed on modifying AdaBoost, and often under the guise
of online learning [154, 57]. The term “online” is slightly ambiguous, as re-
searchers have used it in the past to refer to varying goals. Typically the focus
is on processing a single example at a time, but sometimes without emphasis on
other factors believed important in this text such as memory and time require-
ments. For the most part however the online methods reviewed here are directly
applicable to the data stream setting. Attempts at modifying boosting to work
in an “online” fashion can be divided into two main approaches: block boosting
and parallel boosting.

Block boosting involves collecting data from the stream into sequential blocks,
reweighting the examples in each block in the spirit of AdaBoost, and then train-
ing a batch learner to produce new models for inclusion in the ensemble. An ad-
vantage of this approach is that specialized data stream based learners are not
required, the boosting “wrapper” algorithm handles the data stream. Memory
management by such a method can be achieved by discarding weaker models,
but this raises interesting questions—traditional AdaBoost depends on the pre-
vious set of ensemble members remaining constant, the effect of removing arbi-
trary models from an ensemble during learning is unknown. Margineantu and
Dietterich [139] look at pruning models from AdaBoost ensembles and find it ef-
fective, although they do this after learning is complete. A significant difficulty
with block boosting is deciding how large the blocks should be. A demanding
batch learner and/or overly large block sizes will limit the rate at which examples
can be processed, and block sizes that are too small will limit accuracy. Examples
of block boosting include Breiman’s pasting of ‘bites’ [26], and the study by Fan
et al. [57].

Parallel boosting involves feeding examples as they arrive into a base data
stream algorithm that builds each ensemble member in parallel. A difficulty
is that AdaBoost was conceived as a sequential process. Sequential weighting
of training examples can be simulated by feeding and reweighting examples
through each member in sequence. This does not directly emulate the strictly
sequential process of AdaBoost, as models further down the sequence will start
learning from weights that depend on earlier models that are also evolving over
time, but the hope is that in time the models will converge towards an AdaBoost-
like configuration. An advantage of using data stream algorithms as base learn-
ers is that the ensemble algorithm can inherit the ability to adequately handle
data stream demands.

Examples of parallel boosting include Fern and Givan’s [59] online adapta-
tion of arc-x4, and Domingo and Watanabe’s [50] MadaBoost. Domingo and
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Watanabe describe difficulties with correctly weighting examples when apply-
ing AdaBoost to the online setting. Their solution is essentially to put a limit
on the highest weight that can be assigned to an example. They try to prove
that their modification is still boosting in the formal PAC-learning sense but face
theoretical problems that prevent them from providing a full proof. Bshouty
and Gavinsky [30] present a more theoretically sound solution to the problem,
performing polynomially smooth boosting, but the result is far less intuitive than
most AdaBoost-like algorithms.

Algorithm 10 Oza and Russell’s Online Boosting. N is the number of examples
seen.

1: Initialize base models hm for all m ∈ {1, 2, ..., M},λsc
m = 0,λsw

m = 0
2: for all training examples do
3: Set “weight” of example λd = 1
4: for m= 1,2, ..., M do
5: Set k = Poisson(λd)
6: for n= 1, 2, ..., k do
7: Update hm with the current example
8: end for
9: if hm correctly classifies the example then

10: λsc
m← λ

sc
m +λd

11: λd ← λd

�

N
2λsc

m

�

12: else
13: λsw

m ← λ
sw
m +λd

14: λd ← λd

�

N
2λsw

m

�

15: end if
16: end for
17: end for
18: anytime output:
19: Calculate εm =

λsw
m

λsc
m+λsw

m
and βm = εm/(1− εm) for all m ∈ {1, 2, ..., M}

20: return hypothesis: h f in(x) = argmaxy∈Y

∑

m:hm(x)=y log1/βm

The data stream boosting approach adopted by this text is a parallel boosting
algorithm that was developed by Oza and Russell [154], who compliment their
online bagging algorithm (Section 6.2.1) with a similar approach to online boost-
ing. The pseudo-code is listed in Algorithm 10. Oza and Russell note that the
weighting procedure of AdaBoost actually divides the total example weight into
two halves—half of the weight is assigned to the correctly classified examples,
and the other half goes to the misclassified examples. As the ensemble gets more
accurate the number of misclassified examples should progressively get less and
less relative to the number of correct classifications. In turn, the misclassified set
gets more weight per example than the correctly classified set. This motivates
the weight update procedure in lines 9-15, which is intended to simulate the
batch weight behaviour in a streaming environment, much like the online bag-
ging algorithm is designed to simulate the creation of bootstrap replicates. Once
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again they utilize the Poisson distribution for deciding the random probability
that an example is used for training, only this time the parameter (λd) changes
according to the boosting weight of the example as it is passed through each
model in sequence. The use of random Poisson is well founded for bagging, but
motivation for it in the boosting situation is less clear. Preliminary experimental
work for this text involved testing several boosting algorithms, including a mod-
ification of Oza and Russell’s boosting algorithm that applied example weights
directly instead of relying on random drawings from Poisson. Overall the algo-
rithm performed better with the random Poisson element than without it, so it
seems to be a worthwhile approach even if the theoretical underpinning is weak.

6.2.3 Option Trees

A new algorithm for inducing option trees from data streams was devised for
this text. It is based on the Hoeffding tree induction algorithm, but generalized
to explore additional options in a manner similar to the option trees of Kohavi
and Kunz [128]. The pseudo-code is listed in Algorithm 11. The algorithm is
an extension of the basic decision tree inducer listed in Algorithm 2 on page 48.
The differences are, firstly, that each training example can update a set of option
nodes rather than just a single leaf, and secondly, lines 20-32 constitute new
logic that applies when a split has already been chosen but extra options are still
being considered.

A minor point of difference between Kohavi and Kunz’s option tree and the
Hoeffding option trees implemented for this study is that the Hoeffding option
tree uses the class confidences in each leaf to help form the majority decision.
The observed probabilities of each class are added together, rather than the bi-
nary voting process used by Kohavi and Kunz where each leaf votes completely
towards the local majority in determining the overall majority label. Preliminary
experiments suggested that using confidences in voting can slightly improve ac-
curacy.

Just as Kohavi and Kunz needed to restrict the growth of their option trees
in the batch setting, strategies are required to control the growth of Hoeffding
option trees. Without any restrictions the tree will try to explore all possible tree
configurations simultaneously which is clearly not feasible.

The first main approach to controlling growth involves the initial decision of
when to introduce new options to the tree. Kohavi and Kunz have an option fac-
tor parameter that controls the inducer’s eagerness to add new options. The Ho-
effding option tree algorithm has a similar parameter, δ′, which can be thought
of as a secondary Hoeffding bound confidence. The δ′ parameter controls the
confidence of secondary split decisions much like δ influences the initial split de-
cision, only for additional splits the test is whether the information gain of the
best candidate exceeds the information gain of the best split already present in
the tree. For the initial split, the decision process searches for the best attribute
overall, but for subsequent splits, the search is for attributes that are superior to
existing splits. It is very unlikely that any other attribute could compete so well
with the best attribute already chosen that it could beat it by the same initial
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Algorithm 11 Hoeffding option tree induction algorithm. δ′ is the confidence
for additional splits and maxOptions is the maximum number of options that
should be reachable by any single example.

1: Let HOT be an option tree with a single leaf (the root)
2: for all training examples do
3: Sort example into leaves/option nodes L using HOT
4: for all option nodes l of the set L do
5: Update sufficient statistics in l
6: Increment nl , the number of examples seen at l
7: if nl mod nmin = 0 and examples seen at l not all of same class then
8: if l has no children then
9: Compute G l(X i) for each attribute

10: Let Xa be attribute with highest G l

11: Let X b be attribute with second-highest G l

12: Compute Hoeffding bound ε=
Ç

R2 ln(1/δ)
2nl

13: if Xa ̸= X; and (G l(Xa)− G l(X b)> ε or ε < τ) then
14: Add a node below l that splits on Xa

15: for all branches of the split do
16: Add a new option leaf with initialized sufficient statistics
17: end for
18: end if
19: else
20: if optionCount l < maxOptions then
21: Compute G l(X i) for existing splits and (non-used) attributes
22: Let S be existing child split with highest G l

23: Let X be (non-used) attribute with highest G l

24: Compute Hoeffding bound ε=
Ç

R2 ln(1/δ′)
2nl

25: if G l(X )− G l(S)> ε then
26: Add an additional child option to l that splits on X
27: for all branches of the split do
28: Add a new option leaf with initialized sufficient statistics
29: end for
30: end if
31: else
32: Remove attribute statistics stored at l
33: end if
34: end if
35: end if
36: end for
37: end for
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margin. Recall, the original Hoeffding bound decision is designed to guarantee
that the other attributes should not be any better. For this reason, the secondary
bound δ′ needs to be much looser than the initial bound δ for there to be any
chance of additional attribute choices. It seems a contradiction to require other
attributes to be better when the Hoeffding bound has already guaranteed with
high confidence that they are not as good, but the guarantees are much weaker
when tie breaking has been employed, and setting a sufficiently loose secondary
bound does indeed create further split options. δ′ can be expressed in terms of
a multiplication factor α, specifying a fraction of the original Hoeffding bound:

δ′ = eα
2 ln(δ) (6.3)

Or equivalently:

α=

√

√ ln(δ′)
ln(δ)

(6.4)

For example, with the default parameter settings of δ = 10−7 and δ′ = 0.999
then from Equation 6.4, α ≈ 0.0079, that is, decisions to explore additional
attributes are approximately 126 times more eager than the initial choice of
attribute. Preliminary experiments found that a setting of δ′ = 0.999 works
well in combination with the second overriding growth strategy discussed next.

The second main approach to controlling tree growth involves directly lim-
iting the number of options that the tree will explore. Kohavi and Kunz tried a
local limit, where they would not allow an option node to split more than five
different ways. This text introduces a global limiting strategy that instead of lim-
iting options per node it limits options per example. A combinatorial explosion is
still possible with a locally applied limit, whereas a global limit prevents it alto-
gether. Doing so requires more work to compute how many leaves are reachable
at a particular point in the tree, and only allowing more options if it does not
exceed the maximum allowed. Line 20 of Algorithm 11 performs the test that
determines whether more options are possible, and assumes that the maximum
reachability count (optionCount l) of the node is available. Computing maxi-
mum reachability counts in an option tree is complicated—it not only depends
on the descendants of a node but also on its ancestors, and their descendants
too. To solve this problem an incremental algorithm was devised to keep track
of maximum counts in each option node in the tree, listed in Algorithm 12. The
worst-case complexity of this algorithm is linear in the number of nodes in the
tree, as it could potentially visit every node once. All nodes start with an option-
Count of 1. The operation for updating counts is employed every time the tree
grows. Nodes are not removed from the tree, as pruning is not considered in this
text. However, an operation for removing option nodes, that would be needed
if the option trees were pruned, is included for completeness.

Interestingly, the arbitrary local limit of five options employed by Kohavi and
Kunz also seems to be a good choice for the global limit suggested here, at least
when memory restrictions are not considered. Early experiments looked at the
effect of the maxOptions parameter on smaller scale runs in unbounded memory.
The average accuracy across many data sets is plotted in Figure 6.3, showing that
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Algorithm 12 Option counter update, for adding and removing options.
ProcedureAddOption(node, newOption):
max ← node.optionCount
if node has children then

max ← max + 1
end if
for all children of newOption do

child.optionCount ← max
end for
add newOption as child of node
call UpdateOptionCount(node,newOption)

ProcedureRemoveOption(node, index):
while there are options below node do

remove deepest option
end while
remove child at index from node
call UpdateOptionCountBelow(node,-1)
if node has parent then

call UpdateOptionCount(parent,node)
end if

Procedure U pdateOptionCount(node, source):
max ← maximum optionCount of node children
δ← max − node.optionCount
if δ ̸= 0 then

node.optionCount ← node.optionCount +δ
for all children of node such that child ̸= source do

call UpdateOptionCountBelow(child,δ)
end for
if node has parent then

call UpdateOptionCount(parent,node)
end if

end if

Procedure U pdateOptionCountBelow(node,δ):
node.optionCount ← node.optionCount +δ
for all children of node do

call UpdateOptionCountBelow(child, δ)
end for
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Figure 6.3: Average accuracy of Hoeffding option tree over many data sets versus
the maximum number of options per example. Accuracies were estimated in
unbounded memory.

prior to a maximum of five options there are significant accuracy gains, but after
that point the accuracy gains diminish. The computational demands continue to
rise with each additional option.

Other design decisions also help to limit tree growth. When searching for
additional options, ties are not broken in the same manner as during the initial
decision. Doing so would inevitably force options to be introduced when the
bound is sufficiently small. Instead, this cuts down excessive options by only
considering genuine contenders that emerge, those with positive gains. Another
restriction is that an attribute will only be used once per option node, which
reduces the possibility of multiple redundant splits, especially where numeric
attributes are concerned.

Having internal nodes that also act like active leaves because they record
sufficient statistics has serious implications for memory management. To reduce
the memory requirements of internal nodes, they are deactivated as soon as fur-
ther options are prohibited (line 32 of Algorithm 11). The memory management
strategy needs to be adapted to cope with these costly nodes when memory is
exhausted. Recall from Section 3.3 that each leaf has a measure of ‘promise’.
The least promising nodes are deactivated first, while the most promising are
retained in memory the longest. The ‘promise’ is measured by the numbers of
examples seen by the node since creation that are not correctly classified by the
majority observed class. Three straightforward approaches were compared to
decide the final method for experimental comparison:

1. Each active node is treated equally, regardless of whether it is internal or a
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leaf. This has the most potential to stall growth because too many internal
leaves that are highly promising will prevent the tree from growing at the
leaves. Also, nodes near the top of the tree such as the root node are likely
to always look promising due to high numbers of misclassified examples
at that point.

2. Internal nodes are penalized by dividing their promise by the number of lo-
cal options. This reduces focus on areas that have already explored several
options.

