
ADAMS

Advanced Data mining And Machine learning System

Module: adams-core

Peter Reutemann

January 10, 2024

©2009-2023

Contents

I Using ADAMS 7

1 Introduction 9

2 Flows 11
2.1 Actors . 11
2.2 Creating flows . 13

2.2.1 Hello World . 14
2.2.2 Processing data . 22
2.2.3 Control actors . 26

2.2.3.1 Have some Tee 26
2.2.3.2 Pull the Trigger 28
2.2.3.3 Branching – or how to grow your flow 29
2.2.3.4 Further control actors 30

2.2.4 Protecting sub-flows . 32
2.3 Running flows . 33

2.3.1 Flow runner - GUI . 33
2.3.2 Flow runner - command-line 33

2.4 Arrays and collections . 35
2.5 Converting objects . 37
2.6 String handling . 40
2.7 File handling . 41
2.8 Numeric operations . 44
2.9 Properties . 45
2.10 Maps . 46
2.11 Databases . 47
2.12 Callable actors . 49
2.13 External actors . 51
2.14 Interactive actors . 53
2.15 Templates . 55
2.16 Variables . 57
2.17 Temporary storage . 62
2.18 Debugging your flow . 66

2.18.1 Breakpoints . 66
2.18.2 Monitoring . 68

2.19 Passwords . 69
2.20 External processes and classes . 70
2.21 Screenshots . 71

2.21.1 Manual . 71

3

4 CONTENTS

2.21.2 Automatic . 71
2.21.3 Flickering dialogs . 72

2.22 Colors . 73

3 Visualization 75
3.1 Image viewer . 75
3.2 Preview browser . 76

4 Remote commands 79
4.1 Registering flows . 81
4.2 Linux servers . 82
4.3 Windows servers . 82
4.4 Executing commands . 84

5 Tools 85
5.1 File commander . 85
5.2 File monitor . 86
5.3 Find in files . 87
5.4 Flow editor . 88
5.5 Flow runner . 88
5.6 Text editor . 88
5.7 Comparing text . 89

6 Maintenance 91
6.1 Placeholder management . 92
6.2 Named setup management . 96
6.3 Favorites management . 98

7 Help 109
7.1 Actor usage . 109
7.2 Class help . 110
7.3 System info . 111
7.4 System performance . 112
7.5 Memory . 113
7.6 Miscellaneous . 114

8 Customizing ADAMS 115
8.1 Environment variables . 115
8.2 Properties files . 115
8.3 Main menu . 116
8.4 Flow editor . 117
8.5 Fonts . 118
8.6 Proxy . 118
8.7 Time zone . 118
8.8 Locale . 119
8.9 Database access . 119
8.10 Browser . 120

9 Miscellaneous 121
9.1 Environment variables . 121
9.2 Troubleshooting . 122

CONTENTS 5

II Developing with ADAMS 125

10 Tools 127
10.1 Git . 127
10.2 Maven . 128

10.2.1 Nexus repository manager 128
10.2.2 Configuring Maven . 128
10.2.3 Common commands . 129
10.2.4 3rd-party libraries . 130
10.2.5 Troubleshooting . 130

10.3 IntelliJ IDEA . 131
10.3.1 Plug-ins . 131
10.3.2 Setting up ADAMS . 131

10.4 Eclipse . 136
10.4.1 Plug-ins . 136
10.4.2 Setting up ADAMS . 136

10.5 Custom Maven project . 137
10.6 Non-maven approach . 137

11 Using the API 139
11.1 Flow . 139

11.1.1 Life-cycle of an actor . 139
11.1.2 Setting up a flow . 140
11.1.3 Listening to the data . 141

12 Extending ADAMS 143
12.1 Instantiating classes and copying objects 143

12.1.1 Instantiating classes . 143
12.1.2 Copying objects . 143

12.2 Dynamic class discovery . 144
12.2.1 Additional package . 144
12.2.2 Additional class hierarchy 144
12.2.3 Blacklisting classes . 145
12.2.4 Blacklisting classpath elements 145
12.2.5 Applications without dynamic class discovery 146

12.3 Creating a new actor . 146
12.3.1 Creating a new class . 147
12.3.2 Option handling . 148

12.3.2.1 Example . 148
12.3.3 Variable side-effects . 149
12.3.4 Graphical output . 150
12.3.5 Textual output . 150
12.3.6 Creating an icon . 150
12.3.7 Creating a JUnit test . 151

12.4 Extending Actor suggestions . 151
12.5 Main menu . 153
12.6 Flow editor . 154

12.6.1 Main menu . 154
12.6.2 Popup menu . 155
12.6.3 Keyboard actions . 156

6 CONTENTS

12.7 Image viewer . 157
12.8 Database access . 157

13 JUnit tests 159

14 Temporary files 161

15 Parser plugins 163
15.1 Programmatic hooks . 164

Bibliography 165

List of Figures

2.1 Flow editor with an empty new flow (File → New → Flow) . . . 13
2.2 Popup menu for adding a new actor 14
2.3 Selecting a different actor . 15
2.4 Searching for StringConstants actor 16
2.5 Help dialog for the StringConstants actor 16
2.6 Adding the Hello World! string 17
2.7 Flow after adding the StringConstants actor 18
2.8 Tab displaying help for the StringConstants actor 18
2.9 Tab displaying the non-default options for the StringConstants

actor . 19
2.10 Adding another actor after the current one 19
2.11 Searching for the Display actor 20
2.12 The complete Hello World flow 20
2.13 The output of Hello World flow 21
2.14 Adding an additional actor . 22
2.15 Adding the Convert transformer 23
2.16 Configuring the Convert transformer 24
2.17 Extended Hello World flow . 24
2.18 Output of the extended Hello World flow 25
2.19 Customizing the StringReplace transformer 25
2.20 Output of further extended Hello World flow 25
2.21 The Hello World flow with Tee actors. 26
2.22 The log file generated by the Tee actors. 27
2.23 A customized ConditionalTee actor. 27
2.24 The Hello World flow with an additional Trigger actor. 28
2.25 The modified log file generated with the additional Trigger actor. 28
2.26 The Hello World flow using a Branch actor. 29
2.27 Flow runner interface with a flow for generating the Mandelbrot

set. 33
2.28 Flow editor interface with a flow for generating the Mandelbrot

set. 34
2.29 Outputting parallel processed strings in a single callable Display

actor. 49
2.30 Editing an external flow directly. 51
2.31 An inlined or expanded external flow. 52
2.32 Simple flow that prompts the user to enter a value, using a default

value of “42” and a custom message. 54
2.33 Adding a sub-flow generated from a template to an existing flow. 55

7

8 LIST OF FIGURES

2.34 The options of the UpdateVariable template. 55
2.35 The added sub-flow. 56
2.36 The asterisk (“∗”) next to an option indicates that a variable is

attached. 58
2.37 Using a variable to control what file to load and display. 59
2.38 Using a variable to control what external flow to execute (flow). . 60
2.39 Using a variable to control what external flow to execute (output). 60
2.40 Flow demonstrating the temporary storage functionality. 62
2.41 Output of flow demonstrating the temporary storage functionality. 63
2.42 Flow demonstrating the LRU cache storage functionality. 63
2.43 Display of the temporary storage during execution. 64
2.44 Output of flow demonstrating the LRU cache storage functionality. 64
2.45 The debugging control panel. 66
2.46 Example flow with Breakpoint actor. 67
2.47 The Inspection tab of the debugging control panel for the current

token. 68
2.48 The Breakpoints tab of the debugging control panel. 69
2.49 Manual screenshot of plot. 71

3.1 Displaying a fractal in the Image viewer. 75
3.2 Preview browser displaying an image. 76
3.3 Preview browser displaying a flow. 77
3.4 Preview browser displaying an plain text file. 77

4.1 Uni-directional command. 79
4.2 Bi-directional command (with response). 79
4.3 Remote Control Center interface. 81
4.4 Example Linux directory layout for data processing. 83
4.5 Example Windows directory layout for data processing. 84

5.1 File manager interface. 85
5.2 Monitor files for lines being appended, like log files. 86
5.3 Find in files interface. 87
5.4 Editor for viewing/editing plain text files. 88
5.5 Comparing two text files. 89

6.1 Viewing the currently defined placeholders. 92
6.2 Entering the name for a new placeholder. 93
6.3 Selecting the directory that the new placeholder represents. . . . 93
6.4 The updated view of the placeholders. 94
6.5 Making the placeholder changes persistent. 94
6.6 Editing the path of a placeholder. 95
6.7 Selecting the new directory that the placeholder should represent

instead. 95
6.8 Viewing the currently defined named setups. 96
6.9 The class hierarchy for the named setup. 96
6.10 Selecting the configuration that the new named setup represents. 97
6.11 The nickname for the setup. 97
6.12 The updated view of the named setups. 97
6.13 Making use of a favorite in the Flow editor. 98

LIST OF FIGURES 9

6.14 Adding a setup in the object editor to the favorites. 99
6.15 Adding a favorite for new superclass. 100
6.16 Configuring the new favorite. 101
6.17 Naming the favorite. 101
6.18 The updated favorites view. 102
6.19 Changing a different setup for a favorite. 103
6.20 The view with the updated favorite. 104
6.21 Choosing a new name for the favorite. 105
6.22 The view with the renamed favorite. 106
6.23 Saving the modified favorites. 107

7.1 Overview of actor usage in flow files. 110
7.2 Class help. 111
7.3 System info. 112
7.4 System systemperformance. 113
7.5 Memory monitoring. 113

8.1 Font preferences . 118
8.2 Proxy preferences . 119
8.3 Time zone preferences . 119
8.4 Locale preferences . 120

10.1 IDEA: Importing ADAMS a project. 131
10.2 IDEA: Selecting the project path. 132
10.3 IDEA: Configuring the SDKs. 133
10.4 IDEA: Selecting the project SDK. 133
10.5 IDEA: Code formatting. 134
10.6 IDEA: Automatic compilation. 134
10.7 IDEA: Application defaults. 135
10.8 IDEA: Launching ADAMS. 135
10.9 Eclipse: texlipse configuration for the adams-core module. 137
10.10Screenshot of the “Roll your own” section of the ADAMS website.138

10 LIST OF FIGURES

Part I

Using ADAMS

11

Chapter 1

Introduction

“Well, we think it might be able
to do quite complicated math. If
we can get enough bugs in it.”

Soul Music, Terry Pratchett

ADAMS is the result of a research project processing spectral data that re-
quired extensive preprocessing and parallelism. The workflow approach seemed
the best way of dealing with this problem. A system was required, that was
easy to extend and make it easy for the user in setting up workflows quickly.

Initially, the workflow engine of choice was Kepler [1], being both written in
Java and designed for the science community. In order to bring machine learning
to Kepler, the KeplerWeka project [2] was started. Over time we realized that
we spent a lot of time rearranging actors (i.e., the nodes in the workflow) on
the workflow canvas, whenever we needed to add more preprocessing or another
layer of complexity to it. Even with Kepler’s support for sub-workflows (which
are opened up in separate windows), it soon became apparent that this was not
an optimal solution.

Since most of the processing merely was loading data from the database and
then preprocessing it (forking as well and different preprocessing in parallel), we
decided to implement a very basic workflow engine ourselves, with a tree-like
structure (1-to-1 and 1-to-n connections). Using a simple JTree for representing
the structure of the flow, implied the relationship between the actors and no
time was spent on rearranging them anymore. We could finally concentrate on
setting up the flow to process the data.

Over time, ADAMS grew and more and more actors for various domains
(machine learning, scripting, office, etc.) were added. Not all projects that use
ADAMS as base-platform needed all the available functionality. This initiated
the modularization of ADAMS and represents the current state of the platform.
Derived projects now merely have to add dependencies to existing modules in
order to gain additional functionality – without hassle.

13

14 CHAPTER 1. INTRODUCTION

Chapter 2

Flows

Workflows, or flows for short, are at the center of ADAMS. Most activities can
be expressed in a series of steps. Using a flow to define them is just logical. The
advantage of using flows to describe activities is they document all the steps that
are happening, making it easy to reproduce results. For instance for machine
learning experiments, reproducibility is very important. Therefore, capturing
every step, from the preprocessing of the raw data to the actual running of
experiments and evaluating them, is essential.

The following section introduces the basic concepts of flows in the ADAMS
context and how to set them up. Advanced topics are covered as well, like
callable actors and variable support.

2.1 Actors

A single step or node in a flow is called actor. There are various kinds of actors:

• standalone – no input, no output

• source – only generates output

• transformer – accepts input and generates output

• sink – only accepts input

A special kind of actor is the control actor, which controls the flow execution
in some way. This can be a simple Stop actor, which merely stops the whole
flow when executed. Or, it can be a Branch actor, which forwards the input it
receives to all its sub-branches.

An actor that accepts input, like a transformer or sink is called an Input-
Consumer. An actor that generates output, like a transformer or a source, is
called OutputProducer.

Each InputConsumer returns what types of data it does accept and is able
to process. For some actors, this changes based on the parameters. The same
applies to OutputProducer ones, which also return what type of data they are
generating. Once again, the type of output data can change, depending on
parametrization.