3. Leaf nodes are always more promising than internal nodes. This means
that when reclaiming memory the internal nodes are always the first to be
removed, in order of promise. Once all internal nodes are removed, the
leaf nodes will start being deactivated, in the same manner as standard
Hoeffding trees.

The third option fared the best, and is the strategy used in experiments. It ap-
pears that seeking more options at the expense of pursuing the existing ones is
harmful overall to tree accuracy.

The maxOptions parameter plays a significant role overall when memory is
limited, because it adjusts the tradeoff between the numbers of options that are
explored and the depth at which they can be explored.

6.3 Realistic Ensemble Sizes

In the batch setting, a typical ensemble may consist of one hundred or more base
models. This is because the primary goal is increasing accuracy, and the more
models combined the greater the potential for this to occur. The memory and
computational implications of combining this many models in the batch setting
are not a major concern, as typically training sizes are small, and prolonged
training and testing times are acceptable. If it were too demanding, there is
always the option to use a simpler base algorithm or reduce the ensemble size.

In the data stream setting the extra demands of combining models must be
carefully considered. If a particular algorithm is barely able to cope with a high-
speed stream, then even adding a second model in parallel will not be feasible.
For every additional model included, the gains must be weighed against the cost
of supporting them. An ensemble of one hundred models would process exam-
ples approximately one hundred times slower, and memory restrictions would
require each model to be one hundred times as small. In 100KB of memory this
would rely heavily on memory management, which would endeavour to keep
each model under 1KB in size. If sensible models can be induced in such con-
ditions, the simplistic models may not work as effectively in combination than
more sophisticated ones. For these reasons, the ensemble sizes experimented
with in the next chapter are restricted to smaller values of ten, five or three
models.

Such small ensemble sizes are not necessarily a hindrance to ensemble per-
formance. The preliminary investigation into restricting the effective number
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of models in option trees, Figure 6.3, suggested that anything on the order of
five models is close to optimal, and that higher numbers of models show lim-
ited improvement. This was without considering the added pressure of memory
limits, which in some conditions may favour even smaller combinations. The
ensemble size of three especially will be an interesting study of whether small
combinations can show a useful effect.
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Part III

Evolving Data Stream Learning
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7
Evolving data streams

Data mining has traditionally been performed over static datasets, where data
mining algorithms can afford to read the input data several times. When the
source of data items is an open-ended data stream, not all data can be loaded into
the memory and off-line mining with a fixed size dataset is no longer technically
feasible due to the unique features of streaming data.

The following constraints apply in the Data Stream model:

1. The amount of data that has arrived and will arrive in the future is ex-
tremely large; in fact, the sequence is potentially infinite. Thus, it is impos-
sible to store it all. Only a small summary can be computed and stored, and
the rest of the information is thrown away. Even if the information could
be all stored, it would be unfeasible to go over it for further processing.

2. The speed of arrival is large, so that each particular element has to be
processed essentially in real time, and then discarded.

3. The distribution generating the items can change over time. Thus, data
from the past may become irrelevant (or even harmful) for the current
summary.

Constraints 1 and 2 limit the amount of memory and time-per-item that
the streaming algorithm can use. Intense research on the algorithmics of Data
Streams has produced a large body of techniques for computing fundamental
functions with low memory and time-per-item, usually in combination with the
sliding-window technique discussed next.

Constraint 3, the need to adapt to time changes, has been also intensely
studied. A typical approach for dealing is based on the use of so-called sliding
windows: The algorithm keeps a window of size W containing the last W data
items that have arrived (say, in the last W time steps). When a new item arrives,
the oldest element in the window is deleted to make place for it. The summary
of the Data Stream is at every moment computed or rebuilt from the data in
the window only. If W is of moderate size, this essentially takes care of the
requirement to use low memory.

In most cases, the quantity W is assumed to be externally defined, and fixed
through the execution of the algorithm. The underlying hypothesis is that the
user can guess W so that the distribution of the data can be thought to be es-
sentially constant in most intervals of size W ; that is, the distribution changes
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smoothly at a rate that is small w.r.t. W , or it can change drastically from time to
time, but the time between two drastic changes is often much greater than W .

Unfortunately, in most of the cases the user does not know in advance what
the rate of change is going to be, so its choice of W is unlikely to be optimal.
Not only that, the rate of change can itself vary over time, so the optimal W may
itself vary over time.

7.1 Algorithms for mining with change

In this section we review some of the data mining methods that deal with data
streams and concept drift. There are many algorithms in the literature that ad-
dress this problem. We focus on the ones that they are more referred to in other
works.

7.1.1 OLIN: Last

Last in [132] describes an online classification system that uses the info-fuzzy
network (IFN). The system called OLIN (On Line Information Network) gets a
continuous stream of non-stationary data and builds a network based on a sliding
window of the latest examples. The system dynamically adapts the size of the
training window and the frequency of model re-construction to the current rate
of concept drift

OLIN uses the statistical significance of the difference between the training
and the validation accuracy of the current model as an indicator of concept sta-
bility.

OLIN adjusts dynamically the number of examples between model recon-
structions by using the following heuristic: keep the current model for more
examples if the concept appears to be stable and reduce drastically the size of
the validation window, if a concept drift is detected.

OLIN generates a new model for every new sliding window. This approach
ensures accurate and relevant models over time and therefore an increase in
the classification accuracy. However, the OLIN algorithm has a major drawback,
which is the high cost of generating new models. OLIN does not take into account
the costs involved in replacing the existing model with a new one.

7.1.2 CVFDT: Domingos

Hulten, Spencer and Domingos presented Concept-adapting Very Fast Decision
Trees CVFDT [106] algorithm as an extension of VFDT to deal with concept
change.

Figure 7.1 shows CVFDT algorithm. CVFDT keeps the model it is learning in
sync with such changing concepts by continuously monitoring the quality of old
search decisions with respect to a sliding window of data from the data stream,
and updating them in a fine-grained way when it detects that the distribution of
data is changing. In particular, it maintains sufficient statistics throughout time
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CVFDT(St ream,δ)

1 Let HT be a tree with a single leaf(root)
2 Init counts ni jk at root
3 for each example (x , y) in Stream
4 do Add, Remove and Forget Examples
5 CVFDTGROW((x , y), HT,δ)
6 CHECKSPLITVALIDITY(HT, n,δ)

CVFDTGROW((x , y), HT,δ)

1 Sort (x , y) to leaf l using HT
2 Update counts ni jk at leaf l and nodes traversed in the sort
3 if examples seen so far at l are not all of the same class
4 then Compute G for each attribute

5 if G(Best Attr.)−G(2nd best) >
q

R2 ln 1/δ
2n

6 then Split leaf on best attribute
7 for each branch
8 do Start new leaf and initialize counts
9 Create alternate subtree

CHECKSPLITVALIDITY(HT, n,δ)

1 for each node l in HT that it is not a leaf
2 do for each tree Tal t in ALT(l)
3 do CHECKSPLITVALIDITY(Tal t , n,δ)
4 if exists a new promising attributes at node l
5 do Start an alternate subtree

Figure 7.1: The CVFDT algorithm

for every candidate M considered at every search step. After the first w exam-
ples, where w is the window width, it subtracts the oldest example from these
statistics whenever a new one is added. After every ∆n new examples, it deter-
mines again the best candidates at every previous search decision point. If one
of them is better than an old winner by δ∗ then one of two things has happened.
Either the original decision was incorrect (which will happen a fraction δ of the
time) or concept drift has occurred. In either case,it begins an alternate search
starting from the new winners, while continuing to pursue the original search.
Periodically it uses a number of new examples as a validation set to compare the
performance of the models produced by the new and old searches. It prunes an
old search (and replace it with the new one) when the new model is on average
better than the old one, and it prunes the new search if after a maximum number
of validations its models have failed to become more accurate on average than
the old ones. If more than a maximum number of new searches is in progress,
it prunes the lowest-performing ones.
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7.1.3 UFFT: Gama

Gama, Medas and Rocha [73] presented the Ultra Fast Forest of Trees (UFFT)
algorithm.

UFFT is an algorithm for supervised classification learning, that generates a
forest of binary trees. The algorithm is incremental, processing each example
in constant time, works on-line, UFFT is designed for continuous data. It uses
analytical techniques to choose the splitting criteria, and the information gain
to estimate the merit of each possible splitting-test. For multi-class problems,
the algorithm builds a binary tree for each possible pair of classes leading to a
forest-of-trees. During the training phase the algorithm maintains a short term
memory. Given a data stream, a limited number of the most recent examples
are maintained in a data structure that supports constant time insertion and
deletion. When a test is installed, a leaf is transformed into a decision node with
two descendant leaves. The sufficient statistics of the leaf are initialized with
the examples in the short term memory that will fall at that leaf.

The UFFT algorithm maintains, at each node of all decision trees, a Naïve
Bayes classifier. Those classifiers were constructed using the sufficient statis-
tics needed to evaluate the splitting criteria when that node was a leaf. After
the leaf becomes a node, all examples that traverse the node will be classified
by the Naïve Bayes. The basic idea of the drift detection method is to control
this error-rate. If the distribution of the examples is stationary, the error rate
of Naïve-Bayes decreases. If there is a change on the distribution of the exam-
ples the Naïve Bayes error increases. The system uses DDM, the drift detection
method explained in Section 1.5. When it detects an statistically significant in-
crease of the Naïve-Bayes error in a given node, an indication of a change in
the distribution of the examples, this suggest that the splitting-test that has been
installed at this node is no longer appropriate. The subtree rooted at that node
is pruned, and the node becomes a leaf. All the sufficient statistics of the leaf
are initialized. When a new training example becomes available, it will cross the
corresponding binary decision trees from the root node till a leaf. At each node,
the Naïve Bayes installed at that node classifies the example. The example will
be correctly or incorrectly classified. For a set of examples the error is a random
variable from Bernoulli trials. The Binomial distribution gives the general form
of the probability for the random variable that represents the number of errors
in a sample of n examples.

The sufficient statistics of the leaf are initialized with the examples in the
short term memory that maintains a limited number of the most recent exam-
ples. It is possible to observe an increase of the error reaching the warning level,
followed by a decrease. This method uses the information already available to
the learning algorithm and does not require additional computational resources.
An advantage of this method is it continuously monitors the online error of Naïve
Bayes. It can detect changes in the class-distribution of the examples at any time.
All decision nodes contain Naïve Bayes to detect changes in the class distribu-
tion of the examples that traverse the node, that correspond to detect shifts in
different regions of the instance space. Nodes near the root should be able to
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Figure 7.2: General Framework

detect abrupt changes in the distribution of the examples, while deeper nodes
should detect smoothed changes.

7.2 A Methodology for Adaptive Stream Mining

In the data stream mining literature, most algorithms incorporate one or more
of the following ingredients: windows to remember recent examples; methods
for detecting distribution change in the input; and methods for keeping updated
estimations for some statistics of the input. We see them as the basis for solving
the three central problems of

• what to remember or forget,

• when to do the model upgrade, and

• how to do the model upgrade.

Our claim is that by basing mining algorithms on well-designed, well-encap-
sulated modules for these tasks, one can often get more generic and more effi-
cient solutions than by using ad-hoc techniques as required.

7.2.1 Time Change Detectors and Predictors: A General Frame-
work

Most approaches for predicting and detecting change in streams of data can be
discussed in the general framework: The system consists of three modules: a
Memory module, an Estimator Module, and a Change Detector or Alarm Gen-
erator module. These three modules interact as shown in Figure 7.2, which is
analogous to Figure 8 in [172].
In general, the input to this algorithm is a sequence x1, x2, . . . , x t , . . . of data
items whose distribution varies over time in an unknown way. The outputs of
the algorithm are, at each time step

• an estimation of some important parameters of the input distribution, and
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• a signal alarm indicating that distribution change has recently occurred.

We consider a specific, but very frequent case, of this setting: that in which
all the x t are real values. The desired estimation is usually the expected value of
the current x t , and less often another distribution statistics such as the variance.
The only assumption on the distribution is that each x t is drawn independently
from each other.

Memory is the component where the algorithm stores all the sample data or
summary that considers relevant at current time, that is, that presumably shows
the current data distribution.

The Estimator component is an algorithm that estimates the desired statistics
on the input data, which may change over time. The algorithm may or may not
use the data contained in the Memory. The simplest Estimator algorithm for the
expected is the linear estimator, which simply returns the average of the data
items contained in the Memory. Other examples of run-time efficient estimators
are Auto-Regressive, Auto Regressive Moving Average, and Kalman filters.

The change detector component outputs an alarm signal when it detects
change in the input data distribution. It uses the output of the Estimator, and
may or may not in addition use the contents of Memory.

In Table 7.1 we classify these predictors in four classes, depending on whether
Change Detector and Memory modules exist:

No memory Memory

Type I Type III
No Change Detector Kalman Filter Adaptive Kalman Filter

Type II Type IV
Change Detector Kalman Filter + CUSUM ADWIN

Kalman Filter + ADWIN

Table 7.1: Types of Time Change Predictor and some examples

• Type I: Estimator only. The simplest one is modelled by

x̂k = (1−α) x̂k−1 +α · xk.

The linear estimator corresponds to using α = 1/N where N is the width
of a virtual window containing the last N elements we want to consider.
Otherwise, we can give more weight to the last elements with an appropri-
ate constant value of α. The Kalman filter tries to optimize the estimation
using a non-constant α (the K value) which varies at each discrete time
interval.
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• Type II: Estimator with Change Detector. An example is the Kalman Fil-
ter together with a CUSUM test change detector algorithm, see for exam-
ple [111].

• Type III: Estimator with Memory. We add Memory to improve the results of
the Estimator. For example, one can build an Adaptive Kalman Filter that
uses the data in Memory to compute adequate values for the process vari-
ance Q and the measure variance R. In particular, one can use the sum of
the last elements stored into a memory window to model the Q parameter
and the difference of the last two elements to estimate parameter R.

• Type IV: Estimator with Memory and Change Detector. This is the most com-
plete type. Two examples of this type, from the literature, are:

– A Kalman filter with a CUSUM test and fixed-length window mem-
ory, as proposed in [172]. Only the Kalman filter has access to the
memory.

– A linear Estimator over fixed-length windows that flushes when change
is detected [122], and a change detector that compares the running
windows with a reference window.

In Chapter 8, we will present ADWIN, an adaptive sliding window method
that works as a type IV change detector and predictor.

7.2.2 Window Management Models

Window strategies have been used in conjunction with mining algorithms in two
ways: one, externally to the learning algorithm; the window system is used to
monitor the error rate of the current model, which under stable distributions
should keep decreasing or at most stabilize; when instead this rate grows signif-
icantly, change is declared and the base learning algorithm is invoked to revise
or rebuild the model with fresh data. Note that in this case the window memory
contains bits or real numbers (not full examples). Figure 7.3 shows this model.

The other way is to embed the window system inside the learning algorithm,
to maintain the statistics required by the learning algorithm continuously up-
dated; it is then the algorithm’s responsibility to keep the model in synchrony
with these statistics, as shown in Figure 7.4.

Learning algorithms that detect change, usually compare statistics of two
windows. Note that the methods may be memoryless: they may keep window
statistics without storing all their elements. There have been in the literature,
some different window management strategies:

• Equal & fixed size subwindows: Kifer et al. [122] compares one reference,
non-sliding, window of older data with a sliding window of the same size
keeping the most recent data.

• Equal size adjacent subwindows: Dasu et al. [41] compares two adjacent
sliding windows of the same size of recent data.
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Figure 7.3: Data mining algorithm framework with concept drift.
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Figure 7.4: Data mining algorithm framework with concept drift using estima-
tors replacing counters.

• Total window against subwindow: Gama et al. [72] compares the window
that contains all the data with a subwindow of data from the beginning
until it detects that the accuracy of the algorithm decreases.

The strategy of ADWIN, the method presented in next chapter, will be to com-
pare all the adjacent subwindows in which is possible to partition the window
containing all the data. Figure 7.5 shows these window management strategies.

7.3 Optimal Change Detector and Predictor

We have presented in section 7.2 a general framework for time change detectors
and predictors. Using this framework we can establish the main properties of an
optimal change detector and predictor system as the following:

• High accuracy

• Fast detection of change
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Let W = 101010110111111

• Equal & fixed size subwindows: 1010 1011011 1111

• Equal size adjacent subwindows: 1010101 1011 1111

• Total window against subwindow: 10101011011 1111

• ADWIN: All adjacent subwindows:

1 01010110111111

1010 10110111111

1010101 10111111

1010101101 11111

10101011011111 1

Figure 7.5: Different window management strategies

• Low false positives and negatives ratios

• Low computational cost: minimum space and time needed

• Theoretical guarantees

• No parameters needed

• Detector of type IV: Estimator with Memory and Change Detector

In the next chapter we will present ADWIN, a change detector and predictor
with these characteristics, using an adaptive sliding window model. ADWIN’s
window management strategy will be to compare all the adjacent subwindows
in which is possible to partition the window containing all the data. It seems that
this procedure may be the most accurate, since it looks at all possible subwin-
dows partitions. On the other hand, time cost is the main disadvantage of this
method. Considering this, we will provide another version working in the strict
conditions of the Data Stream model, namely low memory and low processing
per item.
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8
Adaptive Sliding Windows

Dealing with data whose nature changes over time is one of the core problems
in data mining and machine learning. In this chapter we present ADWIN, an
adaptive sliding window algorithm, as an estimator with memory and change
detector with the main properties of optimality explained in section 7.3. We
study and develop also the combination of ADWIN with Kalman filters.

8.1 Introduction

Most strategies in the literature use variations of the sliding window idea: a
window is maintained that keeps the most recently read examples, and from
which older examples are dropped according to some set of rules. The contents
of the window can be used for the three tasks: 1) to detect change (e.g., by using
some statistical test on different subwindows), 2) obviously, to obtain updated
statistics from the recent examples, and 3) to have data to rebuild or revise the
model(s) after data has changed.

The simplest rule is to keep a window of some fixed size, usually determined
a priori by the user. This can work well if information on the time-scale of change
is available, but this is rarely the case. Normally, the user is caught in a tradeoff
without solution: choosing a small size (so that the window reflects accurately
the current distribution) and choosing a large size (so that many examples are
available to work on, increasing accuracy in periods of stability). A different
strategy uses a decay function to weight the importance of examples according
to their age (see e.g. [39]): the relative contribution of each data item is scaled
down by a factor that depends on elapsed time. In this case, the tradeoff shows
up in the choice of a decay constant that should match the unknown rate of
change.

Less often, it has been proposed to use windows of variable size. In general,
one tries to keep examples as long as possible, i.e., while not proven stale. This
delivers the users from having to guess a priori an unknown parameter such as
the time scale of change. However, most works along these lines that we know
of (e.g., [72, 125, 132, 192]) are heuristics and have no rigorous guarantees of
performance. Some works in computational learning theory (e.g. [13, 97, 98])
describe strategies with rigorous performance bounds, but to our knowledge
they have never been tried in real learning/mining contexts and often assume a
known bound on the rate of change.
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We will present ADWIN, a parameter-free adaptive size sliding window, with
theoretical garantees. We will use Kalman filters at the last part of this Chapter,
in order to provide an adaptive weight for each item.

8.2 Maintaining Updated Windows of Varying Length

In this section we describe algorithms for dynamically adjusting the length of a
data window, make a formal claim about its performance, and derive an efficient
variation.

We will use Hoeffding’s bound in order to obtain formal guarantees, and a
streaming algorithm. However, other tests computing differences between win-
dow distributions may be used.

8.2.1 Setting

The inputs to the algorithms are a confidence value δ ∈ (0,1) and a (possibly in-
finite) sequence of real values x1, x2, x3, . . . , x t , . . . The value of x t is available
only at time t. Each x t is generated according to some distribution Dt , inde-
pendently for every t. We denote with µt and σ2

t the expected value and the
variance of x t when it is drawn according to Dt . We assume that x t is always
in [0,1]; by an easy rescaling, we can handle any case in which we know an
interval [a, b] such that a ≤ x t ≤ b with probability 1. Nothing else is known
about the sequence of distributions Dt; in particular, µt and σ2

t are unknown for
all t.

8.2.2 First algorithm: ADWIN0
The first algorithm keeps a sliding window W with the most recently read x i.
Let n denote the length of W , µ̂W the (observed) average of the elements in W ,
and µW the (unknown) average of µt for t ∈W . Strictly speaking, these quan-
tities should be indexed by t, but in general t will be clear from the context.

Since the values of µt can oscillate wildly, there is no guarantee that µW or µ̂W

will be anywhere close to the instantaneous value µt , even for long W . However,
µW is the expected value of µ̂W , so µW and µ̂W do get close as W grows.

Algorithm ADWIN0 is presented in Figure 8.1. The idea is simple: whenever
two “large enough” subwindows of W exhibit “distinct enough” averages, one
can conclude that the corresponding expected values are different, and the older
portion of the window is dropped. In other words, W is kept as long as possible
while the null hypothesis “µt has remained constant in W ” is sustainable up to
confidence δ.1 “Large enough” and “distinct enough” above are made precise by
choosing an appropriate statistical test for distribution change, which in general
involves the value of δ, the lengths of the subwindows, and their contents. We
choose one particular statistical test for our implementation, but this is not the

1It would easy to use instead the null hypothesis “there has been no change greater than ε”,
for a user-specified ε expressing the smallest change that deserves reaction.

118



8.2. MAINTAINING UPDATED WINDOWS OF VARYING LENGTH

ADWIN0: ADAPTIVE WINDOWING ALGORITHM

1 Initialize Window W
2 for each t > 0
3 do W ←W ∪ {x t} (i.e., add x t to the head of W )
4 repeat Drop elements from the tail of W
5 until |µ̂W0

− µ̂W1
|< εcut holds

6 for every split of W into W =W0 ·W1

7 output µ̂W

Figure 8.1: Algorithm ADWIN0.

essence of our proposal – many other tests could be used. At every step, ADWIN0
simply outputs the value of µ̂W as an approximation to µW .

The value of εcut for a partition W0 ·W1 of W is computed as follows: Let n0

and n1 be the lengths of W0 and W1 and n be the length of W , so n= n0+n1. Let
µ̂W0

and µ̂W1
be the averages of the values in W0 and W1, and µW0

and µW1
their

expected values. To obtain totally rigorous performance guarantees we define:

m =
1

1/n0 + 1/n1
(harmonic mean of n0 and n1),

δ′ =
δ

n
, and εcut =

√

√ 1
2m
· ln

4
δ′

.

Our statistical test for different distributions in W0 and W1 simply checks whether
the observed average in both subwindows differs by more than the threshold εcut .
The role of δ′ is to avoid problems with multiple hypothesis testing (since we
will be testing n different possibilities for W0 and W1 and we want global er-
ror below δ). Later we will provide a more sensitive test based on the normal
approximation that, although not 100% rigorous, is perfectly valid in practice.

Now we state our main technical result about the performance of ADWIN0:

Theorem 1. At every time step we have

1. (False positive rate bound). If µt remains constant within W, the probability
that ADWIN0 shrinks the window at this step is at most δ.

2. (False negative rate bound). Suppose that for some partition of W in two
parts W0W1 (where W1 contains the most recent items) we have |µW0

−µW1
|>

2εcut . Then with probability 1−δ ADWIN0 shrinks W to W1, or shorter.

Proof. Part 1) Assume µW0
= µW1

= µW as null hypothesis. We show that for
any partition W as W0W1 we have probability at most δ/n that ADWIN0 decides
to shrink W to W1, or equivalently,

Pr[ |µ̂W1
− µ̂W0

| ≥ εcut ]≤ δ/n.
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Since there are at most n partitions W0W1, the claim follows by the union bound.
Note that, for every real number k ∈ (0,1), |µ̂W1

−µ̂W0
| ≥ εcut can be decomposed

as

Pr[ |µ̂W1
− µ̂W0

| ≥ εcut ] ≤ Pr[ |µ̂W1
−µW | ≥ kεcut ] + Pr[ |µW − µ̂W0

| ≥ (1− k)εcut) ].

Applying the Hoeffding bound, we have then

Pr[ |µ̂W1
− µ̂W0

| ≥ εcut ] ≤ 2exp(−2(k εcut)
2 n0) + 2 exp(−2((1− k)εcut)

2 n1)

To approximately minimize the sum, we choose the value of k that makes both
probabilities equal, i.e. such that

(k εcut)
2 n0 = ((1− k)εcut)

2 n1.

which is k =
p

n1/n0/(1+
p

n1/n0). For this k, we have precisely

(k εcut)
2 n0 =

n1n0

(pn0 +
p

n1)2
ε2

cut ≤
n1n0

(n0 + n1)
ε2

cut = m ε2
cut .

Therefore, in order to have

Pr[ |µ̂W1
− µ̂W0

| ≥ εcut ]≤
δ

n
it suffices to have

4exp(−2m ε2
cut)≤

δ

n
which is satisfied by

εcut =

√

√ 1
2m

ln
4n
δ

.

Part 2) Now assume |µW0
−µW1

|> 2εcut . We want to show that Pr[ |µ̂W1
− µ̂W0

| ≤
εcut ] ≤ δ, which means that with probability at least 1− δ change is detected
and the algorithm cuts W to W1. As before, for any k ∈ (0,1), we can decompose
|µ̂W0

− µ̂W1
| ≤ εcut as

Pr[ |µ̂W0
− µ̂W1

| ≤ εcut ] ≤ Pr[ (|µ̂W0
−µW0

| ≥ kεcut)∪ (|µ̂W1
−µW1

| ≥ (1− k)εcut) ]
≤ Pr[ |µ̂W0

−µW0
| ≥ kεcut ] + Pr[ |µ̂W1

−µW1
| ≥ (1− k)εcut ].

To see the first inequality, observe that if |µ̂W0
− µ̂W1

| ≤ εcut , |µ̂W0
−µW0

| ≤ kεcut ,
and |µ̂W1

−µW1
| ≤ (1− k)εcut hold, by the triangle inequality we have

|µW0
−µW1

| ≤ |µ̂W0
+ kεcut − µ̂W1

+ (1− k)εcut | ≤ |µ̂W0
− µ̂W1

|+ εcut ≤ 2εcut ,

contradicting the hypothesis. Using the Hoeffding bound, we have then

Pr[ |µ̂W0
− µ̂W1

| ≥ εcut ] ≤ 2 exp(−2(k εcut)
2 n0) + 2 exp(−2((1− k)εcut)

2 n1).

Now, choose k as before to make both terms equal. By the calculations in Part 1
we have

Pr[ |µ̂W0
− µ̂W1

| ≥ εcut ] ≤ 4exp(−2 mε2
cut)≤

δ

n
≤ δ,

as desired.
2
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Figure 8.2: Output of algorithm ADWIN0 with abrupt change.

In practice, the definition of εcut as above is too conservative. Indeed, it is
based on the Hoeffding bound, which is valid for all distributions but greatly
overestimates the probability of large deviations for distributions of small vari-
ance; in fact, it is equivalent to assuming always the worst-case variance σ2 =
1/4. In practice, one can observe that µW0

− µW1
tends to a normal distribution

for large window sizes, and use

εcut =

√

√ 2
m
·σ2

W · ln
2
δ′
+

2
3 m

ln
2
δ′

, (8.1)

where σ2
W is the observed variance of the elements in window W . Thus, the

term with the square root is essentially equivalent to setting εcut to k times the
standard deviation, for k depending on the desired confidence δ, as is done
in [72]. The extra additive term protects the cases where the window sizes are
too small to apply the normal approximation, as an alternative to the traditional
use of requiring, say, sample size at least 30; it can be formally derived from the
so-called Bernstein bound. Additionally, one (somewhat involved) argument
shows that setting δ′ = δ/(ln n) is enough in this context to protect from the
multiple hypothesis testing problem; anyway, in the actual algorithm that we
will run (ADWIN), only O(log n) subwindows are checked, which justifies using
δ′ = δ/(ln n). Theorem 1 holds for this new value of εcut , up to the error intro-
duced by the normal approximation. We have used these better bounds in all
our implementations.