Before a flow is being executed, the compatibility of the actors is checked.
This includes basic checks like the one that no InputConsumer can come after
a sink, since that one doesn’t generate any output. Additionally, the types of

15

16 CHAPTER 2. FLOWS

output generated and the types of generated input are checked whether they
are compatible. If one transformer generates floating point data, but the next
transformer only accepts strings, this will result in an error.

There are two special types of data that an actor can specify for accepted
input or generated output:

• Object – which can be any type, but not an array.

• Unknown – which can be any type, even an array.

Data itself is not being passed around directly, but in a container called Token.

2.2. CREATING FLOWS 17

2.2 Creating flows

The basic flow layout is as follows:

• [optional] standalone(s) - for static checks or static operations when the
flow is started

• source – for generating tokens that will get processed by subsequent actors.

• [optional] transformer(s) – for processing the tokens.

• [optional] sink – for displaying or storing the processed tokens.

The tool for creating – and also running – flows is the Flow editor. Figure 2.1
shows the default view of the editor when starting it up. Actors can be added
to a flow by either dragging them from the Actors tab on the right-hand side
onto the flow or by using the right-click menu of the left-hand side pane.

The Search box of the Actors tab on the right-hand side allows to search in
the actor names and their description.

Figure 2.1: Flow editor with an empty new flow (File → New → Flow)

You can edit as many flows in parallel as you want, e.g., for copy/pasting
actors or other setups between them. Also, you can run them in parallel as well.

18 CHAPTER 2. FLOWS

2.2.1 Hello World

The first flow 1 that we will be setting up now is very simple: a source will
output the string Hello World! and a sink will display it then. For simplicity,
we will just use the right-click menu for adding the actors to this flow.

Since this is our first flow, we want the display to be as verbose as possi-
ble. Hence make sure to check Show input/output from the View menu. This
will display what types of inputs and outputs the various actors accept and/or
generate. Once you are familiar with the actors, you might want to turn this
feature off again, especially when the flows become larger.

First, we need to add the source that outputs the string. The StringCon-
stants source can output an arbitrary number of strings that the user defined.
We will use this actor in this simple example.

Select the actor that you want to add an actor before, after or below. In
this case, starting with an empty flow, this is the Flow actor. Now right-click
and select Add beneath. . . from the menu, as shown in Figure 2.2.

Figure 2.2: Popup menu for adding a new actor

ADAMS tries to suggest an actor depending on pre-defined rules and the
context where the actor will get placed. The ones pre-defined by rules will be
automatically available through the combobox at the top. But due to the large
amount of actors, quite often you will choose a different one. You can do this by
either scrolling through the list of actors on the left and selecting it (see Figure
2.3).

Due to the large amount of available actors 2, most of the time it is quicker
to use the search facility on the left displaying the class tree. Either click in the

1adams-core-hello world1.flow
2ADAMS automatically filters actors that won’t fit where you want to place a new actor.

Using the strict mode, you can also filter the actors that might only be compatible, like general
purpose ones. Each module can define such rules. Also, the initial actors that ADAMS sug-

2.2. CREATING FLOWS 19

Figure 2.3: Selecting a different actor

search box or use the shortcut Alt+S to jump there. As soon as you type, the
display filters out all the class names that don’t match the entered string. After
entering str you will see a result similar to Figure 2.4.

Now click on the StringConstants actor to select it. The About description
only displays some of the information about an actor (normally only the first
sentence of the general description). If you want to know more about an actor
and its options, just click on on the button in the About box. For the
StringConstants actor this opens a dialog like shown in Figure 2.5. For quick
info on options, you simply hover with your mouse over one of the options and
a tool tip will come up with the description.

The strings property holds all the user-specified strings that this source actor
will output. In our case, we just want to output Hello World!. Open up the
array editor for the strings property, by clicking on the ... button for this
property. In order to enter a string value in this dialog, just click on the . . .
button again and enter the value as shown in Figure 2.6 and click on OK.

So far, you have only configured an object (a simple string in this case). Now
you have to add the string object to the list, in order to use it. Just click on
the button on the right-hand side (a red plus sign inidicates a recent
change, green indicates that nothing has changed). If you wanted to output
more than just one string, for each of them you would bring up the dialog
again, enter the value and add it to the list. After adding all the necessary
items, confirm the dialog by clicking on the OK button.

This finishes our set up of the StringConstants actor and you can confirm
the dialog with OK button. Figure 2.7 shows the resulting flow.

gests are based on pre-defined rules of what actors are commonly placed in certain situations.
If there are more than one suggestions, a combobox with all the class names is displayed in
the GenericObjectEditor instead of a simple label.

20 CHAPTER 2. FLOWS

Figure 2.4: Searching for StringConstants actor

The Flow editor offers help also through the tabs on the right hand side.
The Help tab (Figure 2.8) displays the same information as the aforementioned
dialog, but without the need of opening a new dialog. You merely have to
select an actor on the left hand side in order to display its help screen. The
Parameters tab is a shortcut to see all the options of the currently selected
actor which differ from the default options (2.9). This can be quite handy when
quickly going through multiple actors, checking their values. Especially actors
with lots of options.

For our simple Hello World example, we don’t need an data processing using
transformer actors, only a sink that will display our data. The Display actor can
be used for displaying textual data. This actor adds the string representation
of each token that it receives as a new line in its text area.

For adding the Display actor, right-click on the previously added StringCon-

Figure 2.5: Help dialog for the StringConstants actor

2.2. CREATING FLOWS 21

Figure 2.6: Adding the Hello World! string

stants actor and select Add after. . . as shown in Figure 2.10.
This time, you have to search for Display. As soon as you have entered dis

you will see the dialog showing a filtered class tree as shown in Figure 2.11.
Select the Display actor, just like you did with the StringConstants actor.

Since we don’t have to configure anything for this actor – it merely displays our
data – you can just confirm it by clicking on OK again.

This completes our flow for this simple example and you can save the set
up. The final flow is shown in Figure 2.12.

With the flow finished, we can now execute it. In the Flow editor menu,
select Run → Run. Or use the keyboard shortcut Ctrl+R. Figure 2.13 shows
the result output.

Well done, your first flow is set up and produces output!

22 CHAPTER 2. FLOWS

Figure 2.7: Flow after adding the StringConstants actor

Figure 2.8: Tab displaying help for the StringConstants actor

2.2. CREATING FLOWS 23

Figure 2.9: Tab displaying the non-default options for the StringConstants actor

Figure 2.10: Adding another actor after the current one

24 CHAPTER 2. FLOWS

Figure 2.11: Searching for the Display actor

Figure 2.12: The complete Hello World flow

2.2. CREATING FLOWS 25

Figure 2.13: The output of Hello World flow

26 CHAPTER 2. FLOWS

2.2.2 Processing data

Of course, for simply outputting some string, you don’t need a workflow engine.
The idea of a workflow is to be able to define all steps for processing the data,
not just simply loading and displaying it.

The following steps extend our flow 3 with some string processing: first,
turning the initial string into upper case and, second, appending some text at
the end.

Basic string processing can be performed with the Convert transformer.
This actor allows you to choose a conversion class that performs the actual
transformation.

Since our flow only consists of a source and a sink, we need to insert the
transformer in between the two of them. In our example we right-click on the
sink actor and then choose Add here. . . , as you can see in Figure 2.14. But you
can also right-click on the source and then choose Add after. . . .

The Add here. . . action always moves the actor on which you clicked one
further down and adds the chosen one at the current position. The Add after. . . ,
adds the chosen actor after the one that you clicked on.

Figure 2.14: Adding an additional actor

Now choose the Convert transformer from the class tree, e.g., by searching
for it, as displayed in Figure 2.15.

Change the type of conversion to UpperCase (Figure 2.16).
The flow should now look like Figure 2.17 and, when you execute it, produce

output as shown in Figure 2.18. This concludes our first string processing step.
The second string processing step 4 requires adding a custom string at the

end of the actor outputting HELLO WORLD!. We can achieve this by using

3adams-core-hello world2.flow
4adams-core-hello world3.flow

2.2. CREATING FLOWS 27

Figure 2.15: Adding the Convert transformer

the StringReplace actor, which allows us to perform string replacements using
regular expressions 5. In this case, the replacement is very simple: replacing the
end of the string (“$”) with the string that we want to append “ How are you
today!” (see Figure 2.19).

In a lot of cases, regular expressions can be overkill for manipulating strings.
E.g., when prepending or appending a string. In such simple cases, you also
just use the simpler StringInsert transformer.

Executing the flow now will produce output as seen in Figure 2.20.

5For more information see http://en.wikipedia.org/wiki/Regular_expressions.

http://en.wikipedia.org/wiki/Regular_expressions

28 CHAPTER 2. FLOWS

Figure 2.16: Configuring the Convert transformer

Figure 2.17: Extended Hello World flow

2.2. CREATING FLOWS 29

Figure 2.18: Output of the extended Hello World flow

Figure 2.19: Customizing the StringReplace transformer

Figure 2.20: Output of further extended Hello World flow

30 CHAPTER 2. FLOWS

2.2.3 Control actors

So far, we have only covered linear execution of actors, where one actor is
executed after the other. For this linear approach, a workflow still seems like
overkill. In the following sections we will introduced control actors, which control
the flow of data within the flow in some way or another.

2.2.3.1 Have some Tee

The Tee actor, like the Unix/Linux tee command, allows you to fork off the
data that is being passed through and re-use it for something else. For example
for debugging purposes, when you need to investigate the data generation at
various stages throughout the flow.

In the following example 6 we will use the Tee actor to document the various
stages of transformation that the Hello World! string goes through. Three Tee
actors will be placed in the flow: one right after the StringConstants source,
the next after the Convert transformer, and the last after the StringReplace
transformer. Each time, a DumpFile sink will be added beneath the Tee actor,
pointing to the same log file. In our example, we are using /tmp/out.txt -
adjust it to fit your system. By default, the DumpFile actor overwrites the
content of the file if it already exists. This is fine for the first occurrence, but
for the second and third one we need to check the append option. Otherwise we
will lose the previous transformation steps. The fully expanded flow is shown
in Figure 2.21. Figure 2.22 shows the generated log file in a text editor.

Figure 2.21: The Hello World flow with Tee actors.

The ConditionalTee control actor is an extended version of the simple Tee
actor. This actor only tees off the token if its boolean condition returns true.

6adams-core-hello world4.flow

2.2. CREATING FLOWS 31

Figure 2.22: The log file generated by the Tee actors.

For instance, using the Counting condition, this actor will keep track of the
number of data tokens passing through. This allows you to specify rules for
when to fork off the data tokens. For instance, you can configure it that only
every third token gets forked off, starting with the 100th one and stopping with
the 200th token (to be precise, the first token output is the 102nd and the last
one the 198th one). See Figure 2.23 for an example of this set up.

Figure 2.23: A customized ConditionalTee actor.

A close cousin to the ConditionalTee actor is the Count actor. This actor
offers the same conditions as the ConditionalTee for the tee output, but instead
of forking off the current data token, it forks off the number of tokens it has
encountered so far. Very useful when trying to keep track of how much data
has been processed.

32 CHAPTER 2. FLOWS

2.2.3.2 Pull the Trigger

The Trigger control actor is used to initiate the execution of a sub-flow. In
contrast to the Tee actor, the Trigger does not fork off any token, it merely
triggers the execution of the actors defined below it. Since no data is being
forked off, a source actor is required in the sub-flow to kick off the other actors.
Using a trigger 7 we can inject another string into the log file that was generated
in the previous example, as Figure 2.24. Figure 2.25 shows the modified log file

Figure 2.24: The Hello World flow with an additional Trigger actor.

in a text editor. The Trigger actor is also the only other control actor, besides

Figure 2.25: The modified log file generated with the additional Trigger actor.

the Flow control actor, that allows standalone actors to be added to it.
A variant of the Trigger actor is the ConditionalTrigger actor. This actor

only executes the sub-flow if its boolean condition returns true. TriggerOnce,
another variant, triggers the sub-flow exactly once, useful for initializations.

7adams-core-hello world5.flow

2.2. CREATING FLOWS 33

2.2.3.3 Branching – or how to grow your flow

So far, we have only processed data in a sequential way. The Branch actor
allows the parallel processing of the same token. Each sub-branch receives the
same token for further processing. In Figure 2.26, we re-use our simple example,
outputting Hello World in parallel, displaying the results in two different Display
actors 8. The second sub-branch processes the original string further. As you
can see from this example, as soon as you have more than one actor, you need to
encapsulate the actors in a Sequence control actor. How many threads are being

Figure 2.26: The Hello World flow using a Branch actor.

used by the Branch actor depends on the underlying architecture (how many
CPUs/cores are available; the upper limit) and what parameter is used for the
numThreads option. This parameter offers basically three different settings:

• 0 - sequential execution of sub-branches (see below for more information).

• > 0 - explicit number of threads, limited by available CPUs/cores.

• < 0 - all CPUs/cores plus this value; the default of -1 results to using
three cores on a quad-core machine.

There are basically two reasons for sequential execution:

1. Resources – If the branch is located deeper in the flow with other parallel
execution happening, spawning too many threads can slow down the sys-
tem more than it could help in the optimal case. In such a scenario, it is
advised to turn off parallel execution.