Let us consider how ADWIN0 behaves in two special cases: sudden (but in-
frequent) changes, and slow gradual changes. Suppose that for a long time µt

has remained fixed at a value µ, and that it suddenly jumps to a value µ′ = µ+ε.
By part (2) of Theorem 1 and Equation 8.1, one can derive that the window will
start shrinking after O(µ ln(1/δ)/ε2) steps, and in fact will be shrunk to the
point where only O(µ ln(1/δ)/ε2) examples prior to the change are left. From
then on, if no further changes occur, no more examples will be dropped so the
window will expand unboundedly.
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Figure 8.3: Output of algorithm ADWIN0 with slow gradual changes.

In case of a gradual change with slope α following a long stationary period
at µ, observe that the average of W1 after n1 steps is µ + αn1/2; we have ε(=
αn1/2) ≥ O(
p

µ ln(1/δ)/n1) iff n1 = O(µ ln(1/δ)/α2)1/3. So n1 steps after the
change the window will start shrinking, and will remain at approximately size
n1 from then on. A dependence on α of the form O(α−2/3)may seem odd at first,
but one can show that this window length is actually optimal in this setting, even
if α is known: it minimizes the sum of variance error (due to short window) and
error due to out-of-date data (due to long windows in the presence of change).
Thus, in this setting, ADWIN0 provably adjusts automatically the window setting
to its optimal value, up to multiplicative constants.

Figures 8.2 and 8.3 illustrate these behaviors. In Figure 8.2, a sudden change
from µt−1 = 0.8 to µt = 0.4 occurs, at t = 1000. One can see that the window
size grows linearly up to t = 1000, that ADWIN0 cuts the window severely 10
steps later (at t = 1010), and that the window expands again linearly after time
t = 1010. In Figure 8.3, µt gradually descends from 0.8 to 0.2 in the range
t ∈ [1000..2000]. In this case, ADWIN0 cuts the window sharply at t around
1200 (i.e., 200 steps after the slope starts), keeps the window length bounded
(with some random fluctuations) while the slope lasts, and starts growing it
linearly again after that. As predicted by theory, detecting the change is harder
in slopes than in abrupt changes.

8.2.3 ADWIN0 for Poisson processes

A Poisson process is the stochastic process in which events occur continuously
and independently of one another. A well-known example is radioactive decay
of atoms. Many processes are not exactly Poisson processes, but similar enough
that for certain types of analysis they can be regarded as such; e.g., telephone
calls arriving at a switchboard, webpage requests to a search engine, or rainfall.

Using the Chernoff bound for Poisson processes [145]

Pr{X ≥ cE[X ]} ≤ exp(−(c ln(c) + 1− c)E[X ])
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we find a similar εcut for Poisson processes.
First, we look for a simpler form of this bound. Let c = 1+ ε then

c ln(c)− c + 1= (1+ ε) · ln(1+ ε)− ε

Using the Taylor expansion of ln(x)

ln(1+ x) =
∑

(−1)n+1 ·
xn

n
= x −

x2

2
+

x3

3
− · · ·

we get the following simpler expression:

Pr{X ≥ (1+ ε)E[X ]} ≤ exp(−ε2E[X ]/2)

Now, let Sn be the sum of n Poisson processes. As Sn is also a Poisson process

E[Sn] = λSn
= nE[X ] = n ·λX

and then we obtain

Pr{Sn ≥ (1+ ε)E[Sn]} ≤ exp(−ε2E[Sn]/2)

In order to obtain a formula for εcut , let Y = Sn/n

Pr{Y ≥ (1+ ε)E[Y ]} ≤ exp(−ε2 · n · E[Y ]/2)

And finally, with this bound we get the following εcut for ADWIN0

εcut =

√

√2λ
m

ln
2
δ

where 1/m= 1/n0 + 1/n1, and λ is the mean of the window data.

8.2.4 Improving time and memory requirements

The first version of ADWIN0 is computationally expensive, because it checks
exhaustively all “large enough” subwindows of the current window for possi-
ble cuts. Furthermore, the contents of the window is kept explicitly, with the
corresponding memory cost as the window grows. To reduce these costs we
present a new version ADWIN using ideas developed in data stream algorith-
mics [10, 149, 11, 42] to find a good cutpoint quickly. Figure 8.4 shows the
ADWIN algorithm. We next provide a sketch of how this algorithm and these
data structures work.

Our data structure is a variation of exponential histograms [42], a data struc-
ture that maintains an approximation of the number of 1’s in a sliding window
of length W with logarithmic memory and update time. We adapt this data
structure in a way that can provide this approximation simultaneously for about
O(log W ) subwindows whose lengths follow a geometric law, with no memory
overhead with respect to keeping the count for a single window. That is, our
data structure will be able to give the number of 1s among the most recently
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ADWIN: ADAPTIVE WINDOWING ALGORITHM

1 Initialize W as an empty list of buckets
2 Initialize WIDTH, VARIANCE and TOTAL
3 for each t > 0
4 do SETINPUT(x t , W )
5 output µ̂W as TOTAL/WIDTH and ChangeAlarm

SETINPUT(item e, List W)

1 INSERTELEMENT(e, W )
2 repeat DELETEELEMENT(W )
3 until |µ̂W0

− µ̂W1
|< εcut holds

4 for every split of W into W =W0 ·W1

INSERTELEMENT(item e, List W)

1 create a new bucket b with content e and capacity 1
2 W ←W ∪ {b} (i.e., add e to the head of W )
3 update WIDTH, VARIANCE and TOTAL
4 COMPRESSBUCKETS(W )

DELETEELEMENT(List W)

1 remove a bucket from tail of List W
2 update WIDTH, VARIANCE and TOTAL
3 ChangeAlarm← true

COMPRESSBUCKETS(List W)

1 Traverse the list of buckets in increasing order
2 do If there are more than M buckets of the same capacity
3 do merge buckets
4 COMPRESSBUCKETS(sublist of W not traversed)

Figure 8.4: Algorithm ADWIN.
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t−1, t−⌊c⌋, t−⌊c2⌋ ,. . . , t−⌊c i⌋, . . . read bits, with the same amount of memory
required to keep an approximation for the whole W . Note that keeping exact
counts for a fixed-window size is provably impossible in sublinear memory. We
go around this problem by shrinking or enlarging the window strategically so
that what would otherwise be an approximate count happens to be exact.

More precisely, to design the algorithm one chooses a parameter M . This pa-
rameter controls both 1) the amount of memory used (it will be O(M log W/M)
words, and 2) the closeness of the cutpoints checked (the basis c of the geomet-
ric series above, which will be about c = 1+ 1/M). Note that the choice of M
does not reflect any assumption about the time-scale of change: Since points are
checked at a geometric rate anyway, this policy is essentially scale-independent.

More precisely, in the boolean case, the information on the number of 1’s is
kept as a series of buckets whose size is always a power of 2. We keep at most
M buckets of each size 2i, where M is a design parameter. For each bucket we
record two (integer) elements: capacity and content (size, or number of 1s it
contains).

Thus, we use about M ·log(W/M) buckets to maintain our data stream sliding
window. ADWIN checks as a possible cut every border of a bucket, i.e., window
lengths of the form M(1+ 2+ · · ·+ 2i−1) + j · 2i, for 0 ≤ j ≤ M . It can be seen
that these M · log(W/M) points follow approximately a geometric law of basis
∼= 1+ 1/M .

Let’s look at an example: a sliding window with 14 elements. We register it
as:

1010101 101 11 1 1
Content: 4 2 2 1 1
Capacity: 7 3 2 1 1

Each time a new element arrives, if the element is "1", we create a new bucket
of content 1 and capacity the number of elements arrived since the last "1". After
that we compress the rest of buckets: When there are M + 1 buckets of size 2i,
we merge the two oldest ones (adding its capacity) into a bucket of size 2i+1. So,
we use O(M · log W/M) memory words if we assume that a word can contain a
number up to W . In [42], the window is kept at a fixed size W . The information
missing about the last bucket is responsible for the approximation error. Here,
each time we detect change, we reduce the window’s length deleting the last
bucket, instead of (conceptually) dropping a single element as in a typical sliding
window framework. This lets us keep an exact counting, since when throwing
away a whole bucket we know that we are dropping exactly 2i "1"s.

We summarize these results with the following theorem.

Theorem 2. The ADWIN algorithm maintains a data structure with the following
properties:

• It uses O(M · log(W/M))memory words (assuming a memory word can con-
tain numbers up to W).

• It can process the arrival of a new element in O(1) amortized time and
O(log W ) worst-case time.
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• It can provide the exact counts of 1’s for all the subwindows whose lengths
are of the form ⌊(1+ 1/M)i⌋, in O(1) time per query.

Since ADWIN tries O(log W ) cutpoints, the total processing time per example
is O(log W ) (amortized) and O(log W ) (worst-case).

In our example, suppose M = 2, if a new element "1" arrives then

1010101 101 11 1 1 1

Content: 4 2 2 1 1 1

Capacity: 7 3 2 1 1 1

There are 3 buckets of 1, so we compress it:

1010101 101 11 11 1

Content: 4 2 2 2 1

Capacity: 7 3 2 2 1

and now as we have 3 buckets of size 2, we compress it again

1010101 10111 11 1

Content: 4 4 2 1

Capacity: 7 5 2 1

And finally, if we detect change, we reduce the size of our sliding window delet-
ing the last bucket:

10111 11 1

Content: 4 2 1

Capacity: 5 2 1

In the case of real values, we also maintain buckets of two elements: capacity and
content. We store at content the sum of the real numbers we want to summarize.
We restrict capacity to be a power of two. As in the boolean case, we use O(log W )
buckets, and check O(log W ) possible cuts. The memory requirement for each
bucket is log W + R+ log log W bits per bucket, where R is number of bits used
to store a real number.

Figure 8.5 shows the output of ADWIN to a sudden change, and Figure 8.6
to a slow gradual change. The main difference with ADWIN output is that as
ADWIN0 reduces one element by one each time it detects changes, ADWIN deletes
an entire bucket, which yields a slightly more jagged graph in the case of a
gradual change. The difference in approximation power between ADWIN0 and
ADWIN is almost negligible, so we use ADWIN exclusively for our experiments.

Finally, we state our main technical result about the performance of ADWIN,
in a similar way to the Theorem 1:

Theorem 3. At every time step we have

1. (False positive rate bound). If µt remains constant within W, the probability
that ADWIN shrinks the window at this step is at most M/n · log(n/M) ·δ.
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Figure 8.5: Output of algorithm ADWIN with abrupt change
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Figure 8.6: Output of algorithm ADWIN with slow gradual changes

2. (False negative rate bound). Suppose that for some partition of W in two
parts W0W1 (where W1 contains the most recent items) we have |µW0

−µW1
|>

2εcut . Then with probability 1−δ ADWIN shrinks W to W1, or shorter.

Proof. Part 1) Assume µW0
= µW1

= µW as null hypothesis. We have shown in
the proof of Theorem 1 that for any partition W as W0W1 we have probability at
most δ/n that ADWIN0 decides to shrink W to W1, or equivalently,

Pr[ |µ̂W1
− µ̂W0

| ≥ εcut ]≤ δ/n.

Since ADWIN checks at most M log(n/M) partitions W0W1, the claim follows.
Part 2) The proof is similar to the proof of Part 2 of Theorem 1. 2
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CHAPTER 8. ADAPTIVE SLIDING WINDOWS

8.3 K-ADWIN = ADWIN + Kalman Filtering

One of the most widely used Estimation algorithms is the Kalman filter. We give
here a description of its essentials; see [190] for a complete introduction.

The Kalman filter addresses the general problem of trying to estimate the
state x ∈ ℜn of a discrete-time controlled process that is governed by the linear
stochastic difference equation

x t = Ax t−1 + But +wt−1

with a measurement z ∈ ℜm that is

Zt = H x t + vt .

The random variables wt and vt represent the process and measurement noise
(respectively). They are assumed to be independent (of each other), white, and
with normal probability distributions

p(w)∼ N(0,Q)

p(v)∼ N(0, R).

In essence, the main function of the Kalman filter is to estimate the state vector
using system sensors and measurement data corrupted by noise.

The Kalman filter estimates a process by using a form of feedback control:
the filter estimates the process state at some time and then obtains feedback in
the form of (noisy) measurements. As such, the equations for the Kalman filter
fall into two groups: time update equations and measurement update equations.
The time update equations are responsible for projecting forward (in time) the
current state and error covariance estimates to obtain the a priori estimates for
the next time step.

x−t = Ax t−1 + But

P−t = APt−1AT +Q

The measurement update equations are responsible for the feedback, i.e. for in-
corporating a new measurement into the a priori estimate to obtain an improved
a posteriori estimate.

Kt = P−t HT (HP−t HT + R)−1

x t = x−t + Kt(zt −H x−t )

Pt = (I − Kt H)P
−
t .

There are extensions of the Kalman filter (Extended Kalman Filters, or EKF) for
the cases in which the process to be estimated or the measurement-to-process
relation is nonlinear. We do not discuss them here.

In our case we consider the input data sequence of real values z1, z2, . . . ,
zt , . . . as the measurement data. The difference equation of our discrete-time
controlled process is the simpler one, with A= 1, H = 1, B = 0. So the equations
are simplified to:

Kt = Pt−1/(Pt−1 + R)
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8.3. K-ADWIN = ADWIN + KALMAN FILTERING

X t = X t−1 + Kt(zt − X t−1)

Pt = Pt(1− Kt) +Q.

Note the similarity between this Kalman filter and an EWMA estimator, taking
α = Kt . This Kalman filter can be considered as an adaptive EWMA estimator
where α= f (Q, R) is calculated optimally when Q and R are known.

The performance of the Kalman filter depends on the accuracy of the a-priori
assumptions:

• linearity of the difference stochastic equation

• estimation of covariances Q and R, assumed to be fixed, known, and follow
normal distributions with zero mean.

When applying the Kalman filter to data streams that vary arbitrarily over time,
both assumptions are problematic. The linearity assumption for sure, but also
the assumption that parameters Q and R are fixed and known – in fact, estimating
them from the data is itself a complex estimation problem.

ADWIN is basically a linear Estimator with Change Detector that makes an
efficient use of Memory. It seems a natural idea to improve its performance by
replacing the linear estimator by an adaptive Kalman filter, where the parameters
Q and R of the Kalman filter are computed using the information in ADWIN’s
memory.

We have set R = W 2/50 and Q = 200/W , where W is the length of the
window maintained by ADWIN. While we cannot rigorously prove that these are
the optimal choices, we have informal arguments that these are about the “right”
forms for R and Q, on the basis of the theoretical guarantees of ADWIN.

Let us sketch the argument for Q. Theorem 1, part (2) gives a value ε for
the maximum change that may have occurred within the window maintained
by ADWIN. This means that the process variance within that window is at most
ε2, so we want to set Q = ε2. In the formula for ε, consider the case in which
n0 = n1 =W/2, then we have

ε≥ 4 ·

√

√

√
3(µW0

+ ε)

W/2
· ln

4W
δ

Isolating from this equation and distinguishing the extreme cases in whichµW0
≫

ε or µW0
≪ ε, it can be shown that Q = ε2 has a form that varies between c/W

and d/W 2. Here, c and d are constant for constant values of δ, and c = 200
is a reasonable estimation. This justifies our choice of Q = 200/W . A similar,
slightly more involved argument, can be made to justify that reasonable values
of R are in the range W 2/c to W 3/d, for somewhat large constants c and d.

When there is no change, ADWIN window’s length increases, so R increases
too and K decreases, reducing the significance of the most recent data arrived.
Otherwise, if there is change, ADWIN window’s length reduces, so does R, and K
increases, which means giving more importance to the last data arrived.
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9
Adaptive Hoeffding Trees

In this chapter we propose and illustrate a method for developing decision trees
algorithms that can adaptively learn from data streams that change over time.
We take the Hoeffding Tree learner, an incremental decision tree inducer for data
streams, and use as a basis it to build two new methods that can deal with dis-
tribution and concept drift: a sliding window-based algorithm, Hoeffding Win-
dow Tree, and an adaptive method, Hoeffding Adaptive Tree. Our methods are
based on the methodology explained in Chapter 7. We choose ADWIN as an im-
plementation with theoretical guarantees in order to extend such guarantees to
the resulting adaptive learning algorithm. A main advantage of our methods is
that they require no guess about how fast or how often the stream will change;
other methods typically have several user-defined parameters to this effect.

9.1 Introduction

We apply the framework presented in Chapter 7 to give two decision tree learn-
ing algorithms that can cope with concept and distribution drift on data streams:
Hoeffding Window Trees in Section 9.2 and Hoeffding Adaptive Trees in Sec-
tion 9.3. Decision trees are among the most common and well-studied classifier
models. Classical methods such as C4.5 are not apt for data streams, as they
assume all training data are available simultaneously in main memory, allowing
for an unbounded number of passes, and certainly do not deal with data that
changes over time. In the data stream context, a reference work on learning
decision trees is the Hoeffding Tree for fast, incremental learning [52]. The Ho-
effding Tree was described in Chapter 3. The methods we propose are based on
VFDT, enriched with the change detection and estimation building blocks men-
tioned above.

We try several such building blocks, although the best suited for our purposes
is the ADWIN algorithm, described in Chapter 8. This algorithm is parameter-free
in that it automatically and continuously detects the rate of change in the data
streams rather than using apriori guesses, thus allowing the client algorithm to
react adaptively to the data stream it is processing. Additionally, ADWIN has
rigorous guarantees of performance (Theorem 1 in Section 8.2.2). We show
that these guarantees can be transferred to decision tree learners as follows: if
a change is followed by a long enough stable period, the classification error of
the learner will tend, and the same rate, to the error rate of VFDT.
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CHAPTER 9. ADAPTIVE HOEFFDING TREES

9.2 Decision Trees on Sliding Windows

We propose a general method for building incrementally a decision tree based
on a sliding window keeping the last instances on the stream. To specify one
such method, we specify how to:

• place one or more change detectors at every node that will raise a hand
whenever something worth attention happens at the node

• create, manage, switch and delete alternate trees

• maintain estimators of only relevant statistics at the nodes of the current
sliding window

We call Hoeffding Window Tree any decision tree that uses Hoeffding bounds,
maintains a sliding window of instances, and that can be included in this general
framework. Figure 9.1 shows the pseudo-code of HOEFFDING WINDOW TREE.
Note that δ′ should be the Bonferroni correction of δ to account for the fact that
many tests are performed and we want all of them to be simultaneously correct
with probability 1 − δ. It is enough e.g. to divide δ by the number of tests
performed so far. The need for this correction is also acknowledged in [52],
although in experiments the more convenient option of using a lower δ was
taken. We have followed the same option in our experiments for fair comparison.

9.2.1 HWT-ADWIN : Hoeffding Window Tree using ADWIN
We use ADWIN to design HWT-ADWIN, a new Hoeffding Window Tree that uses
ADWIN as a change detector. The main advantage of using a change detector as
ADWIN is that it has theoretical guarantees, and we can extend this guarantees
to the learning algorithms.

Example of performance Guarantee

Let HWT∗ADWIN be a variation of HWT-ADWIN with the following condition: ev-
ery time a node decides to create an alternate tree, an alternate tree is also
started at the root. In this section we show an example of performance guaran-
tee about the error rate of HWT∗ADWIN. Informally speaking, it states that after
a change followed by a stable period, HWT∗ADWIN’s error rate will decrease at
the same rate as that of VFDT, after a transient period that depends only on the
magnitude of the change.

We consider the following scenario: Let C and D be arbitrary concepts, that
can differ both in example distribution and label assignments. Suppose the in-
put data sequence S is generated according to concept C up to time t0, that it
abruptly changes to concept D at time t0 + 1, and remains stable after that. Let
HWT∗ADWIN be run on sequence S, and e1 be error(HWT∗ADWIN,S,t0), and e2

be error(HWT∗ADWIN,S,t0 + 1), so that e2 − e1 measures how much worse the
error of HWT∗ADWIN has become after the concept change.
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9.2. DECISION TREES ON SLIDING WINDOWS

HOEFFDING WINDOW TREE(St ream,δ)

1 Let HT be a tree with a single leaf(root)
2 Init estimators Ai jk at root
3 for each example (x , y) in Stream
4 do HWTREEGROW((x , y), HT,δ)

HWTREEGROW((x , y), HT,δ)

1 Sort (x , y) to leaf l using HT
2 Update estimators Ai jk

3 at leaf l and nodes traversed in the sort
4 if current node l has an alternate tree Tal t

5 HWTREEGROW((x , y), Tal t ,δ)
6 Compute G for each attribute

� Evaluate condition for splitting leaf l
7 if G(Best Attr.)−G(2nd best) > ε(δ′, . . . )
8 then Split leaf on best attribute
9 for each branch of the split

10 do Start new leaf
11 and initialize estimators
12 if one change detector has detected change
13 then Create an alternate subtree Tal t at leaf l if there is none
14 if existing alternate tree Tal t is more accurate
15 then replace current node l with alternate tree Tal t

Figure 9.1: Hoeffding Window Tree algorithm
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CHAPTER 9. ADAPTIVE HOEFFDING TREES

Here error(HWT∗ADWIN,S,t) denotes the classification error of the tree kept
by HWT∗ADWIN at time t on S. Similarly, error(VFDT,D,t) denotes the expected
error rate of the tree kept by VFDT after being fed with t random examples
coming from concept D.

Theorem 4. Let S, t0, e1, and e2 be as described above, and suppose t0 is sufficiently
large w.r.t. e2 − e1. Then for every time t > t0, we have

error(HWT∗ADWIN, S, t)≤min{ e2, eV F DT }

with probability at least 1−δ, where

• eV F DT = error(V F DT, D, t − t0− g(e2 − e1)) +O( 1p
t−t0
)

• g(e2 − e1) = 8/(e2 − e1)2 ln(4t0/δ)

The following corollary is a direct consequence, since O(1/
p

t − t0) tends to
0 as t grows.

Corollary 1. If error(VFDT,D,t) tends to some quantity ε≤ e2 as t tends to infinity,
then error(HWT∗ADWIN ,S,t) tends to ε too.

Proof. We know by the ADWIN False negative rate bound that with probability
1− δ, the ADWIN instance monitoring the error rate at the root shrinks at time
t0 + n if

|e2 − e1|> 2εcut =
Æ

2/m ln(4(t − t0)/δ)

where m is the harmonic mean of the lengths of the subwindows corresponding
to data before and after the change. This condition is equivalent to

m> 4/(e1 − e2)
2 ln(4(t − t0)/δ)

If t0 is sufficiently large w.r.t. the quantity on the right hand side, one can show
that m is, say, less than n/2 by definition of the harmonic mean. Then some
calculations show that for n≥ g(e2− e1) the condition is fulfilled, and therefore
by time t0 + n ADWIN will detect change.

After that, HWT∗ADWIN will start an alternative tree at the root. This tree
will from then on grow as in VFDT, because HWT∗ADWIN behaves as VFDT when
there is no concept change. While it does not switch to the alternate tree, the
error will remain at e2. If at any time t0+ g(e1− e2)+n the error of the alternate
tree is sufficiently below e2, with probability 1−δ the two ADWIN instances at the
root will signal this fact, and HWT∗ADWIN will switch to the alternate tree, and
hence the tree will behave as the one built by VFDT with t examples. It can be
shown, again by using the False Negative Bound on ADWIN , that the switch will
occur when the VFDT error goes below e2 −O(1/

p
n), and the theorem follows

after some calculation. 2
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9.2.2 CVFDT

As an extension of VFDT to deal with concept change Hulten, Spencer, and
Domingos presented Concept-adapting Very Fast Decision Trees CVFDT [106]
algorithm. We have presented it on Section 7.1. We review it here briefly and
compare it to our method.

CVFDT works by keeping its model consistent with respect to a sliding win-
dow of data from the data stream, and creating and replacing alternate decision
subtrees when it detects that the distribution of data is changing at a node. When
new data arrives, CVFDT updates the sufficient statistics at its nodes by incre-
menting the counts ni jk corresponding to the new examples and decrementing
the counts ni jk corresponding to the oldest example in the window, which is ef-
fectively forgotten. CVFDT is a Hoeffding Window Tree as it is included in the
general method previously presented.

Two external differences among CVFDT and our method is that CVFDT has
no theoretical guarantees (as far as we know), and that it uses a number of
parameters, with default values that can be changed by the user - but which are
fixed for a given execution. Besides the example window length, it needs:

1. T0: after each T0 examples, CVFDT traverses all the decision tree, and
checks at each node if the splitting attribute is still the best. If there is a
better splitting attribute, it starts growing an alternate tree rooted at this
node, and it splits on the currently best attribute according to the statistics
in the node.

2. T1: after an alternate tree is created, the following T1 examples are used
to build the alternate tree.

3. T2: after the arrival of T1 examples, the following T2 examples are used to
test the accuracy of the alternate tree. If the alternate tree is more accurate
than the current one, CVDFT replaces it with this alternate tree (we say
that the alternate tree is promoted).

The default values are T0 = 10,000, T1 = 9, 000, and T2 = 1, 000. One
can interpret these figures as the preconception that often about the last 50, 000
examples are likely to be relevant, and that change is not likely to occur faster
than every 10,000 examples. These preconceptions may or may not be right for
a given data source.

The main internal differences of HWT-ADWIN respect CVFDT are:

• The alternates trees are created as soon as change is detected, without
having to wait that a fixed number of examples arrives after the change.
Furthermore, the more abrupt the change is, the faster a new alternate
tree will be created.

• HWT-ADWIN replaces the old trees by the new alternates trees as soon as
there is evidence that they are more accurate, rather than having to wait
for another fixed number of examples.
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These two effects can be summarized saying that HWT-ADWIN adapts to the scale
of time change in the data, rather than having to rely on the a priori guesses by
the user.

9.3 Hoeffding Adaptive Trees

In this section we present Hoeffding Adaptive Tree as a new method that evolving
from Hoeffding Window Tree, adaptively learn from data streams that change
over time without needing a fixed size of sliding window. The optimal size of the
sliding window is a very difficult parameter to guess for users, since it depends
on the rate of change of the distribution of the dataset.

In order to avoid to choose a size parameter, we propose a new method for
managing statistics at the nodes. The general idea is simple: we place instances
of estimators of frequency statistics at every node, that is, replacing each ni jk

counters in the Hoeffding Window Tree with an instance Ai jk of an estimator.
More precisely, we present three variants of a Hoeffding Adaptive Tree or HAT,

depending on the estimator used:

• HAT-INC: it uses a linear incremental estimator

• HAT-EWMA: it uses an Exponential Weight Moving Average (EWMA)

• HAT-ADWIN : it uses an ADWIN estimator. As the ADWIN instances are also
change detectors, they will give an alarm when a change in the attribute-
class statistics at that node is detected, which indicates also a possible
concept change.

The main advantages of this new method over a Hoeffding Window Tree are:

• All relevant statistics from the examples are kept in the nodes. There is
no need of an optimal size of sliding window for all nodes. Each node can
decide which of the last instances are currently relevant for it. There is
no need for an additional window to store current examples. For medium
window sizes, this factor substantially reduces our memory consumption
with respect to a Hoeffding Window Tree.