2. Ordering – In certain cases, the same data needs to be processed several
times, but the order of the in which this occurs is important. For instance,

8adams-core-hello world6.flow

34 CHAPTER 2. FLOWS

an integer token could be used to create a sub-directory in which to store
the value of the integer token in a file. These two sub-branches need to
get executed one after the other, of course.

2.2.3.4 Further control actors

The Branch, Tee and Trigger control actors are just some of the more commonly
used ones. ADAMS comes already with a wide variety of control actors. In the
following a short introduction to the others:

• ArrayGenerate – generates an array of the output generated by its sub-
actors, using the same input token.

• ArrayProcess – instead of unraveling an array with ArrayToSequence and
then packaging again with SequenceToArray, this actor allows to perform
an arbitrary number of sub-steps on an incoming array.

• Block – Does not pass on tokens if the specified boolean expression eval-
uates to true, i.e., acts like the “continue” control statement.

• Breakpoint – Used for debugging a flow. See 2.18 for more details.

• ClearCallableDisplay – Can be used to clear callable graphical actors, e.g.,
a SequencePlotter. See 2.12 for more information on callable actors.

• CloseCallableDisplay – Can be used to close a graphical callable actor,
i.e., closing its frame.

• CollectionProcess – this actor allows to perform an arbitrary number of
sub-steps on an incoming collection (similar to ArrayProcess).

• ConditionalTee – Basically like the Tee actor, but it allows you to impose
constraints on when to tee off the tokens.

• ContainerValuePicker – Since ADAMS only allows 1-to-1 and 1-to-n con-
nections, multiple outputs are usually packaged in containers. The values
in the container can be accessed by their name (check the specific actor’s
documentation on what the names are) using this actor.

• Count – In contrast to ConditionalTee, this actor tees off the number of
tokens it has encountered so far. Useful for lengthy processes, if you want
to keep track of how many tokens you have processed so far.

• DesktopScreenshot – allows you to take a screenshot of the complete desk-
top.

• ForceFlush – forces flushing of actors that implement the FlushSupporter
interface, like DumpFile.

• FreeMemory – Invokes the parent to wrap up all its sub-actors, effectively
freeing up memory. Useful if branches of a many-branched Branch actor
only get executed once, but still keep their state and hog memory.

• GC – For explicitly executing the Java garbage collection.

• HeapDump – Generates a heapdump that can be analyzed with JVisu-
alVM.

• CallableActorScreenshot – For taking screenshots of a callable (graphical)
actor, whenever a token passes through this control actor. See 2.12 for
more information on callable actors.

• IfStorageValue – An if-then-else source that executes the then branch if
the specified storage value exists. Otherwise it executes the else branch,
which needs to have a source actor for generating actual data.

2.2. CREATING FLOWS 35

• IfThenElse – A control statement, which evaluates a boolean condition in
order to decide in which branch to pass on the incoming token.

• Injector – Allows you to inject tokens into the stream of tokens.

• InputOutputListener – Enables forwarding incoming tokens and tokens
generated by sub-flow to callable actors.

• Inspect – A more specialized actor for visualizing data that is passing
through the flow, interactively or not.

• JDeps – If available, i.e., using a JDK instead of JRE, you can output
class dependency information using the ’jdeps’ command-line tool.

• JMap – If available, i.e., using a JDK instead of JRE, you can output
information on what objects are currently present in the JVM. Useful for
hunting down memory leaks.

• LoadBalancer – Spawns off threads for incoming tokens to process the
tokens independently in the sub-flow defined below this actor.

• LocalScopeTransformer – Provides “local” variables and internal storage;
useful when things run in parallel.

• LocalScopeTrigger – Provides “local” variables and internal storage; useful
when things run in parallel.

• Once – A tee actor that only tees off the first token it encounters. A
simplified ConditionalTee so to speak.

• MissionControl – shows a minimalistic control panel for pausing, resuming
and stopping the flow.

• PlotContainerUpdater – Allows one to update the name, x or y value
stored in a plot container. Useful for post-processing of plot containers,
e.g., for scaling.

• RaiseError – Raises an error if its condition evaluates to true using the
specified error message (see TryCatch).

• Rejector – Rejects tokens container data containers that have error mes-
sages attached.

• Sequence – Allows to specify multiple actors that get exectued one after
the other, with the output of one actor being the input of the next.

• ConditionalSequence – Basically like the Sequence actor, but it allows you
to impose constraints on when to process the tokens with actors defined
in the sequence.

• SetContainerValue – Updates a single value of the container passing through,
using either data obtained from storage or a callable actor.

• SinkReset – resets all its sub-actors in case the monitored variable changed
value.

• Sleep – Suspends the flow execution for the specified number of millisec-
onds.

• SourceReset – resets all its sub-actors in case the monitored variable
changed value.

• Stop – If executed, stops the flow execution.

• StorageValueSequence – For processing the same storage value multiple
times in Triggers and/or Tees, but still outputting and forwarding it in
the flow.

• SubProcess – Like Sequence actor, but the last actor definitely has to
produce output, i.e., cannot be a sink.

36 CHAPTER 2. FLOWS

• ConditionalSubProcess – Basically like the SubProcess actor, but it al-
lows you to impose constraints on when to process the tokens with actors
defined in the sub-process.

• Switch – Allows an arbitrary number of branches, which get forwarded
the token if the corresponding condition evaluates to true.

• TransformerReset – resets all its sub-actors in case the monitored variable
changed value.

• TryCatch – Allows you to protect a sub-flow in a “try” block. If the
execution fails for some reason the “catch” sub-flow gets executed to ensure
that flow execution continues (see RaiseError).

• UpdateCallableDisplay – Forces a refresh of the specified callable display
actor.

• UpdateContainerValue – Applies all defined sub-actors to the specified
element of the container that is passing through.

• UpdateProperties – Updates multiple properties of an actor wrapping a
non-ADAMS object, using current variable values.

• WhileLoop – Executes the sub-flow as long as the boolean condition eval-
uates to true.

2.2.4 Protecting sub-flows

By default, ADAMS tries to stop the flow execution as fast as possible. How-
ever, this behavior might not be desired in case of mission critical steps that
should never get interrupted. For instance, when reading (and in the same step,
removing) data from the database, that the output of said data on disk should
get interrupted.

In order to allow the user to protect the execution of certain sub-flows,
a fair amount of actors offer a flag for atomic execution. This flag is called
finishBeforeStopping in the option dialog. When enabled, this actor will wait
with stopping its sub-actors until the sub-actors have finished processing all
their data. Actors that support this, are for example, Sequence, Branch, Tee,
Trigger (and derived classes).

Be careful how and where you use this flag, as it can have undesired side-
effects: if you enable this flag in the Flow control actor, then the flow cannot
be stopped before all processing has finished.

2.3. RUNNING FLOWS 37

2.3 Running flows

Executing flows from the Flow editor is just one of the options of how to execute
a flow. Unless you want the ability to edit the flow, you could use one of the
following options.

2.3.1 Flow runner - GUI

The Flow runner is an interface to execute flows without the user being able
to modify them. This interface is used for merely executing flow. This can
be useful for users that only run flows, but never modify them. Depending
on the flow, the user is still able to influence its execution. The Flow runner
interface analyzes the flow and displays the topmost SetVariable standalones
as parameters that the user then can modify. Figure 2.28 shows the flow in the
editor interface and Figure 2.27 in the runner interface. Annotations that are
attached to the SetVariable actors are available as help through a button next
to the edit field with the variable value.

Figure 2.27: Flow runner interface with a flow for generating the Mandelbrot
set.

2.3.2 Flow runner - command-line

The ability to run flows on a server, in a headless environment, was one the
requirements when desinging ADAMS. This can be either for data processing
flows that poll directories or databases or scheduled executions. The following
class allows you to run a flow from command-line:

38 CHAPTER 2. FLOWS

Figure 2.28: Flow editor interface with a flow for generating the Mandelbrot
set.

adams.flow.FlowRunner

Available options:

• -help – lists all the available options.

• -input – either a specific flow file or a directory containing flows to traverse
(use -include regular expression to limit flows).

• -headless – whether to suppress all graphical output.

• -clean-up – remove any graphical output, like dialogs and plots when the
flow finishes.

• -no-execute – if you only want to test flows whether they still load and
pass the tests in the setUp phase, use this option.

2.4. ARRAYS AND COLLECTIONS 39

2.4 Arrays and collections

ADAMS offers a range of actors for generating and processing arrays and col-
lections.
The following control actors are available:

• ArrayGenerate – similar to the Branch actor, forwards the incoming token
to all of its branches and constructs an array from the collected output
and forwards this as a new token.

The following sources are available:

• CombineArrays – combines multiple arrays from storage into a single one,
one after the other.

• CombineCollections – combines multiple collections from storage into a
single one.

• NewArray – for generating empty arrays of arbitrary type and dimensions.

• NewCollection – for generating an empty collection using the supplied
collection class name.

• StorageValuesArray – combines the specified items in storage into an array
and outputs the array.

• ZipArrays – combines the corresponding array elements of multiple arrays
into rows.

The following transformers are available:

• ArrayCombination – generations combinations or permutations of the el-
ements of the array passing through.

• ArrayLength – determines the length of an array of any type

• ArrayReverse – reverses the order of the elements in the array (in-place
or copy of array).

• ArrayStatistic – calculates statistics for the array(s), e.g., mean, standard
deviation.

• ArraySubset – generates a new array with the chosen elements from the
incoming array.

• ArrayToChunks – splits an array into sub-arrays (“chunks”) of the same
size.

• ArrayToCollection – turns an array into a collection (e.g., a java.util.ArrayList).

• ArrayToSequence – turns an array into a sequence of tokens.

• ArrayToVariables – maps the elements of the array to the specified vari-
ables (useful for turning fixed arrays like coordinates into variables).

• CollectionAppend – appends a collection in storage with the one passing
through.

• CollectionInsert – inserts an object (obtained from callable source or stor-
age) into the passing through collection.

• CollectionSize – outputs the number of elements stored in a collection

• CollectionSubset – generates a new collection using only the specified in-
dices.

• CollectionToArray – turns a collection into an array.

• CollectionToSequence – turns a collection into a sequence of tokens.

40 CHAPTER 2. FLOWS

• CompareObjects – compares the two objects from an array with the chosen
algorithm.

• GetArrayElement – returns a specific element from the array.

• GetListElement – returns a specific element from the list.

• Max – returns index or value of the largest array element (integer or
double).

• Min – returns index or value of the smallest array element (integer or
double).

• ObjectArrayToPrimitiveArray – turns an array of objects into an array of
is primitive counterparts.

• PrimitiveArrayToObjectArray – generates an array of objects from an ar-
ray of primitives.

• SequenceToArray – turns a sequence of tokens back into an array.

• SequenceToCollection – turns a sequence of tokens into a collection (type
is specified by user).

• SetArrayElement – sets the value of a speficied array element, either from
a given value (or variable) or from a storage item.

• StorageCollectionInsert – inserts the object passing through into the spec-
ified collection in storage.

The following boolean flow conditions are available:

• HasLength - check whether the array passing through has the required
min/max length.

• HasSize - check whether the collection passing through has the required
min/max size.

Of special importance is the ArrayProcess control actor. This actor allows
you to apply a sequence of actors - defined below the control actor - to all
the elements of the array passing through. This is a shortcut to storing the
length of the array in a variable (ArrayLength), turning an array into a sequence
(ArrayToSequence), processing the individual tokens and then creating a new
array from the sequence with known length (SequenceToArray).

2.5. CONVERTING OBJECTS 41

2.5 Converting objects

Quite often, you will be faced with converting objects from one type into an-
other, due to ADAMS’ strong typing. Adding new actors for converting an
object from one type to another (e.g., from String to Integer and vice versa),
would just increase the already large number of actors even further. To avoid
this, ADAMS offers a catch-all transformer for these simple conversions: Con-
vert.

All conversion schemes are derived from the super class AbstractConversion
(package adams.data.conversion). In contrast to actors, which allow an arbi-
trary number of classes, a conversion scheme can only define a single input and
a single output class, underlying the simple aspect of the conversion.

Here are some conversion for numbers:

• ByteArrayToPrimitiveArray – converts a byte array (IEEE754) into a
primitive array (e.g., float[]).

• ByteArrayToString – generates a string from a byte array.

• ByteToHex – generates a hexadecimal representation of the byte.

• ByteToInt – turns a byte into an integer.

• ByteToString – generates a string representation of the byte.

• CharArrayToString – generates a string from a char array.

• DoubleToInt – turns a double into an integer (calling the intValue() method
of the Double object).

• DoubleToFloat – converts a double into a float (calling the floatValue()
method of the Double object).

• DoubleToLong – turns a double into a long (calling the longValue() method
of the Double object).

• DoubleToString – turns the double into a string, with the number of dec-
imals specified by the user.

• FloatToDouble – converts a float into a double (calling the doubleValue()
method of the Float object).

• HexToByte – turns hexadecimal strings into bytes.

• HexToInt – turns hexadecimal strings into integers.