• A Hoeffding Window Tree, as CVFDT for example, stores in main memory
only a bounded part of the window. The rest (most of it, for large window
sizes) is stored in disk. For example, CVFDT has one parameter that in-
dicates the amount of main memory used to store the window (default is
10,000). Hoeffding Adaptive Trees keeps all its data in main memory.

9.3.1 Example of performance Guarantee

In this subsection we show a performance guarantee on the error rate of HAT-
ADWIN on a simple situation. Roughly speaking, it states that after a distribu-
tion and concept change in the data stream, followed by a stable period, HAT-
ADWIN will start, in reasonable time, growing a tree identical to the one that
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VFDT would grow if starting afresh from the new stable distribution. State-
ments for more complex scenarios are possible, including some with slow, grad-
ual, changes.

Theorem 5. Let D0 and D1 be two distributions on labelled examples. Let S be
a data stream that contains examples following D0 for a time T, then suddenly
changes to using D1. Let t be the time that until VFDT running on a (stable) stream
with distribution D1 takes to perform a split at the node. Assume also that VFDT
on D0 and D1 builds trees that differ on the attribute tested at the root. Then with
probability at least 1−δ:

• By time t ′ = T + c · V 2 · t log(tV ), HAT-ADWIN will create at the root an
alternate tree labelled with the same attribute as VFDT(D1). Here c ≤ 20 is
an absolute constant, and V the number of values of the attributes.1

• this alternate tree will evolve from then on identically as does that of VFDT(D1),
and will eventually be promoted to be the current tree if and only if its error
on D1 is smaller than that of the tree built by time T.

If the two trees do not differ at the roots, the corresponding statement can
be made for a pair of deeper nodes.

Lemma 1. In the situation above, at every time t + T > T, with probability 1−δ
we have at every node and for every counter (instance of ADWIN) Ai, j,k

|Ai, j,k − Pi, j,k| ≤

√

√ ln(1/δ′) T
t(t + T )

where Pi, j,k is the probability that an example arriving at the node has value j in
its ith attribute and class k.

Observe that for fixed δ′ and T this bound tends to 0 as t grows.
To prove the theorem, use this lemma to prove high-confidence bounds on

the estimation of G(a) for all attributes at the root, and show that the attribute
best chosen by VFDT on D1 will also have maximal G(best) at some point, so it
will be placed at the root of an alternate tree. Since this new alternate tree will
be grown exclusively with fresh examples from D1, it will evolve as a tree grown
by VFDT on D1.

9.3.2 Memory Complexity Analysis

Let us compare the memory complexity Hoeffding Adaptive Trees and Hoeffd-
ing Window Trees. We take CVFDT as an example of Hoeffding Window Tree.
Denote with

• E : size of an example

1This value of t ′ is a very large overestimate, as indicated by our experiments. We are working
on an improved analysis, and hope to be able to reduce t ′ to T + c · t, for c < 4.
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• A : number of attributes

• V : maximum number of values for an attribute

• C : number of classes

• T : number of nodes

A Hoeffding Window Tree as CVFDT uses memory O(W E + TAV C), because it
uses a window W with E examples, and each node in the tree uses AV C counters.
A Hoeffding Adaptive Tree does not need to store a window of examples, but
uses instead memory O(log W ) at each node as it uses an ADWIN as a change
detector, so its memory requirement is O(TAV C + T log W ). For medium-size
W , the O(W E) in CVFDT can often dominate. HAT-ADWIN has a complexity of
O(TAV C log W ).
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10
Adaptive Ensemble Methods

Online mining when data streams evolve over time, that is when concepts drift
or change completely, is becoming one of the core issues of advanced analysis
of data streams. When tackling non-stationary concepts, ensembles of classifiers
have several advantages over single classifier methods: they are easy to scale
and parallelize, they can adapt to change quickly by pruning under-performing
parts of the ensemble, and they therefore usually also generate more accurate
concept descriptions. This chapter presents two new variants of Bagging: ADWIN
Bagging and Adaptive-Size Hoeffding Tree (ASHT) Bagging.

10.1 New method of Bagging using trees of dif-
ferent size

In this section, we introduce the Adaptive-Size Hoeffding Tree (ASHT). It is de-
rived from the Hoeffding Tree algorithm with the following differences:

• it has a maximum number of split nodes, or size

• after one node splits, if the number of split nodes of the ASHT tree is higher
than the maximum value, then it deletes some nodes to reduce its size

The intuition behind this method is as follows: smaller trees adapt more
quickly to changes, and larger trees do better during periods with no or little

T1 T2 T3 T4

Figure 10.1: An ensemble of trees of different size
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Figure 10.2: Kappa-Error diagrams for ASHT bagging (left) and bagging (right)
on dataset RandomRBF with drift, plotting 90 pairs of classifiers.
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change, simply because they were built on more data. Trees limited to size s
will be reset about twice as often as trees with a size limit of 2s. This creates
a set of different reset-speeds for an ensemble of such trees, and therefore a
subset of trees that are a good approximation for the current rate of change.
It is important to note that resets will happen all the time, even for stationary
datasets, but this behaviour should not have a negative impact on the ensemble’s
predictive performance.

When the tree size exceeds the maximun size value, there are two different
delete options:

• delete the oldest node, the root, and all of its children except the one where
the split has been made. After that, the root of the child not deleted be-
comes the new root delete the oldest node, the root, and all of its children.

• delete all the nodes of the tree, i.e., restart from a new root.

We present a new bagging method that uses these Adaptive-Size Hoeffding
Trees and that sets the size for each tree (Figure 10.1). The maximum allowed
size for the n-th ASHT tree is twice the maximum allowed size for the (n−1)-th
tree. Moreover, each tree has a weight proportional to the inverse of the square of
its error, and it monitors its error with an exponential weighted moving average
(EWMA) with α= .01. The size of the first tree is 2.

With this new method, we attempt to improve bagging performance by in-
creasing tree diversity. It has been observed that boosting tends to produce a
more diverse set of classifiers than bagging, and this has been cited as a factor
in increased performance [140].

We use the Kappa statistic κ to show how using trees of different size, we
increase the diversity of the ensemble. Let’s consider two classifiers ha and hb, a
data set containing m examples, and a contingency table where cell Ci j contains
the number of examples for which ha(x) = i and hb(x) = j. If ha and hb are
identical on the data set, then all non-zero counts will appear along the diagonal.
If ha and hb are very different, then there should be a large number of counts off
the diagonal. We define

Θ1 =

∑L
i=1 Cii

m

Θ2 =
L
∑

i=1

�

L
∑

j=1

Ci j

m
·

L
∑

j=1

C ji

m

�

We could use Θ1 as a measure of agreement, but in problems where one class
is much more common than others, all classifiers will agree by chance, so all
pair of classifiers will obtain high values for Θ1. To correct this, the κ statistic is
defined as follows:

κ=
Θ1 −Θ2

1−Θ2

κ usesΘ2, the probability that two classifiers agree by chance, given the observed
counts in the table. If two classifiers agree on every example then κ = 1, and if
their predictions coincide purely by chance, then κ= 0.
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We use the Kappa-Error diagram to compare the diversity of normal bagging
with bagging using trees of different size. The Kappa-Error diagram is a scatter-
plot where each point corresponds to a pair of classifiers. The x coordinate of
the pair is the κ value for the two classifiers. The y coordinate is the average of
the error rates of the two classifiers.

Figure 10.2 shows the Kappa-Error diagram for the Random RBF dataset
with drift parameter or change speed equal to 0.001.We observe that bagging
classifiers are very similar to one another and that the decision tree classifiers of
different size are very diferent from one another.

10.2 New method of Bagging using ADWIN

ADWIN[18], as seen in Chapter 8 is a change detector and estimator that solves
in a well-specified way the problem of tracking the average of a stream of bits
or real-valued numbers. ADWIN keeps a variable-length window of recently seen
items, with the property that the window has the maximal length statistically
consistent with the hypothesis “there has been no change in the average value
inside the window".

More precisely, an older fragment of the window is dropped if and only if
there is enough evidence that its average value differs from that of the rest of
the window. This has two consequences: one, that change reliably declared
whenever the window shrinks; and two, that at any time the average over the
existing window can be reliably taken as an estimation of the current average in
the stream (barring a very small or very recent change that is still not statistically
visible).

ADWIN is parameter- and assumption-free in the sense that it automatically
detects and adapts to the current rate of change. Its only parameter is a con-
fidence bound δ, indicating how confident we want to be in the algorithm’s
output, inherent to all algorithms dealing with random processes.

Also important for our purposes, ADWIN does not maintain the window ex-
plicitly, but compresses it using a variant of the exponential histogram technique
in [11]. This means that it keeps a window of length W using only O(log W )
memory and O(log W ) processing time per item, rather than the O(W ) one ex-
pects from a naïve implementation.

ADWIN Bagging is the online bagging method implemented in MOA with the
addition of the ADWIN algorithm as a change detector and as an estimator for the
weights of the boosting method. When a change is detected, the worst classifier
of the ensemble of classifiers is removed and a new classifier is added to the
ensemble.

10.3 Adaptive Hoeffding Option Trees

Hoeffding Option Trees [158] explained in Section 6.2.3 are regular Hoeffding
trees containing additional option nodes that allow several tests to be applied,
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leading to multiple Hoeffding trees as separate paths. They consist of a sin-
gle structure that efficiently represents multiple trees. A particular example can
travel down multiple paths of the tree, contributing, in different ways, to differ-
ent options.

An Adaptive Hoeffding Option Tree is a Hoeffding Option Tree with the fol-
lowing improvement: each leaf stores an estimation of the current error. It uses
an EWMA estimator with α= .2. The weight of each node in the voting process
is proportional to the square of the inverse of the error.

10.4 Method performance

Bagging is clearly the best method in terms of accuracy. This superior position
is, however, achieved at high cost in terms of memory and time. ADWIN Bagging
and ASHT Bagging are the most accurate methods for most datasets, but they are
slow. ADWIN Bagging is slower than ASHT Bagging and for some datasets it needs
more memory. ASHT Bagging using weighted classifiers and replacing oversized
trees with new ones seems to be the most accurate ASHT bagging method. We
observe that bagging using 5 trees of different size may be sufficient, as its error
is not much higher than for 10 trees, but it is nearly twice as fast. Also Hoeffding
trees using drift detection methods are faster but less accurate methods.

In [158], a range of option limits were tested and averaged across all datasets
without concept drift to determine the optimal number of paths. This optimal
number of options was five. Dealing with concept drift, we observe that in-
creasing the number of options to 50, a significant improvement is obtained in
accuracy for some datasets.
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Restricted Hoeffding Trees Stacking

When applying boosting algorithms to build ensembles of decision trees using a
standard tree induction algorithm, the tree inducer has access to all the attributes
in the data. Thus, each tree can model arbitrarily complex interactions between
attributes in principle. However, often the full modeling power of unrestricted
decision tree learners is not necessary to yield good accuracy with boosting, and
it may even be harmful because it can lead to overfitting. Hence, it is common
to apply boosting in conjunction with depth-limited decision trees, where the
growth of each tree is restricted to a certain level. In this way, only a limited set
of attributes can be used in each tree, but the risk of overfitting is reduced. In
the extreme case, only a single split is allowed and the decision trees degenerate
to decision stumps. Despite the fact that each restricted tree can only model
interactions between a limited set of attributes, the overall ensemble is often
highly accurate.

The method presented in this chapter is based on this observation [17]. We
present an algorithm that produces a classification model based on an ensemble
of restricted decision trees, where each tree is built from a distinct subset of
the attributes. The overall model is formed by combining the log-odds of the
predicted class probabilities of these trees using sigmoid perceptrons, with one
perceptron per class. In contrast to the standard boosting approach, which forms
an ensemble classifier in a greedy fashion, building each tree in sequence and
assigning corresponding weights as a by-product, our method generates each
tree in parallel and combines them using perceptron classifiers by adopting the
stacking approach [193]. Because we are working in a data stream scenario,
Hoeffding trees [52] are used as the ensemble members. They, as well as the
perceptrons, can be trained incrementally, and we also show how ADWIN-based
change detection [18] can be used to apply the method to evolving data streams.

There is existing work on boosting for data streams [154], but the algorithm
has been found to yield inferior accuracy compared to ADWIN bagging. More-
over, it is unclear how a boosting algorithm can be adapted to data streams that
evolve over time: because bagging generates models independently, a model can
be replaced when it is no longer accurate, but the sequential nature of boosting
prohibits this simple and elegant solution. Because our method generates mod-
els independently, we can apply this simple strategy, and we show that it yields
more accurate classifications than Online Bagging [154] on the real-world and
artificial data streams that we consider in our experiments.
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Our method is also related to work on building ensembles using random sub-
space models [101]. In the random subspace approach, each model in an en-
semble is trained based on a randomly chosen subset of attributes. The models’
predictions are then combined in an unweighted fashion. Because of this latter
property, the number of attributes available to each model must necessarily be
quite large in general, so that each individual model is powerful enough to yield
accurate classifications. In contrast, in our method, we exhaustively consider all
subsets of a given, small, size, build a tree for each subset of attributes, and then
combine their predictions using stacking. In random forests [28], the random
subspace approach is applied locally at each node of a decision tree in a bagged
ensemble. Random forests have been applied to data streams, but did not yield
substantial improvements on bagging in this scenario.

11.1 Combining Restricted Hoeffding Trees us-
ing Stacking

The basic method we present in this chapter is very simple: enumerate all at-
tribute subsets of a given user-specified size k, learn a Hoeffding tree from each
subset based on the incoming data stream, gather the trees’ predictions for each
incoming instance, and use these predictions to train simple perceptron classi-
fiers. The question that needs to be addressed is how exactly to prepare the
“meta” level data for the perceptrons and what shape it should take.

Rather than using discrete classifications to build the meta level model in
stacking, it is common to use class probability estimates instead because they
provide more information due to the fact that they represent the degree of confi-
dence that each model has in its predictions. Hence, we also adopt this approach
in our method: the meta-level data is formed by collecting the class probability
estimates for an incoming new instance, obtained from the Hoeffding trees built
from the data observed previously.