• IntToByte – turns an integer into a byte (data loss may occur!).

• IntToLong – turns an integer into a long.

• IntToDouble – turns an integer into a double.

• IntToHex – generates a hexadecimal representation of the integer.

• IntToRoman – generates a Roman numeral from the integer (1-3999).

• IntToString – generates a string representation of the integer.

• LongToInt – turns a long into an integer (data loss may occur!).

• LongToDouble – turns a long into a double.

• MathExpression – applies a mathematical expression to the number.

• NumberToByte – turns a Number into a byte.

• NumberToInt – turns a Number into a integer.

• NumberToLong – turns a Number into a long.

• NumberToFloat – turns a Number into a float.

• NumberToDouble – turns a Number into a double.

• ObjectArrayToPrimitiveArray – converts an object array to its primitve

42 CHAPTER 2. FLOWS

counterpart (e.g., Integer[] or Character[] to int[] or char[]).

• PrimitiveArrayToByteArray – converts a primitive array (e.g., float[]) to
a byte array (IEEE754).

• PrimitiveArrayToObjectArray – converts a primitive array to its object
counterpart (e.g., int[] or char[] to Integer[] or Character[]).

• RomanToInt – parses the Roman numeral string and outputs the integer
it represents.

• Round – rounds double values (round, ceiling, floor).

• StringToByte – parses the string representing a byte.

• StringToByteArray – obtains the byte array representing the string.

• StringToCharArray – turns a string into a char array.

• StringToDouble – parses the string representing a double.

• StringToInt – parses the string representing an integer.

• StringToLong – parses the string representing a long.

Some more string conversions:

• AnyToCommandline – Generates a commandline string from any object.

• AnyToString – Uses the Object’s toString() method.

• CommandlineToAny – Creates an object from the commandline (class +
options).

• BackQuote – Escapes special characters like tab, new line, single and
double quotes with backslashes. This can be reversed with UnBackQuote.

• BooleanToString – turns boolean values into strings.

• FieldToString – turns the Field object into its string representation, with
or without data type. The reverse is possible as well, using StringToField.

• JoinOptions – Turns an option array into a single string.

• LeftPad – left pads a string up to a maximum number of characters, e.g.:
turning “1” into “001”.

• LowerCase – turns a string into its lower case representation.

• Quote – surrounds a string quite single or double quotes if it contains
blanks or special characters like tabs or new lines. Special characters will
get backquoted as well. Thereverse operations is done using UnQuote.

• RightPad – right pads a string up to a maximum number of characters,
e.g.: turning “1.1” into “1.100”.

• SimpleAsciiToUnicode – Turns hexadecimal representations like ’
xABCD’ into their corresponding unicode characters.

• SimpleUnicodeToAscii – Replaces unicode characters with ’
xABCD’ hexadecimal representations.

• SplitOptions – Turns an option string into an array of individual options.

• StringToBoolean – turns strings into booleans.

• StringExpression – Applies the expression to the string.

• TimeToString – Turns a number representing milli-seconds since 1970
(Java date) into a String (see [11]).

• UpperCase – turns a string into its upper case representation.

Some more date/time conversions:

• BaseDateTimeToString – evaluates a date/time format string and it into
a string.

2.5. CONVERTING OBJECTS 43

• BaseDateToString – evaluates a date format string and it into a string.

• BaseTimeToString – evaluates a time format string and it into a string.

• ConvertDateTimeType – turns one date/time type into another, e.g., mil-
liseconds into Date.

• DateTimeTypeToString – turns various date/time types into a string using
a format string.

• ExtractDateTimeField – extracts various date/time fields (year, hour, day
of week, etc) from date/time types.

• StringToDateTimeType – parses a date/time string using a specified for-
mat string and turns it into various date/time types.

44 CHAPTER 2. FLOWS

2.6 String handling

Quite often when designing flows, you will be dealing with strings that need
tweaking, e.g., for file names. The following set of common string operations is
already implemented in ADAMS:

• BreakUpString – breaks up the string into multiple lines (separated by line-
feed) using word-boundaries if wider than specified number of columns.

• GroupByRegExp allows the grouping of strings in an array using a regular
expression and a grouping expression that can use matching group indices.

• SimpleStringReplace – performs string replacement without using regular
expressions.

• StringArraySplit – splits a string array in multiple sub-arrays using the
specified regular expression; e.g., for splitting log files into individual en-
tries.

• StringCut – cuts out a single portion of the string, either based on column
(using a specific separator) or character positions.

• StringExpression – the transformer applies a string processing expression
to the incoming strings, the source simply evaluates the expression (see
the actors’ grammer for details).

• StringIndexOf – locates a sub-string in the strings passing through.

• StringIndent – inserts indentation into the strings passing through (every
line for multi-line strings).

• StringInsert – allows the insertion of a string into other string tokens,
using a specified location.

• StringJoin – glues the individual elements a string array together into a
single string.

• StringMatcher – either lets through or blocks strings that match a regular
expression (see also [12]).

• StringRangeCut – cuts out one or more portions of a string and glues them
back together again into a single string.

• StringReplace – uses pattern matching to find and replace parts of the
string passing through (see also [12])..

• StringSanitizer – removes unwanted characters from a string as specified
by the user (or vice versa: leaves only accepted characters)

• StringSplit – splits a string into sub-strings based on a regular expression
(see also [12]).

• StringTrim – removes preceding/trailing whitespaces from the string pass-
ing through.

• SubStringCount – counts the occurrences of a sub-string in a string.

See also section 2.5 for some basic string conversions and section 2.7 on file
handling.

2.7. FILE HANDLING 45

2.7 File handling

The beauty of ADAMS lies in its ability to react dynamically to its processing
environment and, if necessary, also bootstrap or modify it. File handling is an
essential part in this. In the following you will find an overview of some of the
actors and conversion that offer file-related actions.

Available conversions:

• FileToString – turns a file object into a string, either with a relative or
absolute path. The reverse is possible as well, using

• PathSplit – splits the file name into its parts (drive or server from UNC
path (if applicable), directory names, file name).

• ReplaceFileExtension – replaces the file’s extension with a user-supplied
one (or removes it if no new extension supplied). StringToFile.

• StringToValidFileName – ensures that the string passing through can be
used as filename (excluding the path).

Available standalone actors:

• DeleteDir – deletes the directories matching the regular expression (or
itself).

• DeleteFile – deletes the files matching the regular expression.

• DeserializeToStorage – deserializes a model file and stores it straight in
storage.

Available source actors:

• DirectorySupplier – outputs dir(s) specified by the user.

• FilenameGenerator – allows to create filenames using various generators.

• FileSystemSearch – searches the file system using the specified search al-
gorithm.

• FileSupplier – outputs file(s) specified by the user.

• InputStreamGenerator – instantiates a java.io.InputStream instance, e.g.,
for a file from the classpath.

• NewTempFile – create a unique, temporary file name.

• InputStreamGenerator – instantiates a java.io.Reader instance, e.g., for a
file from the classpath.

And transformers:

• AppendName – appends a suffix to the file/directory passing through.

• BaseName – strips the parent directory and forwards the remainder.

• BinaryFileReader – reads a specific range of bytes from a binary file and
outputs the bytes one-by-one or as array.

• CopyFile – copies the file passing through to a target directory (if pattern
matches).

• DeleteFile – deletes the file passing through if the pattern matches.

• Deserialize – loads a serialized Java object from disk with the specified
object reader.

• Diff – generates a diff9 between two files.

9http://en.wikipedia.org/wiki/Diff

http://en.wikipedia.org/wiki/Diff

46 CHAPTER 2. FLOWS

• DirName – extracts the directory part of the file (or parent directory in
case of a directory).

• FileChanged – allows the monitoring of a file with the specified file change
monitor.

• FileExtension – extracts the extension of the filename (the part after the
“.”).

• FileInfo – outputs information on a file, like size or last modified times-
tamp.

• FilenameGenerator – allows to create filenames using various generators,
with some of them utilizing the token passing through.

• FileTailer – similar to the tail -f command on Unix systems, this actor
monitors a text file for data being appended and outputs it, e.g., for
monitoring log files.

• FindInFile – searches a file for a string

• MakeDir – creates the directory received on the input port (also available
as standalone actor).

• MoveFile – moves/renames a file.

• PrependDir – prepends a directory (“prefix”) to the file passing through.

• RelativeDir – removes a directory prefix from a file/dir to turn it into a
relative one.

• SplitFile – splits a file into several pieces using the specified split algorithm.

• TextFileReader – loads the content of a text file.

• Touch – updates the ’last modified’ timestamp of a file.

• WaitForFile – waits for a file to become available for a maximum number
of waiting intervals (e.g., a file being uploaded).

Sink actors:

• BinaryFileWriter – writes a byte array of BlobContainer to a binary file.

• CloseInputStream – closes an instance of java.io.InputStream.

• CloseReader – closes an instance of java.io.Reader.

• FileBrowser – displays the file or directory with the system’s file browser.

• FilePreview – generates a simple preview of the file.

• MergeFiles – merges several files back into a single one.

• OpenFile – opens the incoming file with the associated native application.

• PasteFiles – combines all the files received at the input into a single file,
joining them line by line. The user specifies what separator to use for
glueing the lines together. Works similar to the Unix paste command.

• Serialize – saves a Java object to a file using the specified object writer.

• SideBySideDiff – displays a diff10 between two files visually.

Finally, control actors:

• FileProcessor – processes files with a sub-flow, places them in processed
or failed directories, depending on successful execution of sub-flow.

Conditional control actors, like IfThenElse, Switch, ConditionalTee or Condi-
tionalTrigger you can use the following boolean conditions:

10http://en.wikipedia.org/wiki/Diff

http://en.wikipedia.org/wiki/Diff

2.7. FILE HANDLING 47

• DirectoriesMatch – scans a directory for sub-directories that must match
a regular expression.

• DirectoryExists – checks whether a directory exists.

• FileExists – checks whether a file exists.

• FileInUse – checks whether the file is currently being used by another
process.

• FilesMatch – scans a directory for files that must meet a regular expres-
sion.

See also section 2.5 for some basic file conversions. Section 2.14 for interactive
actors is also worth looking at, if the user should select a file or directory during
flow execution.

48 CHAPTER 2. FLOWS

2.8 Numeric operations

Being targeted at the scientific community, ADAMS also offers some general
purpose actors for numeric-related conversions:

• RandomNumberGenerator – source outputting random numbers (various
generator types are available).

• MathExpression – calculates the result of a mathematical expression/formula
(supports use of variables) – also available as source.

• ReportMathExpression – derives a value based on values from a report (or
report handler) passing through and stores the result back in the report.

• Round – rounds the data passing through (ceiling, floor or plain round).

See also section 2.5 for some basic numeric conversions and 2.4 for processing
arrays and calculating statistics.

2.9. PROPERTIES 49

2.9 Properties

ADAMS can also process Java Properties files directly. The following sources
are available:

• NewProperties – creates an empty properties object.

The following transformers are available:

• DeletePropertyValue – removes all properties that match the regular ex-
pression.

• GetPropertyNames – outputs all property names.

• GetPropertyValue – outputs the values of properties which key matches a
supplied regular expression.

• PropertiesFileReader – reads the specific properties file and forwards a
properties object.

• PropertiesToVariables – turns the key-value pairs into variables and their
associated values.

• SetPropertyValue – sets the value of a specified property.

The following sinks are available:

• PropertiesDisplay – displays a properties object in a table.

• PropertiesFileWriter – writes the properties object to disk.

The following conversion are available:

• DOMToProperties – flattens a DOM document object into a properties
object.

• PropertiesToKeyValuePairs – turns the properties into an array of key-
value pairs.

• PropertiesToString – turns the properties object into a string.

• StringToProperties – parses the string and generates a properties object.

50 CHAPTER 2. FLOWS

2.10 Maps

Flows can process objects that implement the java.util.Map interface. The
following transformers are available:

• DeleteMapValue – deletes the specified key-value pair from the map.

• FilterMap – for applying a filter to a map.

• GetMapKeys – returns all keys from the key.

• GetMapValue – extracts a value associated with the specified key from a
java.util.Map object.

• MapVariableIterator – iterates over key/value pairs of a map, storing key
and value in user-specified variables.

• MapToStorageValues – transfers the key-value pairs of a java.util.Map into
internal storage.

• MapToVariables – turns the key-value pairs of a java.util.Map into vari-
ables with their associated values.

• MultiMapOperation – applies the specified operation to the incoming map
array.

• SetMapValue – sets the value of a java.util.Map object (either specified
value or obtained from a callable actor or storage item).

The following conversion are available:

• PropertiesToMap – turns a java.util.Properties object into a java.util.Map
object.

• ReportArrayToMap – turns a Report array into a java.util.Map object
using the specified field as key.

• ReportToMap – turns a Report object into a java.util.Map object.

• MapToKeyValuePairs – turns the map into actual key-value pair objects.

• MapToReport – turns a java.util.Map object into a Report object.

• MapToString – turns a java.util.Map object into a simple string.

2.11. DATABASES 51

2.11 Databases

Any database that has a JDBC driver can be used within ADAMS. By default,
ADAMS comes with support for MySQL (and PostgreSQL, HSQLDB, SQLite
and MS SQL Server via the adams-db module). See section 8.9 for how to
add more databases. The following actors allow you to perform some basic
operations:
The following standalone actors are available:

• DatabaseCheck – for checking whether database connection is active and
to the correct database

• DatabaseConnection – defines a database connection within its sub-flow

• ExecSQL – for executing any SQL query that do not produce output,
typically INSERT/UPDATE/DELETE or ALTER statements.

The following sources are available:

• LargeObjectDbReader – reads BLOB or CLOB entities from a table.

• ListTables – iterates through tables in database.

• SQLIdSupplier – either outputs integer or strings, obtained from an SQL
SELECT query.

The following sinks are available:

• LargeObjectDbWriter – for storing BLOB and CLOB entities in tables.

For more functionality, see the documentation on the adams-spreadsheet
module.
Here are JDBC URL templates for accessing the various types of databases:

• MySQL – jdbc:mysql://<HOST>:3306/<DATABASE>

• PostgreSQL – jdbc:postgresql://<HOST>:5432/<DATABASE>

• HSQLDB – jdbc:hsqldb:hsql://<HOST>:9001

• SQLite – jdbc:sqlite:<PATH TO FILE>

• MS SQL Server – jdbc:jtds:sqlserver://<HOST>:1433/<DATABASE>11

Notes

• Later versions of MySQL automatically want to secure the connection
with SSL. If that is not desired or necessary, you can use a JDBC URL
like this to connect to database DATABASE on host HOST :

jdbc:mysql://<HOST>:3306/<DATABASE>?useSSL=false

• Versions of the MySQL driver newer than 5.1.47 changed the default be-
havior for obtaining the columns via getColumns(null, null, "thetable", null)

(DatabaseMetaData class) to no longer using the current database, but
all databases12. In order to switch back to the original behavior, use
nullDatabaseMeansCurrent=true in your connection string:

11For more info, see http://jtds.sourceforge.net/faq.html#urlFormat
12See this bug report: https://bugs.mysql.com/95717

http://jtds.sourceforge.net/faq.html#urlFormat
https://bugs.mysql.com/95717

52 CHAPTER 2. FLOWS

jdbc:mysql://<HOST>:3306/<DATABASE>?nullDatabaseMeansCurrent=true

• If you get an error message like Incorrect datetime value: ’0000-00-00

00:00:00.000’ for column ’TIMESTAMP’ at row 1 then add the fol-
lowing to your connection string:

jdbc:mysql://<HOST>:3306/<DATABASE>?sessionVariables=sql_mode=’ALLOW_INVALID_DATES’

Alternatively, remove the NO ZERO DATE directive. You can use following
in your my.cnf or my.ini config file instead:

sql_mode=IGNORE_SPACE,ERROR_FOR_DIVISION_BY_ZERO,NO_ZERO_IN_DATE,NO_AUTO_CREATE_USER,NO_ENGINE_SUBSTITUTION

• When adding multiple options to your connection string, use && as sepa-
rator.

2.12. CALLABLE ACTORS 53

2.12 Callable actors

ADAMS uses a tree structure to represent the nested actor structure. This
enforces a 1-to-n relationship on how the actors can forward data. In the exam-
ple flow shown in Figure 2.26, two separate Display actors get displayed. The
more branches, the more windows will pop up. This gets very confusing rather
quickly. ADAMS offers a remedy for this: callable actors. With this mech-
anism, multiple data streams can once again be channeled into a single actor
again, simulating a n-to-1 relationship. And here is what to do:

• Add the CallableActors standalone actor at the start of the flow.

• Add the actor that you want to channel the data into below the Callable-
Actors actor that you just added. In our example, this is the Display
actor.

• Replace each occurence of the actor that you just added below the Callable-
Actors actor with a CallableSink sink actor. Enter as value for the pa-
rameter callableName the name of the actor that you added below the
CallableActors actor. In this example this is simply Display.

Figure 2.29 shows the modified flow 13, using a single callable Display actor
and multiple CallableSink actors. In addition to the CallableSink actor, there

Figure 2.29: Outputting parallel processed strings in a single callable Display
actor.

are also the CallableSource actor (for using the same source multiple times in a
flow) and the CallableTransformer actor (for instance for using the same prepro-
cessing multiple times). They are used in the same fashion as the CallableSink

13adams-core-hello world7.flow

54 CHAPTER 2. FLOWS

actor that we just introduced. The ListCallableActors source allows you to list
all the available callable actors available in the scope of this listing actor. Useful
when iterating through a number of predefined setups.

Combining views
The GridView standalone allows you to define several graphical actors to be
displayed in a grid layout, by adding them below this actor. This can be useful,
for instance, if two plots have very different scales and plotting them in the same
graph wouldn’t make much sense. Using GridView, you can create a plot with
two rows and one column for displaying the two SequencePlotter actors below
each other. The actors below the GridView actor get referenced from within
the flow using CallableSink actors.

The TabView standalone works just like the GridView actor, but instead of
displaying the graphical actors in a grid, they get displayed in a tabbed pane
(in the order they are below the TabView actor).

2.13. EXTERNAL ACTORS 55

2.13 External actors

Flows can quickly become large and complex, with lots of preprocessing happen-
ing in multiple locations. Pretty soon you will realize that certain preprocessing
steps are always the same. The same applies to loading data (e.g., various
benchmark data sets) or writing results back to disk.

To avoid unnecessary duplication of functionality, ADAMS allows you to ex-
ternalize parts of your flow to be externalized, i.e., stored on disk. Externalizing
an existing sub-flow is very easy, you merely have to right-click on the actor that
you want to save to disk and select Externalize. . . from the popup menu. A
new Flow editor window will pop up with the currently selected sub-flow copied
into, ready to be saved to disk 14. Once you saved the sub-flow to a file, you
have to go back into the original flow and update the file name of the flow in
the external meta actor that replaced the sub-flow.

Here are the available meta actors:

• ExternalFlow – for executing complete flows.

• ExternalStandalone – for using externalized standalones.

• ExternalSource – for incorporating an external source.

• ExternalTransformer – for applying an external transformer.

• ExternalSink – for processing data in an external sink.

Once you have an ExternalXYZ actor, you can edit this flow directly by
selecting the Edit. . . menu item as shown in Figure 2.30.

Figure 2.30: Editing an external flow directly.

14Only actors that implement the InstantiatableActor interface can be externalized directly.
All others need to be enclosed in the appropriate InstantiatableXYZ wrapper. Using the
Externalize. . . menu item automatically wraps the actor if required,

56 CHAPTER 2. FLOWS

Tips:

• In the flow editor, you can inline an external flow by selecting Expand
from the popup menu on the external actor. This will load the external
flow and place it below the external actor as read-only sub-tree (see Figure
2.31). You can simply remove the actors using the Collapse option from
the popup menu of the external actor.

• When working with external flows, it can be cumbersome to always switch
to the outer flow that contains the Flow and then execute this one. You
can mark a flow as the active one and then use the shortcuts from the
Run (active) menu.

Figure 2.31: An inlined or expanded external flow.

2.14. INTERACTIVE ACTORS 57

2.14 Interactive actors

Most of the times, flows that you generate will simply be executed, without
any user interaction. However, sometimes user interaction can be very useful
in making the flow easier to use. Imagine a flow that takes a file as input, e.g.,
using the SingleFileSupplier source, reads and processes it. If the file varies, you
will have to change the source actor each time you want to run the flow with a
different file. To address this shortcoming, ADAMS offers a range of interactive
actors:

• EnterValue (source) – allows the user to enter a value or choose from a
range of options.

• EnterManyValues (source) – allows the user to enter one or more values,
supporting various data types.

• PasteFromClipboard (source) – Forwards the content (if any) of the sys-
tem’s clipboard (CopyToClipboard allows you to copy textual data to the
system’s clipboard).

• SelectArraySubset (transformer) – prompts the user to select a subset of
array elements to be forwarded.

• SelectDateTime (source) – pops up a dialog for selecting a date/time, date
or time, depending on configuration.

• SelectCharset (source) – prompts the user to select a character set (eg
used for file encoding).

• SelectDirectory (source) – pops up a dialog for selecting a directory.

• SelectFile (source) – allows the user to select one or more files. File ex-
tensions for narrowing down the list of files being displayed is possible as
well.

• ConfirmationDialog (transformer) – prompts the user with a dialog, offer-
ing “yes” and “no” as options. If not custom string tokens are defined for
the “yes”/”no” actions, the current token will be forwarded in case of the
user selecting “yes” (“no” simply drops the token).

• Inspect (transformer) – allows the user to view the content of a token with
the specified panel provider, e.g., image viewer.

Using the SelectFile source in your flow now, the user won’t have to modify the
flow anymore. It is now far less likely that the user accidentally modifies and
breaks the flow in the process.

The source actors allow you to specify default values, e.g., a default directory
and default file(s) in case of the SelectFile actor. This cuts down the time the
user has to spend clicking through directories in the file chooser dialog.

Some of these interactive actors can be switched to “silent” mode, i.e., non-
interactive. Counterinuitive as it seems, a rather handy feature when developing
a the flow and constant dialogs are simply too annoying. Once development of
the flow has finished, the non-interactive setting can be reversed again. You
can either set the nonInteractive flag for each of these actors manually, or use
the flow editor’s menu to either turn the interactive nature on or off (“Edit” →
“Interactive actors”).

Tip: The Make interactive menu item from the right-click popup menu in
the Flow editor allows you to turn one or more SetVariable standalones into
an interactive sub-flow, migrating names and values. It automatically sets the

58 CHAPTER 2. FLOWS

Figure 2.32: Simple flow that prompts the user to enter a value, using a default
value of “42” and a custom message.

correct type for boolean, integer, long and double values.

2.15. TEMPLATES 59

2.15 Templates

ADAMS comes with a powerful templating mechanism, that speeds up the
inception of new flows. Templates allow you to insert complete sub-flows that
are generated by a template class. Therefore, commonly occurring sub-flows can
be encapsulated in a template class with optional parameters. A fairly common
sub-flow, encapsulated by a Trigger control actor, is the updating of a variable.
The UpdateVariable template inserts such a sub-flow, consisting of a Variable
source and a SetVariable transformer, enclosed by a Trigger. You only need to
supply the variable name that needs updating to generate the sub-flow and then
add the required transformers that take the current variable value and process
is some way or the other. Figures 2.33 to 2.35 show the use of this mechanism.

Figure 2.33: Adding a sub-flow generated from a template to an existing flow.

Figure 2.34: The options of the UpdateVariable template.

60 CHAPTER 2. FLOWS

Figure 2.35: The added sub-flow.

The “adams-meta” module allows you to use these templates also at runtime,
dynamically generating flows on-the-fly using special actors.

2.16. VARIABLES 61

2.16 Variables

A flow is very useful for documenting all the steps involved in loading, processing
and evaluating of data. But setting up a new flow, whenever you are merely
varying a parameter is not very efficient. In order to make flows more flexible
and dynamic, ADAMS offers the concept of variables. The idea of variables is to
attach them to options of the object that you want to vary. Actors keep track of
what variables have been attached to themselves or nested objects. Whenever
an actor gets executed, it checks first whether any of the variables that it is
monitoring has been modified. If that is the case, the actor re-initializes itself
before the execution takes place. This guarantees that the correct set up has
been applied. At the time of writing, the scope of variables is restricted to Flow
actors. Running the same flow in two concurrent Flow editor windows does
not result in those two flows interfering with each other. In case of attaching
variables to options that are arrays, the variable is expected to be a blank-
separated list of values.

In the following example 15, we are using a ForLoop source to generate the
index of a file to load. In a Tee actor we first convert the integer token to a
string using the Convert transformer and the AnyToString conversion scheme.
Then we add, first the path and then the file extension, to generate the full file
name using StringReplace transformers. Finally, we associate the generated file
name with the variable filename using the SetVariable transformer.

In order to display the content of the files, we need to set up a sub-flow
that consists of a SingleFileSupplier source, the TextFileReader transformer for
reading in the content and a HistoryDisplay sink for displaying the file contents.
The sub-flow gets enclosed by a Trigger control actor, which will get executed
whenever an integer token from the ForLoop passes through.

To make use of the variable filename, we need to attach it to the file option
of the SingleFileSupplier. You can attach a variable by simply bringing up the
properties editor of an actor (or other ADAMS object), right-click on the name
of the option and then entering the name of the variable (without “@{” and
“}”). The properties editor indicates whether a variable has been attached to
an option by appending an asterisk (“∗”) to the name of the option, as can be
seen in Figure 2.36.

The complete flow is displayed in Figure 2.37. With “quick info” enabled, the
SingleFileSupplier now also hints that the file it is forwarding is variable-based:
@{filename}.

The variable mechanism can also be used to dynamically execute another
external actor at runtime (see section 2.13 on external actors).

In Figure 2.38 you can see a flow that uses a ForLoop to execute three
external flows using a variable attached to the actorFile option.

The output generated by the three sub-flows is shown on screen in the same
Display actor. A screenshot of the output is displayed in Figure 2.39.

Overview of actors
The following actors are available to handle variables:

• ListVariables – source actor for outputting the names of currently available
variables.