The meta level combiner we use is based on simple perceptrons with sigmoid
activation functions, trained using stochastic gradient descent to minimize the
squared loss with respect to the actual observed class labels in the data stream.
We train one perceptron per class value and use the Hoeffding trees’ class proba-
bility estimates for the corresponding class value to form the input data for each
perceptron.

There is one caveat. Because the sigmoid activation function is used in the
perceptrons, we do not use the raw class probability estimates as the input values
for training them. Rather, we use the log-odds of these probability estimates in-
stead. Let p̂(ci j| x⃗) be the probability estimate for class i and instance x⃗ obtained
from Hoeffding tree j in the ensemble. Then we use

ai j = log(p̂(ci j| x⃗)/(1− p̂(ci j| x⃗))

as the value of input attribute j for the perceptron associated with class value i.
Let a⃗i be the vector of log-odds for class i. The output of the sigmoid per-

ceptron for class i is then f (a⃗i) = 1/(1 + e−(w⃗i a⃗i+bi)), based on per-class coeffi-
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cients w⃗i and bi. We use the log-odds as the inputs for the perceptron because
application of the sigmoid function presupposes a linear relationship between
log( f (a⃗i)/(1− f (a⃗i))) and a⃗i.

To avoid the zero-frequency problem, we slightly modify the probability es-
timates obtained from a Hoeffding tree by adding a small constant ε to the
probability for each class, and then renormalize. In our experiments, we use
ε= 0.001, but smaller values lead to very similar results.

The perceptrons are trained using stochastic gradient descent: the weight
vector is updated each time a new training instance is obtained from the data
stream. Once the class probability estimates for that instance have been obtained
from the ensemble of Hoeffding trees, the input data for the perceptrons can be
formed, and the gradient descent update rule can be used to perform the update.
The weight values are initialized to the reciprocal of the size of the ensemble, so
that the perceptrons give equal weight to each ensemble member initially.

A crucial aspect of stochastic gradient descent is an appropriately chosen
learning rate, which determines the magnitude of the update. If it is chosen
too large, there is a risk that the learning process will not converge. A common
strategy is to decrease it as the amount of training data increases. Let n be
the number of training instances seen so far in the data stream, and let m be
the number of attributes. We set the learning rate α based on the following
equation:

α=
2

2+m+ n
.

However, there is a problem with this approach for setting the learning rate
in the context we consider here: it assumes that the training data is identically
distributed. This is not actually the case in our scenario because the training data
for the perceptrons is derived from the probability estimates obtained from the
Hoeffding trees, and these change over time, generally becoming more accurate.
Setting the learning rate based on the above equation means that the perceptrons
will adapt too slowly once the initial data in the data stream has been processed.

There is a solution to this problem: the stream of predictions from the Ho-
effding trees can be viewed as an evolving data stream (regardless of whether the
underlying data stream forming the training data for the Hoeffding trees is actu-
ally evolving) and we can use an existing change detection method for evolving
data streams to detect when the learning rate should be reset to a larger value.
We do this very simply by setting the value of n to zero when change has been
detected. To detect change, we use the ADWIN change detector [18], which is
discussed in more detail in the next section. It detects when the accuracy of a
classifier increases or decreases significantly as a data stream is processed. We
apply it to monitor the accuracy of each Hoeffding tree in the ensemble. When
accuracy changes significantly for one of the trees, the learning rate is reset by
setting n to zero. The value of n is then incremented for each new instance in
the stream until a new change is detected. This has the effect that the learning
rate will be kept relatively large while the learning curve for the Hoeffding trees
has a significant upward trend.
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11.1.1 ADWIN-based Change Detection

The ADWIN change detector comes with nice theoretical guarantees. In addition
to using it to reset the learning rate when necessary, we also use it to make our
ensemble classifier applicable to evolving data stream, where the original data
stream, used to train the Hoeffding trees, changes over time.

The strategy we use to cope with evolving data streams using ADWIN is very
simple: the idea is to replace ensemble members when they start to perform
poorly. To implement this, we use ADWIN to detect when the accuracy of one
of the Hoeffding trees in the ensemble has dropped significantly. To do this, we
can use the same ADWIN change detectors that are also applied to detect when
the learning rate needs to be reset. When one of the change detectors associated
with a particular tree reports a significant drop in accuracy, the tree is reset and
the coefficients in the perceptrons that are associated with this tree (one per
class value) are set to zero. A new tree is then generated from new data in the
data stream, so that the ensemble can adapt to changes.

Note that all trees for which a significant drop is detected are replaced. Note
also that a change detection event automatically triggers a reset of the learning
rate, which is important because the perceptrons need to adapt to the changed
ensemble of trees.

11.1.2 A Note on Computational Complexity

This new approach is based on generating trees for all possible attribute subsets
of size k. If there are m attributes in total, there are

�m
k

�

of these subsets. Clearly,
only moderate values of k, or values of k that are very close to m, are feasible.
When k is one, there is no penalty with respect to computational complexity
compared to building a single Hoeffding tree, because then there is only one
tree per attribute, and an unrestricted tree also scales linearly in the number
of attributes. If k is two, there is an extra factor of m in the computational
complexity compared to building a single unrestricted Hoeffding tree, i.e. overall
effort becomes quadratic in the number of attributes.

k = 2 is very practical even for datasets with a relatively large number of at-
tributes, although certainly not for very high-dimensional data (for which linear
classifiers are usually sufficient anyway). Larger values of k are only practical
for small numbers of attributes, unless k is very close to m (e.g. k = m−1). We
have used k = 4 for datasets with 10 attributes in our experiments, with very
acceptable runtimes. It is important to keep in mind that many practical classifi-
cation problems appear to exhibit only very low-dimensional interactions, which
means small values of k are sufficient to yield high accuracy.
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Bagging and Boosting are ensemble methods used to improve the accuracy of
classifier methods. Non-streaming bagging [23] builds a set of M base mod-
els, training each model with a bootstrap sample of size N created by draw-
ing random samples with replacement from the original training set. Each base
model’s training set contains each of the original training example K times where
P(K = k) follows a binomial distribution. This binomial distribution for large
values of N tends to a Poisson(1) distribution, where Poisson(1)= exp(−1)/k!.
Using this fact, Oza and Russell [154, 153] proposed Online Bagging, an online
method that instead of sampling with replacement, gives each example a weight
according to Poisson(1).

Boosting algorithms combine multiple base models to obtain a small gener-
alization error. Non-streaming boosting builds a set of models sequentially, with
the construction of each new model depending on the performance of the previ-
ously constructed models. The intuitive idea of boosting is to give more weight
to misclassified examples, and reducing the weight of the correctly classified
ones.

From studies appearing in the literature [154, 153, 20], Online Bagging
seems to perform better than online boosting methods. Why bagging outper-
forms boosting in the data stream setting is still an open question. Adding more
random weight to all instances seems to improve accuracy more than adding
weight to misclassified instances. In this chapter we focus on randomization as
a powerful tool to increase accuracy and diversity when constructing an ensem-
ble of classifiers. There are three ways of using randomization:

• Manipulating the input data

• Manipulating the classifier algorithms

• Manipulating the output targets

In this chapter we focus on randomizing the input data and the output pre-
diction of online bagging.

12.1 Bagging Literature

Breiman [23] introduced bagging classification using the notion of an order-
correct learner. An order-correct learner φ at the input x is a predictor that if
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input x results in a class more often than any other class, thenφ will also predict
this class at x more often than any other class. An order-correct learner is not
necessarily an accurate predictor but its aggregated predictor is optimal. If a
predictor is good because it is order-correct for most inputs x then aggregation
can transform it into a nearly optimal predictor. The vital element to gain accu-
racy is the instability of the prediction method. A learner is unstable if a small
change in the input data leads to large changes in the output.

Friedman [69] explained that bagging works by reducing variance without
changing the bias. There are several definitions of bias and variance for clas-
sification, but the common idea is that bias measures average error over many
different training sets, and variance measures the additional error due to the
variation in the model produced by using different training sets.

Domingos [51] claimed that Breiman’s line of reasoning is limited, since we
may never know a priori whether a learner is order-correct for a given example
or not, and what regions of the instance space will be order-correct or not. He
explained bagging’s success showing that bagging works by effectively changing
a single-model learner to another single-model learner, with a different implicit
prior distribution over models, one that is less biased in favor of simple models.

Some work in the literature shows that bagging asymptotically performs
some smoothing on the estimate. Friedman and Hall [67] used an asymptotic
truncated Taylor series of the estimate to show that in the limit of infinite sam-
ples, bagging reduces the variance of non-linear components.

Bühlmann and Yu [31], analyzed bagging using also asymptotic limiting dis-
tributions, and they proposed subagging as a less expensive alternative to bag-
ging. Subagging uses subsampling as an alternative aggregation scheme. They
claimed that subagging is as accurate as bagging but uses less computation.

Grandvalet[84] explained the performance of bagging by the goodness and
badness of highly influential examples, in situations where the usual variance
reduction argument is questionable. He presented an experiment showing that
bagging increases the variance of decision trees, and claimed that bagging does
not simply reduce variance in its averaging process.

In Chapter 10 two new state-of-the-art bagging methods were presented:
ASHT Bagging using trees of different sizes, and ADWIN Bagging using a change
detector to decide when to discard underperforming ensemble members.

Breiman [28] proposed Random Forests as a method to use randomization on
the input and on the internal construction of the decision trees. Random Forests
are ensembles of trees with the following characteristics: the input training set
is obtained by sampling with replacement, the nodes of the tree only may use
a fixed number of random attributes to split, and the trees are grown without
pruning. Abdulsalam et al. [2] presented a streaming version of random forests
and Saffari et al. [166] presented an online version.
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12.2 Leveraging Bagging

In this section, we present a new online leveraging bagging algorithm, improving
Online Bagging of Oza and Russell. The pseudo-code of Online Bagging of Oza
and Russell is listed in Algorithm 9.

We leverage the performance of bagging, with two randomization improve-
ments: increasing resampling and using output detection codes.

Algorithm 13 Leveraging Bagging for M models
1: Initialize base models hm for all m ∈ {1, 2, ..., M}
2: Compute coloring µm(y)
3: for all training examples (x , y) do
4: for m= 1,2, ..., M do
5: Set w= Poisson(λ)
6: Update hm with the current example with weight w and class µm(y)
7: end for
8: end for
9: if ADWIN detects change in error of one of the classifiers then

10: Replace classifier with higher error with a new one
11: end if
12: anytime output:
13: return hypothesis: h f in(x) = arg maxy∈Y

∑T
t=1 I(ht(x) = µt(y))

Resampling with replacement is done in Online Bagging using Poisson(1).
There are other sampling mechanisms:

• Lee and Clyde [134] uses the Gamma distribution (Gamma(1,1)) to obtain
a Bayesian version of Bagging. Note that Gamma(1,1) is equal to Exp(1).

• Bulhman and Yu [31] proposes subagging, using resampling without re-
placement.

Our proposal is to increase the weights of this resampling using a larger value
λ to compute the value of the Poisson distribution. The Poisson distribution is
used to model the number of events occurring within a given time interval.

Figure 12.1 shows the probability function mass of the distribution of Poisson
for several values of λ. The mean and variance of a Poisson distribution is λ.
For λ = 1 we see that 37% of the values are zero, 37% are one, and 26% are
values greater than one. Using a weight of Poisson(1) we are taking out 37%
of the examples, and repeating 26% of the examples, in a similar way to non
streaming bagging. For λ = 6 we see that 0.25% of the values are zero, 45%
are lower than six, 16% are six, and 39% are values greater than six. Using a
value of λ > 1 for Poisson(λ) we are increasing the diversity of the weights and
modifying the input space of the classifiers inside the ensemble. However, the
optimal value of λ may be different for each dataset.

Our second improvement is to add randomization at the output of the ensem-
ble using output codes. Dietterich and Bakiri [49] introduced a method based
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Figure 12.1: Poisson Distribution.

on error-correcting output codes, which handles multiclass problems using only
a binary classifier. The classes assigned to each example are modified to create
a new binary classification of the data induced by a mapping from the set of
classes to {0,1}. A variation of this method by Schapire [168] presented a form
of boosting using output codes.

We assign to each class a binary string of length n and then build an ensemble
of n binary classifiers. Each of the classifiers learns one bit for each position in
this binary string. When a new instance arrives, we assign x to the class whose
binary code is closest. We can view an error-correcting code as a form of voting
in which a number of incorrect votes can be corrected.

We use random output codes instead of deterministic codes. In standard
ensemble methods, all classifiers try to predict the same function. However,
using output codes each classifier will predict a different function. This may
reduce the effects of correlations between the classifiers, and increase diversity
of the ensemble.

We implement random output codes in the following way: we choose for
each classifier m and class c a binary value µm(c) in a uniform, independent,
and random way. We ensure that exactly half of the classes are mapped to 0.
The output of the classifier for an example is the class which has more votes of
its binary mapping classes. Table 12.1 shows an example for an ensemble of 6
classifiers in a classification task of 3 classes.

We use the same strategy as in Chapter 10. ADWIN [18] is a change detector
and estimator that solves in a well-specified way the problem of tracking the
average of a stream of bits or real-valued numbers. ADWIN keeps a variable-
length window of recently seen items, with the property that the window has

152



12.2. LEVERAGING BAGGING

Table 12.1: Example matrix of random output codes for 3 classes and 6 classifiers

Class 1 Class 2 Class 3
Classifier 1 0 0 1
Classifier 2 0 1 1
Classifier 3 1 0 0
Classifier 4 1 1 0
Classifier 5 1 0 1
Classifier 6 0 1 0

the maximal length statistically consistent with the hypothesis “there has been
no change in the average value inside the window".

ADWIN is parameter- and assumption-free in the sense that it automatically
detects and adapts to the current rate of change. Its only parameter is a con-
fidence bound δ, indicating how confident we want to be in the algorithm’s
output, inherent to all algorithms dealing with random processes.