15adams-core-variables1.flow

62 CHAPTER 2. FLOWS

Figure 2.36: The asterisk (“∗”) next to an option indicates that a variable is
attached.

• DumpVariables – source actor for outputting a spreadsheet with variable
names and their associated values.

• CombineVariables – source actor for combining one or more variables into
a single string using a supplied expression.

• Variable – source actor for outputting the value associated with the vari-
able.

• VariablesArray – outputs the associated values of several variables as a
string array (source).

• ExpandVariables – similar to the CombineVariables source, this actor ex-
pands all variables in the string(s) passing through.

• SetVariable – updates the value of a variable (standalone/transformer).

• SetManyVariables – updates the values of a multiple variables (stan-
dalone/transformer).

• IncVariable – increments the value of the variable by either an integer or
double increment (transformer).

• DeleteVariable – removes a variable and its associated value from internal
memory (standalone/transformer).

• ContainerToVariables – turns all container values into variables that match
the specified regular expression (transformer).

• ReportToVariables – turns all report values into variables that match the
specified regular expression (transformer).

• SwapVariables – swaps the values of the two variables around.

Note: If you should attach a variable to thevalue option of the SetVariable
standalone or transformer, be aware that the string will undergo command-
line parsing and therefore getting un-backquoted (escaped quotes, n’s, r’s and
t’s get turned back into quotes, new-lines, carriage-returns and tabs). If this
should pose a problem, you can always escape the string using the Convert
transformer in conjunction with the Backquote conversion (basically adding a
layer of escaping).

Using callable actor as variables
One drawback of ADAMS is the absence of multiple inputs, only a single input
is supported and containers can mitigate that only to a certain degree. Instead

2.16. VARIABLES 63

Figure 2.37: Using a variable to control what file to load and display.

of only using variables values, ADAMS can also harness data generation on-the-
fly, by attaching callable actors to options. Attaching a callable actor works
just like attaching a simple variable, only the naming convention is different:

@{callable:<callable-actor-name>}

The callable: prefix tells ADAMS that the following name is referencing a
callable actor. It then locates the actor and executes it to obtain the value for
using with the option in question.

This mechanism has mainly three caveats:

• The callable actor (or sequence of actors) gets executed whenever the
actor, which has one or more callable actor references attached, gets exe-
cuted. Depending on the actors in use, this can be rather computationally
expensive.

• Since the variable mechanism has no notion of where in the flow it is, only
callable actors that are defined below the Flow actor can be used (kind of
“super callable actors”).

• The callable actor should generate the correct type for the option it is at-
tached to. Otherwise, the value gets converted and parsed as a command-
line value. Though the flow will be able to recover, this will slow things
down as an exception will get output whenever this occurs.

Using storage items as variables
Similar to attaching callable actors, storage values can be attached like variables
as well. Once again, a custom prefix, “storage”, is used to distinguish these
special variables from ordinary ones:

64 CHAPTER 2. FLOWS

Figure 2.38: Using a variable to control what external flow to execute (flow).

@{storage:<storage-value-name>}

The referenced object is then obtained from storage and set.
This mechanism has two caveats:

• The storage value is retrieved whenever the actor, which has one or more
storage value references attached, gets executed.

• The storage value needs to have the correct type for the option it is at-
tached to. Otherwise, the value gets converted and parsed as a command-
line value. Though the flow will be able to recover, this will slow things
down as an exception will get output whenever this occurs.

Non-ADAMS objects

Figure 2.39: Using a variable to control what external flow to execute (output).

2.16. VARIABLES 65

The Variable functionality is only available for objects within the ADAMS
framework, as it requires special option handling. 3rd-party libraries do not
benefit from this functionality directly. But thanks to Java Introspection 16 you
can use property paths to access nested properties and update their values. A
property path is simply the names of the various properties concatenated and
separated by dots (“.”). In case of arrays, you simply have to append “[x]” to
the property with “x” being the 0-based index of the array element that you
want to access.

The following actors handle properties:

• GetProperties – transformer that outputs the names of all the available
properties that can be accessed.

• GetProperty – transformer that retrieves the current value of a property
of the token passing through.

• SetProperty – transformer that modifies a single property of a callable
actor using the string representation of the token passing through.

• UpdateProperty – transformer that modifies a single property of an object
passing through using the specified value.

• UpdateProperties – allows you to update multiple properties (each prop-
erty is associated with a particular variable) of the actor that this actor
manages.

Special variables
Often, flows use resources that are relative to the flow itself. In order to make
this easier, there are two special variables available at runtime:

• flow dir – stores the path of the flow

• flow filename long – stores path and file name of the flow

• flow filename short – stores only the file name of the flow

Invalid variables
The first time an actor is being executed (to be precise when the isExecuted()
method returns false), it checks whether all its variables are valid, i.e., available.
This check is done to avoid unexpected behavior due to wrong parameters, like
deleting the wrong directory. However, older production flows may still have
some obsolete or unused variables lying around that will trigger this check. As
a temporary measure, you can switch this check from throwing an error to only
outputting a warning by setting the following environment variable to true:

INVALID_VARIABLES_LENIENT=true

16See http://download.oracle.com/javase/tutorial/javabeans/introspection/ for
more information on Java Introspection.

http://download.oracle.com/javase/tutorial/javabeans/introspection/

66 CHAPTER 2. FLOWS

2.17 Temporary storage

Variable handling within ADAMS is a very convenient way of changing param-
eters on-the-fly, but it comes at a cost. Values for variables are merely stored as
strings internally and each time an options gets updated this string needs to get
parsed and interpreted. Furthermore, each time the whole actor gets reinitial-
ized if one its own options or an option of its dependent objects gets updated.
It is strongly advised against using the variables functionality if they are not
actually attached to any options, but only used for keeping track of values like
loop variables.

Instead, ADAMS offers an alternative framework for managing values at
runtime: temporary storage. In contrast to variables, values are stored inter-
nally as Java objects, referenced by a unique name. Just like with variables,
the scope of these objects is restricted to Flow actors at the time of writing.
Additionally, the values don’t need to be parsed again when used, since they
are stored as is, resulting in a more efficient storage/retrieval. Finally, arbitrary
objects can be stored, not just objects for which a string representation can be
generated/parsed. The latter aspect combined with fast storage/retrieval en-
courages multiple read/write accesses of the same object in various locations of
the flow. An example would be accessing a data set or spreadsheet, retrieving,
setting or updating values. Figure 2.40 shows a flow that takes the number gen-
erated by the random number generator and stores it, before re-using it in the
sub-flow below the Trigger actor. The resulting output is displayed in Figure
2.41.

Figure 2.40: Flow demonstrating the temporary storage functionality.

By default, the storage system is unlimited which can quickly result in mem-
ory problems when not used wisely. In order to restrict memory usage and

2.17. TEMPORARY STORAGE 67

Figure 2.41: Output of flow demonstrating the temporary storage functionality.

encourage re-generation of values on demand, the storage system also offers
least-recently-used (LRU) caches 17. Instead of simply setting a value with a
name, you can specify the name of a particular LRU cache as well. The cache
needs to be initialized first, of course, using the InitStorageCache standalone ac-
tor. Figure 2.42 shows the use of the LRU cache functionality, with Figure 2.43
displaying a snapshot in time of the storage inspection panel available through
the Breakpoint control actor. Finally, Figure 2.44 shows the final output of the
flow.

Figure 2.42: Flow demonstrating the LRU cache storage functionality.

Overview of actors
The following actors are available to handle storage values:

17See http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used for more
information on LRU caches.

http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used

68 CHAPTER 2. FLOWS

Figure 2.43: Display of the temporary storage during execution.

Figure 2.44: Output of flow demonstrating the LRU cache storage functionality.

• InitStorageCache – standalone actor for initializing a named LRU cache
with a specific size.

• CombineStorage – source actor for combining string representations of
storage items and variables into a string.

• ExpandStorage – similar to the CombineStorage source, this actor expands
all storage items and variables in the string(s) passing through.

• GetStorageValue – transformer that replaces the incoming string with the
storage value that the string represents. associated with the specified
name.

• ListStorageNames – source actor for outputting the names of the currently
stored items.

• DumpStorage – source actor for outputting the names of the currently
stored items and their associated values (in string representation) in a
spreadsheet.

• StorageValue – source actor for outputting the storage value associated

2.17. TEMPORARY STORAGE 69

with the specified name.

• StorageValuesArray – source actor for outputting the storage values asso-
ciated with the specified names as an array.

• SetStorageFlag – sets/unsets the boolean flag in storage

• SetStorageValue – updates the specified storage value (transformer).

• IncStorageValue – increments the value of the stored integer or double
object by either an integer or double increment (transformer).

• DeleteStorageValue – removes a storage value from internal memory (stan-
dalone/transformer), freeing up memory.

• ContainerToStorage – places all the container values in storage that match
the regular expression (transformer).

• ReportToStorage – places all the report values in storage that match the
regular expression (transformer).

70 CHAPTER 2. FLOWS

2.18 Debugging your flow

2.18.1 Breakpoints

The more complex a flow gets, the harder it becomes to track down problems.
With all its general purpose actors and control actors (loops, switch, if-then-
else, . . .), ADAMS is basically a basic graphical programming language. A
programming language without at least some basic debugging support is very
inconvenient. Therefore, ADAMS allows you to set breakpoints in your flow.
These breakpoints are merely instances of the Breakpoint control actor. This
actor allows you to specify a breakpoint condition on when to stop. The default
condition is true, i.e., the execution gets paused whenever the actor gets reached.
This boolean condition can also evaluate the value of variables. Just surround
the name of the variable with “@{” and “}” in order to use its value within
the expression. For more information on what the expression can comprise of,
check the online help of the Breakpoint actor.

Whenever a Breakpoint actor is reached and the condition evaluates to true,
the debugging control panel get activated on the right-hand side in the Flow
editor (see Figure 2.45).

Figure 2.45: The debugging control panel.

The functionality of the control panel is best explained with an example.
The flow 18 in Figure 2.46 simply outputs integer values, ranging from 1 to 10.
This value gets stored in the variable loop var which is also part of the condition
of the Breakpoint actor. Finally, these values get displayed in a Display sink.

When the breakpoint gets triggered, the flow gets paused and the aforemen-
tioned control panel is displayed.

• The buttons in the top group allow you to resume the flow execution ,
step through it , actor by actor, stop the flow or simply disable the
current breakpoint .

18adams-core-breakpoint.flow

2.18. DEBUGGING YOUR FLOW 71

Figure 2.46: Example flow with Breakpoint actor.

• It is possible to update the breakpoint condition whenever the breakpoint
is reached.

• In the second group you can view the source code of the fully ex-
panded flow (i.e., all external actors are inserted completely and variables
are expanded to their current value), you can define watch expressions

(variables, boolean and numeric expressions; Figure 2.45), display an
overview of all the variables and their current values, inspect the cur-
rent storage items , you can inspect the current token that is being
passed through the breakpoint (Figure 2.47) and also all breakpoints
currently present in the flow (Figure 2.48). Breakpoints can be disabled
and enabled, modified when to stop.

While a flow is running, you have some basic tools for inspection at hand as
well (available from the Run menu):

• Variables – allows you to monitor the variables of a flow and how they
change. Note that updating the dialog is quite expensive and will slow
down your flow considerably.

• Storage – when a flow is paused, you can inspect the current storage
items; as soon as you resume the flow, the dialog will disappear again, as
it doesn’t get refreshed automatically.

A breakpoint can be triggered at various stages of executing an actor:

• pre/post input of a token (transformers, sinks)

• pre/post execute

• pre/post output of a token (sources, transformers)

Inspecting a token is only available at stages preInput, postOutput and possibly
at preExecute, if the actor is a transformer or sink.

Stepping through a flow, using the Step button from the control panel,
always uses the preExecute stage (pre/postInput are not available, unfortunately
due to API limitations).

72 CHAPTER 2. FLOWS

Figure 2.47: The Inspection tab of the debugging control panel for the current
token.

2.18.2 Monitoring

With ADAMS it is possible to eavesdrop on the flow execution by attaching
a so-called flow execution listener to the Flow actor and enable the listening
process there as well. Listeners that have graphical output get display, just like
the debug view, on the right-hand side of the Flow editor window.

The following listeners are available:

• CurrentlyExecuted – displays all the actors (with their start times) that
are currently being executed.

• Debug – the Breakpoint control actors use this listener, setting the appro-
priately configured breakpoints.

• ExecutionCounter – counts for each actor how often it was executed.

• ExecutionLog – writes all calls to the input, execute and output methods
to a log file.

• MultiListener – allows you to listen with multiple listener setups to the
flow execution.

• NullListener – dummy listener, does nothing.

2.19. PASSWORDS 73

Figure 2.48: The Breakpoints tab of the debugging control panel.

2.19 Passwords

In various places, ADAMS requires the use of passwords, for instance, when
connecting to databases. ADAMS does not offer any proper encryption of the
passwords, merely a weak obfuscation using Base6419 encoding. Keep this in
mind when designing flows and making the available to other people.

19http://en.wikipedia.org/wiki/Base64

http://en.wikipedia.org/wiki/Base64

74 CHAPTER 2. FLOWS

2.20 External processes and classes

ADAMS allows you to start up external processes or call Java classes that are
present in the classpath from within a flow. The following actors are available:

• Command – source that calls any external executable and outputs stdout
and/or stderr as continuous stream.

• Java – standalone that calls the main method of a Java class, using the
current JVM.

• JavaExec – standalone that starts up a new JVM using the current class-
path and JRE. stdout and stderr can be further processed in the flow.

• Exec – source that calls any external executable and allows to further
process either stdout or stderr, after the process has finished.

2.21. SCREENSHOTS 75

2.21 Screenshots

Of course, ADAMS doesn’t just allow you to create plots and other graphical
output, it also allows you to save these to image files. There are several ways of
exporting the graphical output, manual and automatic ones.

2.21.1 Manual

Any dialog that displays non-textual data, will allow you to export what you
see as an image. You can do this via the File → Send to → Export as image
(see Figure 2.49). Depending on the actor, you might also be able to use the
File → Save as functionality. For instance, the SequencePlotter sink supports
this.

Figure 2.49: Manual screenshot of plot.

2.21.2 Automatic

For automatic screenshot generation, you have to consider, when the screenshot
is to be generated: after the flow finishes or while the flow is running (e.g., you
want to generate many screenshots from many different datasets).

The first case is quite easy and you can simply configure the writer option of
the graphical actor (e.g., SequencePlotter) that you want to take a screenshot
of. Instead of the NullWriter simply choose one of the other ones like the
PNGWriter and set the correct filename.

The second case requires you to place control actors in the correct locations
in your flow:

• ClearCallableDisplay – for preparing the plot for the next screenshot,
clearing any data from a previous iteration.

• CallableActorScreenshot – for generating the screenshot and saving it to
disk.

Both actors require you to select the callable actor that you want to operate
on. For specifying an output file, I recommend you to use the SimpleFixed-
FilenameGenerator file name generator, with a variable attached to its name
option.

76 CHAPTER 2. FLOWS

A typical sequence of actors therefore looks like this:

...

CallableActors

|

+- SequencePlotter called "plot"

...

|

+- ClearCallableDisplay on "plot"

|

+- [generate your plot/graph]

|

+- CallableActorScreenshot on "plot"

|

...

2.21.3 Flickering dialogs

If you attach variables to plots/graphs, like the SequencePlotter, then you will
experience the plot dialog getting reinitialized and disappearing/appearing each
time the variable changes. This can be rather annoying as windows will keep
popping up all over the place and your computer will become pretty much
unusable. Unless you want to take a break and have a cup of tea, you can
employ a simple trick. Instead of using the CallableActors standalone, choose
the GridView actor. By wrapping your plot in this actor, the actor panel
inside the GridView will disappear/reappear, but not the window that it is in,
eliminating the flickering in the process.

2.22. COLORS 77

2.22 Colors

A number of components in ADAMS, like the SequencePlotter sink, allow you
to select a color provider for the various colors in use.
The following providers are available:

• DefaultColorProvider - uses 7 colors (blue, cyan, green, magenta, orange,
pink, red)

• GradientColorProvider - uses colors generated by a color gradient gener-
ator

• TranslucentColorProvider - applies the specified alpha value to the colors
generated by the base color provider

• X11ColorProvider - the X11 color palette20

For color blindness the following providers can be used21:

• ColorBlind8Provider - uses 8 colors (conservative palette)

• ColorBlind12Provider - uses 12 colors

• ColorBlind15Provider - uses 15 colors

• ColorBlind24Provider - uses 24 colors

20https://en.wikipedia.org/wiki/X11_color_names
21http://mkweb.bcgsc.ca/colorblind/palettes.mhtml

https://en.wikipedia.org/wiki/X11_color_names
http://mkweb.bcgsc.ca/colorblind/palettes.mhtml

78 CHAPTER 2. FLOWS

Chapter 3

Visualization

Visualization is very important in data analysis. The core module of ADAMS
comes with some basic support.

• Image viewer – For displaying images of type PNG, JPEG, BMP, GIF.

• Preview browser – Generic preview browser, any ADAMS module can
register new preview handlers for various file types.

3.1 Image viewer

The Image viewer is a basic viewer for graphic files (PNG, JPEG, BMP, GIF).
Figure 3.1 shows the viewer with a single image loaded. It is possible to copy
images to the system’s clipboard, export or save them in a different file format
or print them.

Figure 3.1: Displaying a fractal in the Image viewer.

79

80 CHAPTER 3. VISUALIZATION

3.2 Preview browser

The preview browser is a generic preview framework within in ADAMS and
each module can register new handlers for various file or archive types. In its
basic functionality, the preview browser can view images (see 3.2), properties
files, flows (see 3.3) and plain text files (see 3.4). If no handler is registered for
a file type, i.e., a certain file extension, then the plain text handler is used by
default. If more than one handler is registered for a file type, then you can select
from the combobox at the bottom of the dialog, which handler is the preferred
for this type of file. In the flow, you can re-use some of this functionality with
the FilePreview and ObjectPreview sinks.

Figure 3.2: Preview browser displaying an image.

Serialized files can be inspected as well, e.g., for model files generated by
WEKA. Other modules may offer specific viewers for the objects stored in such
a file.

3.2. PREVIEW BROWSER 81

Figure 3.3: Preview browser displaying a flow.

Figure 3.4: Preview browser displaying an plain text file.

82 CHAPTER 3. VISUALIZATION

Chapter 4

Remote commands

ADAMS offers a generic framework for remote commands, either uni-directional
ones (e.g., restarting the remote instance) or bi-directional ones (e.g., retrieving
system info from the remote instance).

Uni-directional commands, see Figure 4.1, only require the remote instance
to listen for incoming commands using a remote scripting engine. Bi-directional
ones, on the other hand, require the local and the remote instance to listen for
incoming commands. Figure 4.2 shows how the local instance sends a request
to the remote one and then listens for the response to come in.

Figure 4.1: Uni-directional command.

Figure 4.2: Bi-directional command (with response).

In order to control the remote scripting engine, you can start/stop them
from the main menu: Program → Remote commands... The following scripting
engines are available:

• DefaultScriptingEngine – just listens on a specified port for commands.

• FileBasedScriptingEngine – polls a directory for incoming commands.

• ForwardingScriptingEngine – forwards incoming commands to a speci-
fied connection. Can act as load-balancer or single point of access in
conjunction with the LoadBalancer connection and multiple defined sub-
connections.

83

84 CHAPTER 4. REMOTE COMMANDS

• ManualFeedScriptingEngine – only to be used internally, where the com-
mands are being added programmatically.

From this menu, you can also launch commands using the Send... menu
item. The dialog that you get prompted with allows you to configure the remote
command and the type of connection to use to reach the remote host.

Available commands:

• basic.Kill – kills the ADAMS instance, does not wait for flows to stop

• basic.Ping – simple request for are-you-alive message

• basic.Restart – for restarting the ADAMS instance

• basic.RetrieveFile – retrieves a remote file and saves it locally

• basic.SendFile – sends a local file to the remote instance

• basic.StartRemoteLogging – listens to the logging messages on the remote
ADAMS instance (communication only works via ports)

• basic.Stop – stops the ADAMS instance after stopping all the flows

• basic.StopEngine – stops either the remote of local scripting engine (e.g.,
for temporary scripting engines, stopping the local one after processing all
commands)

• basic.SystemInfo – retrieves system info from the remote instance

• basic.Text – sends text to write to a remote file

• distributed.DeregisterSlave – deregisters a slave scripting engine

• distributed.JobRunner – sends a JobRunner instance for remote execution
(via serialization)

• distributed.KillSlaves – kills all slaves

• distributed.RegisterSlave – registers a slave scripting engine with a master
engine

• flow.GetFlow – retrieves a registered flow from a remote instance

• flow.ListFlows – lists all registered (and running) remote flows

• flow.RemoteFlowExecution – executes a local flow remotely (variables and
storage can be attached, requires a flow context)

• flow.RunRemoteFlow – loads a remote flow and runs in on the remote
instance

• flow.SendFlowControlCommand – sends start/stop/pause/restart command
to the specified registered flow

• gui.MenuItem – starts up the specified menu item on the remote instance

Since executing commands like this is a bit low-level, there is also a user
interface available called Remote Control Center, which you can find in the
same menu. Figure 4.3 displays a screenshot of the interface, showing the tab
that taps into the logging of a remote flow.

The remote command functionality is not only available from the main menu,
you can also use this functionality within flows, allowing for automation of
tasks. However, you still need to start the remote scripting engine. Though
this can be automated via a command-line option when starting up ADAMS
(-remote-scripting-engine-cmdline) on the remote machine.

Available actors:

• ExecuteRemoteCommand – executes the command coming through.

4.1. REGISTERING FLOWS 85

Figure 4.3: Remote Control Center interface.

• GetRemoteCommandPayload – retrieves the payload objects (if any) from
a remote command

• NewRemoteCommand – configures and forwards a command object.

• RemoteCommandRaeader – transformer that reads a command object
from the incoming file.

• SendRemoteCommand – sends the command object across the wire using
the specified connection setup.

• RemoteCommandWriter – writes the incoming command object to disk.

• RemoteScriptingEngine – standalone for running a scripting engine within
the flow.

• TriggerRemoteExecution – uses the RemoteFlowExecution command to
send the sub-flow for remote execution.

Available conversions:

• StringToRemoteCommand – parses the string and turns it into a Re-
moteCommand object

• RemoteCommandToString – generates a string representation of the re-
mote command (which is used for transmitting across the network)

4.1 Registering flows

In order to use the GetFlow or ListFlows remote commands, the flows running
on the remote server need to be registered with the registry for running flows.
This can be achieved in two ways:

• per flow – by using the RegisterFlow standalone actor in a flow.

86 CHAPTER 4. REMOTE COMMANDS

• system-wide – by setting the AutoRegister property in the adams/flow/control/Flow.props
file to true.

4.2 Linux servers

ADAMS can be run in a headless environment, i.e., without graphical user
interface. Installing workflows that process data on a Linux server, e.g., Ubuntu,
is fairly easy:

• Create non-privileged user adams and add other users like yourself to that
user’s group in /etc/group.

• Add your public RSA key1 to /home/adams/.ssh/authorized keys.

• Download, extract and copy an Oracle JDK to /opt/jdk

• Download, extract and copy ADAMS to /opt/adams

• If your flow is processing files, create the directory structure (see Figure
4.4 for an example).

• Make sure that all files and directories are owned by the adams user (using
chown) and that the permissions for the adams group are set correctly as
well (using chmod).

• Create a systemd startup script adams.service (using user/group adams/adams
in this example) as follows for flow myflow.flow (residing in /opt/adams/flows)
with 1GB of heap and running the remote command scripting engine on
port 12345:

cat adams.service
[Unit]
Description=My Flow
After=syslog.target network.target

[Service]
Type=simple
User=adams
Group=adams
Environment="JAVA_HOME=/opt/jdk"
Environment="PATH=/opt/jdk/bin:/usr/local/bin:/usr/bin"

WorkingDirectory=/opt/adams
ExecStart=/opt/adams/bin/daemon.sh start 1g /opt/adams/flows/myflow.flow 12345
ExecStop=/opt/adams/bin/daemon.sh stop 12345

[Install]
WantedBy=multi-user.target

4.3 Windows servers

ADAMS can be run as background process on Windows as well. Using the
NSSM[14] tool, you can a Windows service that executes the flow myflow.flow.
ADAMS is assumed for be installed in C:\adams for this example and myflow.flow
resides in the C:\flows directory.

Use the following steps to set up the service:

1Best practice is to create a new RSA key pair for this server/application, in case the server
gets compromised and you need to regenerate the key. The implications of replacing such a
key-pair are then fairly limited.

4.3. WINDOWS SERVERS 87

/

opt

data

incoming for receiving data
processing currently being processed
processedsuccessfully processed
failed failed to process for some reason

Figure 4.4: Example Linux directory layout for data processing.

• Set up a new, non-privileged user called adams, since we don’t want to
run ADAMS with admin rights in order to avoid potential attacks.

• Run nssm from the command-line (from the directory the nssm.exe exe-
cutable is located):

nssm install adams

• On the Application tab, select the batch file daemon.bat from the ADAMS
bin directory as the Path.

• Use the following Arguments to execute the flow with 1GB of heap and
the remote command scripting engine on port 12345:

start C:\textbackslash myflow.flow 1g 12345

• On the Log on tab, select This account and supply user and password to
run ADAMS under.

• On the Shutdown tab, tick Generate Control-C and use 10000 msec, to
give the flow time to properly shut down.

• On the Exit actions tab, you can enable the restarting of the service, but
maybe avoid this if the application has been running for less than 20,000
msec (an early crash of ADAMS is more likely caused by some misconfig-
uration and we don’t want the server to just try an reboot ADAMS all
the time).

• On the I/O tab, you can redirect the output from stdout and stderr into
files. Not necessary, but very useful when trying to determine the cause
of problems during execution and your flow isn’t generating log files itself.
If using log files, it is best to set up file rotation on the File rotation tab
to not lose output from previous runs.