Also important for our purposes, ADWIN does not maintain the window ex-
plicitly, but compresses it using a variant of the exponential histogram technique.
This means that it keeps a window of length W using only O(log W )memory and
O(log W ) processing time per item.

Algorithm 13 shows the pseudo-code of our Leveraging Bagging. First we
build a matrix with the values of µ for each classifier and class. For each new
instance that arrives, we give it a random weight of Poisson(k). We train the
classifier with this weight, and when a change is detected, the worst classifier
of the ensemble of classifiers is removed and a new classifier is added to the
ensemble. To predict the class of an example, we compute for each class c the
sum of the votes for µ(c) of all the ensemble classifiers, and we output as a
prediction the class with the most votes.
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Twitter Stream Mining

Twitter is a “what’s-happening-right-now” tool that enables interested parties to
follow individual users’ thoughts and commentary on events in their lives—in
almost real-time [173]. It is a potentially valuable source of data that can be
used to delve into the thoughts of millions of people as they are uttering them.
Twitter makes these utterances immediately available in a data stream, which
can be mined using appropriate stream mining techniques. In principle, this
could make it possible to infer people’s opinions, both at an individual level as
well as in aggregate, regarding potentially any subject or event [173].

At the official Twitter Chirp developer conference in April 2010 [194], the
company presented some statistics about its site and its users. In April 2010,
Twitter had 106 million registered users, and 180 million unique visitors every
month. New users were signing up at a rate of 300,000 per day. Twitter’s search
engine received around 600 million search queries per day, and Twitter received
a total of 3 billion requests a day via its API. Of Twitter’s active users, 37 percent
used their phone to tweet.

Twitter data follows the data stream model. In this model, data arrive at high
speed, and algorithms that process them must be able to predict in real time
and do so under very strict constraints of space and time. Data streams pose
several challenges for algorithm design. First, they must make use of limited
resources (time and memory). Second, they must deal with data whose nature
or distribution changes over time.

The main Twitter data stream that provides all messages from every user in
real-time is called Firehose [116] and was made available to developers in 2010.
To deal with this large amount of data, and to use it for sentiment analysis and
opinion mining—the task considered in this chapter—streaming techniques are
needed. However, to the best of our knowledge, data stream algorithms, in con-
junction with appropriate evaluation techniques, have so far not been considered
for this task.

Evaluating data streams in real time is a challenging task. Most work in the
literature considers only how to build a picture of accuracy over time. Two main
approaches arise [19]:

• Holdout: Performance is measured using on single hold-out set.

• Interleaved Test-Then-Train or Prequential: Each individual example
is used to test the model before it is used for training, and accuracy is
incrementally updated.

155



CHAPTER 13. TWITTER STREAM MINING

A common problem is that for unbalanced data streams with, for example,
90% of the instances in one class, the simplest classifiers will have high accura-
cies of at least 90%. To deal with this type of data stream, we propose the Kappa
statistic, based on a sliding window, as a measure for classifier performance in
unbalanced class streams [16].

13.1 Mining Twitter Data: Challenges

Twitter has its own conventions that renders it distinct from other textual data.
Consider the following Twitter example message (“tweet”): RT @toni has a
cool #job. It shows that users may reply to other users by indicating user
names using the character @, as in, for example, @toni. Hashtags (#) are used
to denote subjects or categories, as in, for example #job. RT is used at the
beginning of the tweet to indicate that the message is a so-called “retweet”, a
repetition or reposting of a previous tweet.

In the knowledge discovery context, there are two fundamental data mining
tasks that can be considered in conjunction with Twitter data: (a) graph mining
based on analysis of the links amongst messages, and (b) text mining based on
analysis of the messages’ actual text.

Twitter graph mining has been used to tackle several interesting problems:

• Measuring user influence and dynamics of popularity. Direct links in-
dicate the flow of information, and thus a user’s influence on others. There
are three measures of influence: indegree, retweets and mentions. Cha et
al. [36] show that popular users who have high indegree are not neces-
sarily influential in terms of retweets or mentions, and that influence is
gained through concerted effort such as limiting tweets to a single topic.

• Community discovery and formation. Java et al. [114] found communi-
ties using HyperText Induced Topic Search (HITS) [124], and the Clique
Percolation Method [44]. Romero and Kleinberg [165] analyze the forma-
tion of links in Twitter via the directed closure process.

• Social information diffusion. De Choudhury et al. [43] study how data
sampling strategies impact the discovery of information diffusion.

There are also a number of interesting tasks that have been tackled using
Twitter text mining: sentiment analysis, which is the application we consider
in this chapter, classification of tweets into categories, clustering of tweets and
trending topic detection.

Considering sentiment analysis [137, 157], O’Connor et al. [152] found that
surveys of consumer confidence and political opinion correlate with sentiment
word frequencies in tweets, and propose text stream mining as a substitute for
traditional polling. Jansen et al. [113] discuss the implications for organizations
of using micro-blogging as part of their marketing strategy. Pak et al. [156] used
classification based on the multinomial naïve Bayes classifier for sentiment anal-
ysis. Go et al. [83] compared multinomial naïve Bayes, a maximum entropy clas-
sifier, and a linear support vector machine; they all exhibited broadly comparable
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accuracy on their test data, but small differences could be observed depending
on the features used.

13.1.1 The Twitter Streaming API

The Twitter Application Programming Interface (API) [1] currently provides a
Streaming API and two discrete REST APIs. The Streaming API [116] provides
real-time access to Tweets in sampled and filtered form. The API is HTTP based,
and GET, POST, and DELETE requests can be used to access the data.

In Twitter terminology, individual messages describe the “status” of a user.
The streaming API allows near real-time access to subsets of public status de-
scriptions, including replies and mentions created by public accounts. Status
descriptions created by protected accounts and all direct messages are not avail-
able. An interesting property of the streaming API is that it can filter status
descriptions using quality metrics, which are influenced by frequent and repeti-
tious status updates, etc.

The API uses basic HTTP authentication and requires a valid Twitter account.
Data can be retrieved as XML and the more succinct JSON format. Parsing JSON
data from the streaming API is simple: every object is returned on its own line,
and ends with a carriage return.

13.2 Twitter Sentiment Analysis

Sentiment analysis can be cast as a classification problem where the task is to
classify messages into two categories depending on whether they convey positive
or negative feelings.

Twitter sentiment analysis is not an easy task because a tweet can contain a
significant amount of information in very compressed form, and simultaneously
carry positive and negative feelings. Consider the following example:

I currently use the Nikon D90 and love it, but not as
much as the Canon 40D/50D. I chose the D90 for the video
feature. My mistake.

Also, some tweets may contain sarcasm or irony [35] as in the following exam-
ple:

After a whole 5 hours away from work, I get to go back
again, I’m so lucky!

To build classifiers for sentiment analysis, we need to collect training data so that
we can apply appropriate learning algorithms. Labeling tweets manually as pos-
itive or negative is a laborious and expensive, if not impossible, task. However, a
significant advantage of Twitter data is that many tweets have author-provided
sentiment indicators: changing sentiment is implicit in the use of various types
of emoticons. Hence we may use these to label our training data.
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Smileys or emoticons are visual cues that are associated with emotional states [162,
35]. They are constructed using the characters available on a standard keyboard,
representing a facial expression of emotion. When the author of a tweet uses an
emoticon, they are annotating their own text with an emotional state. Annotated
tweets can be used to train a sentiment classifier.

13.3 Streaming Data Evaluation with Unbalanced
Classes

In data stream mining, the most frequently used measure for evaluating pre-
dictive accuracy of a classifier is prequential accuracy [79]. We argue that this
measure is only appropriate when all classes are balanced, and have (approxi-
mately) the same number of examples. In this section, we propose the Kappa
statistic as a more sensitive measure for quantifying the predictive performance
of streaming classifiers. For example, considering the particular target domain
in this chapter, the rate in which the Twitter Streaming API delivers positive
or negative tweets may vary over time; we cannot expect it to be 50% all the
time. Hence, a measure that automatically compensates for changes in the class
distribution should be preferable.

Just like accuracy, Kappa needs to be estimated using some sampling proce-
dure. Standard estimation procedures for small datasets, such as cross-validation,
do not apply. In the case of very large datasets or data streams, there are two ba-
sic evaluation procedures: holdout evaluation and prequential evaluation. Only
the latter provides a picture of performance over time. In prequential evaluation
(also known as interleaved test-then-train evaluation), each example in a data
stream is used for testing before it is used for training.

We argue that prequential accuracy is not well-suited for data streams with
unbalanced data, and that a prequential estimate of Kappa should be used in-
stead. Let p0 be the classifier’s prequential accuracy, and pc the probability that
a chance classifier—one that assigns the same number of examples to each class
as the classifier under consideration—makes a correct prediction. Consider the
simple confusion matrix shown in Table 13.1. From this table, we see that Class+
is predicted correctly 75 out of 100 times, and Class- is predicted correctly 10
times. So accuracy p0 is 85%. However a classifier predicting solely by chance—
in the given proportions—will predict Class+ and Class- correctly in 68.06% and
3.06% of cases respectively. Hence, it will have an accuracy pc of 71.12% as
shown in Table 13.2.

Comparing the classifier’s observed accuracy to that of a chance predictor
renders its performance far less impressive than it first seems. The problem is
that one class is much more frequent than the other in this example and plain
accuracy does not compensate for this. The Kappa statistic, which normalizes a
classifier’s accuracy by that of a chance predictor, is more appropriate in scenar-
ios such as this one.

The Kappa statistic κ was introduced by Cohen [40]. We argue that it is
particularly appropriate in data stream mining due to potential changes in the
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Predicted Predicted
Class+ Class- Total

Correct Class+ 75 8 83
Correct Class- 7 10 17
Total 82 18 100

Table 13.1: Simple confusion matrix example

Predicted Predicted
Class+ Class- Total

Correct Class+ 68.06 14.94 83
Correct Class- 13.94 3.06 17
Total 82 18 100

Table 13.2: Confusion matrix for chance predictor based on example in Ta-
ble 13.1

class distribution. Consider a classifier h, a data set containing m examples and L
classes, and a contingency table where cell Ci j contains the number of examples
for which h(x) = i and the class is j. If h(x) correctly predicts all the data,
then all non-zero counts will appear along the diagonal. If h misclassifies some
examples, then some off-diagonal elements will be non-zero.

We define

p0 =

∑L
i=1 Cii

m

pc =
L
∑

i=1

�

L
∑

j=1

Ci j

m
·

L
∑
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C ji
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In problems where one class is much more common than the others, any
classifier can easily yield a correct prediction by chance, and it will hence obtain
a high value for p0. To correct for this, the κ statistic is defined as follows:

κ=
p0 − pc

1− pc

If the classifier is always correct then κ = 1. If its predictions coincide with the
correct ones as often as those of the chance classifier, then κ= 0.

The question remains as to how exactly to compute the relevant counts for
the contingency table: using all examples seen so far is not useful in time-
changing data streams. Gama et al. [79] propose to use a forgetting mechanism
for estimating prequential accuracy: a sliding window of size w with the most
recent observations, or fading factors that weigh observations using a decay fac-
tor α. As the output of the two mechanisms is very similar (every window of
size w0 may be approximated by some decay factor α0), we propose to use the
Kappa statistic measured using a sliding window. Note that, to calculate the
statistic for an nc class problem, we need to maintain only 2nc + 1 estimators.
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We store the sum of all rows and columns in the confusion matrix (2nc values)
to compute pc, and we store the prequential accuracy p0. The ability to calculate
it efficiently is an important reason why the Kappa statistic is more appropriate
for data streams than a measure such as the area under the ROC curve.

13.4 Data Stream Mining Methods

There are three fast incremental methods that are well-suited to deal with text
data streams: multinomial naïve Bayes, stochastic gradient descent, and the
Hoeffding tree.

Multinomial Naïve Bayes

The multinomial naïve Bayes classifier is a popular classifier for document clas-
sification that often yields good performance. It can be trivially applied to data
streams because it is straightforward to update the counts required to estimate
conditional probabilities..

Multinomial naive Bayes considers a document as a bag-of-words. For each
class c, P(w|c), the probability of observing word w given this class, is estimated
from the training data, simply by computing the relative frequency of each word
in the collection of training documents of that class. The classifier also requires
the prior probability P(c), which is straightforward to estimate.

Assuming nwd is the number of times word w occurs in document d, the
probability of class c given a test document is calculated as follows:

P(c|d) =
P(c)
∏

w∈d P(w|c)nwd

P(d)
,

where P(d) is a normalization factor. To avoid the zero-frequency problem, it is
common to use the Laplace correction for all conditional probabilities involved,
which means all counts are initialized to value one instead of zero.

Stochastic Gradient Descent

Stochastic gradient descent (SGD) has experienced a revival since it has been
discovered that it provides an efficient means to learn some classifiers even if
they are based on non-differentiable loss functions, such as the hinge loss used
in support vector machines. In our experiments we use an implementation of
vanilla stochastic gradient descent with a fixed learning rate, optimizing the
hinge loss with an L2 penalty that is commonly applied to learn support vector
machines. With a linear machine, which is frequently applied for document
classification, the loss function we optimize is:

λ

2
||w||2 +
∑

[1− (yxw+ b)]+,

where w is the weight vector, b the bias, λ the regularization parameter, and the
class labels y are assumed to be in {+1,−1}.
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We compared the performance of our vanilla implementation to that of the
Pegasos method [176], which does not require specification of an explicit learn-
ing rate, but did not observe a gain in performance using the latter. On the
contrary, the ability to specify an explicit learning rate turned out to be crucial
to deal with time-changing Twitter data streams : setting the learning rate to a
value that was too small meant the classifier adapted too slowly to local changes
in the distribution. In our experiments, we used λ= 0.0001 and set the learning
rate for the per-example updates to the classifier’s parameters to 0.1.
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