• On the Environment tab, you can set any environment variables that your
flow might need.

• Click on Install service

You can now start and stop the service adams from the computer’s control
panel.

If you should need to update the service, you execute nssm as follows:

nssm install adams

88 CHAPTER 4. REMOTE COMMANDS

C:/

data

incoming for receiving data
processing currently being processed
processedsuccessfully processed
failed failed to process for some reason

Figure 4.5: Example Windows directory layout for data processing.

4.4 Executing commands

Using the adams.scripting.CommandRunner command-line utility, it is possible
to send commands to remote ADAMS instances from within scripts, e.g., for
automating shutdowns or execution of flows.

The following script sends the Stop command to the ADAMS instance run-
ning on host.somewhere.org, listening on port 12345 for commands:

adams.scripting.CommandRunner \

-command

adams.scripting.command.basic.Stop

-connection

"adams.scripting.connection.DefaultConnection -host host.somewhere.org -port 12345"

Chapter 5

Tools

Among the items in the Tools menu are the most important tools of ADAMS,
the interfaces for editing and running flows.

5.1 File commander

The File commander is a file manager wtih two panes for easy copying, moving,
deleting and viewing of files. It was inspired by the Midnight Commander1.
Figure 5.1 shows a screenshot.

Figure 5.1: File manager interface.

1http://www.midnight-commander.org/

89

http://www.midnight-commander.org/

90 CHAPTER 5. TOOLS

5.2 File monitor

With the File monitor interface you can monitor files that only ever get append,
like log files. After selecting a file, the text area will get updated with any new
lines getting appended to the file. Figure 5.2 shows output from the ADAMS
log file, generated by a flow outputting logging information.

Figure 5.2: Monitor files for lines being appended, like log files.

5.3. FIND IN FILES 91

5.3 Find in files

Locating files that contain certain text can be achieved with the File in files
dialog. It allows you to search recursively for files, starting from a top-level di-
rectory, looking for files that match a specific pattern. Any file that matches can
be searched either using simple sub-string matching or via a regular expression.

Figure 5.3: Find in files interface.

92 CHAPTER 5. TOOLS

5.4 Flow editor

The Flow editor is the central tool in ADAMS, allowing you the definition of
powerful workflows for a multitude of purposes. See chapter 2 for a comprehen-
sive introduction.

5.5 Flow runner

The Flow runner is an interface to execute flows without the user being able to
modify them. See chapter 2.3 for more information.

5.6 Text editor

The Text editor is a very simply editor for plain text files. It allows you to view
and edit one file at a time. It also supports printing and, if the net module is
present, sending the files via Email.

Figure 5.4: Editor for viewing/editing plain text files.

5.7. COMPARING TEXT 93

5.7 Comparing text

The Comparing text tool allows you two compare two files or content pasted
from the clipboard (using the paste buttons at the bottom) or a mixture of
both. Figure 5.5 shows the open dialog and the comparison of the files in the
background (red depicts changes between the files, blue a deletion and green an
addition).

Figure 5.5: Comparing two text files.

94 CHAPTER 5. TOOLS

Chapter 6

Maintenance

The Maintenance menu is only available, if the application has been started
as a user labeled as expert or developer. By default, the user is assumed to
be a basic user, not needing the more advanced features, requiring more care
and consideration. If access to maintenance tools is required, you can add the
following to the command-line for starting up ADAMS:

-user-mode EXPERT

or

-user-mode DEVELOPER

95

96 CHAPTER 6. MAINTENANCE

6.1 Placeholder management

Whenever file names are being used in a flow, you run the danger for making
your flow only executable on your own machine. In order to make it easy to
use flows on multiple computers with different directory structures, ADAMS
introduces the concept of placeholders. Placeholders are basically system-wide
defined variables for directories. This allows you to define a placeholder called
XYZ and point it to directory /some/where on computer 1. On computer 2, on
the other hand, you point it to /somewhere/completely/different. As long as the
directory structure below this placeholder is the same, the flow is guaranteed to
work.

In Figure 6.1 you can some see placeholders already defined. Here, the
placeholders are used for example flows for various presentations.

Figure 6.1: Viewing the currently defined placeholders.

6.1. PLACEHOLDER MANAGEMENT 97

Adding placeholders
In order to add a new placeholder, you need the following two steps:

1. Add the name for the new placeholder, e.g., TEST (see 6.2)

2. Add the directory that this placeholder is to represent (see 6.3).

After you added this placeholder the management panel will look as shown in
panel 6.4. In order to make the changes persisten, you need to save the changes
(see 6.5) and restart the application.

Figure 6.2: Entering the name for a new placeholder.

Figure 6.3: Selecting the directory that the new placeholder represents.

98 CHAPTER 6. MAINTENANCE

Figure 6.4: The updated view of the placeholders.

Figure 6.5: Making the placeholder changes persistent.

6.1. PLACEHOLDER MANAGEMENT 99

Editing placeholders
By double-clicking on a cell, you enter the edit mode of the cell and you can
either change the name of the placeholder or the path. Figure 6.6 shows the
latter.

Figure 6.6: Editing the path of a placeholder.

Double-clicking a second time on the path, while you are in edit mode, you
can bring up a dialog for selecting a directory (see 6.7). This is less error
prone than manually entering the path. Of course, after you have updated a
placeholder, you need to make these changes persistent again by saving the
configuration and restarting the application.

Figure 6.7: Selecting the new directory that the placeholder should represent
instead.

100 CHAPTER 6. MAINTENANCE

6.2 Named setup management

ADAMS allows you to define setups of, e.g., filters that can be referenced then
by their name, hence named setup. In case of filters, this would happen by using
the special filter NamedSetup.

In Figure 6.8 you can see the currently defined setups of a test system – your
view might look different.

Figure 6.8: Viewing the currently defined named setups.

Adding a new named setup is a three-stage process: first, you select the class
hierarchy (see 6.9); second, you select and configure the actual setup that you
want to reference (see 6.10); third, add the nickname for this setup (see 6.11).
This will update the main view as shown in Figure 6.12. In order to make these
changes persistent, you need to save them by selecting the Save menu item from
the menu of the management panel.

Figure 6.9: The class hierarchy for the named setup.

6.2. NAMED SETUP MANAGEMENT 101

Figure 6.10: Selecting the configuration that the new named setup represents.

Figure 6.11: The nickname for the setup.

Figure 6.12: The updated view of the named setups.

102 CHAPTER 6. MAINTENANCE

6.3 Favorites management

The last thing you want to do, is wasting time on configuring the same setup
in, e.g., the object edit over and over again. Figure 6.13 shows how to use the
favorites mechanism for selecting a favorite, replacing the currently displayed
object in the object editor completely. Figure 6.14, on the other hand, shows
how to add the setup from a property as a new favorite, using the right-click
menu of the property. Favorites get grouped by the superclass they belong to
in the object editor.

Figure 6.13: Making use of a favorite in the Flow editor.

ADAMS distinguishes between permanent and temporary favorites. The
latter are only available in the current session and won’t get stored on disk (in
GenericObjectEditorFavorites.props). They are considered more of an extended
clipboard.

Of course, ADAMS comes with a management interface for maintaining all
the various setups, allowing you to store, edit, rename and remove (named)
configurations.

6.3. FAVORITES MANAGEMENT 103

Figure 6.14: Adding a setup in the object editor to the favorites.

104 CHAPTER 6. MAINTENANCE

Adding a favorite
When starting from scratch with the favorites, then it will most likely be the
case that you haven’t got a superclass group yet in your favorites that you want
to add the new favorite to. In that case, you need to Add a superclass on
the left side first (see 6.15). This automatically pops up the dialog then that
allows you to configure a favorite for this superclass (see 6.16). Accepting the
configuration will prompt you with a dialog requesting a name for the favorite
(see 6.17). Once this is done, the view is refreshed as seen in Figure 6.18.

Figure 6.15: Adding a favorite for new superclass.

6.3. FAVORITES MANAGEMENT 105

Figure 6.16: Configuring the new favorite.

Figure 6.17: Naming the favorite.

106 CHAPTER 6. MAINTENANCE

Figure 6.18: The updated favorites view.

6.3. FAVORITES MANAGEMENT 107

Editing a favorite
It is not uncommon that favorites can change slightly (or even more drastic) over
time. Being able to update the setups is therefore important. By selecting an
existing favorite on the right-hand side and clicking on Edit, you can change the
existing setup (see 6.19). If the new setup is accepted, the view gets refreshed
and the new setup is being displayed as shown in Figure 6.20.

Figure 6.19: Changing a different setup for a favorite.

108 CHAPTER 6. MAINTENANCE

Figure 6.20: The view with the updated favorite.

6.3. FAVORITES MANAGEMENT 109

Renaming a favorite
With the number of favorites growing or simply updating them, it can happen
that renaming of one or more favorites is required. By selecting a favorite on
the right-hand side, you can click on Rename to bring up a dialog for the new
name (see 6.21). If this dialog is confirmed, the view gets refreshed and the
renamed favorite is being displayed as shown in Figure 6.22.

Figure 6.21: Choosing a new name for the favorite.

110 CHAPTER 6. MAINTENANCE

Figure 6.22: The view with the renamed favorite.

6.3. FAVORITES MANAGEMENT 111

Saving the favorites
Of course, in order to make the changes permanent, you have to save them to
disk. You can do this by selecting File → Save from the menu as shown in
Figure 6.23.

Figure 6.23: Saving the modified favorites.

112 CHAPTER 6. MAINTENANCE

Chapter 7

Help

The following sections discuss some of the tools available from the Help menu.

7.1 Actor usage

The class adams.flow.core.ActorUsage allows you to generate a spreadsheet that
generates an overview of which actors are used in what flows. Here is an example
command-line for Linux:

adams.flow.core.ActorUsage \

-dir ./flows \

-recursive \

-no-path \

-output $HOME/actors.csv \

-logging-level INFO

The command looks recursively for flows, starting in the ./flows directory. The
generated output, omitting the path from the flow files, is written to actors.csv
in the user’s home directory.

Rather than using a static spreadsheet, you can also use this tool from the
main menu: Help -¿ Actor usage. After selecting a directory containing flows
(which will get searched recursively), you will be presented with a dialog that
displays the generated spreadsheet (see Figure 7.1). This dialog also allows you
to select one or more flow files and then edit them, by clicking on the Edit
button. You can directly edit a single flow by double-clicking on it in the table
as well.

113

114 CHAPTER 7. HELP

Figure 7.1: Overview of actor usage in flow files.

7.2 Class help

With the Class help interface, you can look up information about any class
available in ADAMS’ classpath. Depending on whether ADAMS has a built-in
class help generator, the display may only consist of the available methods and
fields. Figure 7.2 shows the help dialog for the SelectFile source actor.

7.3. SYSTEM INFO 115

Figure 7.2: Class help.

7.3 System info

The System info gives you an overview of the following items:

• Environment variables

• Java properties (from java.lang.System.getProperty(...))

• Memory information

• Currently defined placeholders (used in filenames)

• Project information (e.g., home directory, classpath)

Figure 7.3 shows an example dialog. The displayed data can be searched and
exported.

116 CHAPTER 7. HELP

Figure 7.3: System info.

7.4 System performance

With System performance you can test how fast your system is. After submit-
ting a range of parameters, several flows are used to monitor the time it takes to
perform mathematical calculations and disk I/O (see Figure7.4 for an example).

Please be aware that this takes some time and will put a heavy load on your
machine.

7.5. MEMORY 117

Figure 7.4: System systemperformance.

7.5 Memory

If you are concerned about memory usage in your flows, you use the Memory
dialog for monitoring the memory consumption over time (see Figure 7.5).

Figure 7.5: Memory monitoring.

118 CHAPTER 7. HELP

7.6 Miscellaneous

• Take screenshot – allows you to take a screenshot and save it to a file.

• Homepage – opens the default browser with the ADAMS homepage

• About – the infamous about box, with information about the modules that
your ADAMS instance was built with.

The following menu items are only available if you switch to user mode
Developer in the Program menu:

• JDeps – for calculating class dependencies

• JMap – outputs information about currently load classes and objects and
how much memory they takeup

• JConsole – for monitoring a Java application

• JVisualVM – another monitoring tool for Java applications

• Garbage collector – let the system reclaim unused objects and free up
memory

Chapter 8

Customizing ADAMS

Though ADAMS may lack somewhat preference dialogs in the user interface, it
nonetheless allows you to customize a lot of the behavior and the way things are
displayed using properties files or environment variables. The following sections
explain the basics of how this customization works and goes into detail for some
of the user interfaces in ADAMS.

8.1 Environment variables

The following variables are recognized:

• ADAMS OPTS – Instead of supplying command-line options, you can also
set the options using this variable. For instance, to always use the expert
menu mode, use the following:
ADAMS OPTS=-user-mode EXPERT

8.2 Properties files

propsfiles) A properties file is a plain text file that ends with the extension
.props. Each properties file contains key-value pairs that are separated by an
equals sign (“=“). A backslash at the end of a line can be used to break up
long lines and continue on the next one. The default setup is defined in the file
present in the jar archive. But you can override this behavior in two places: your
home directory ($HOME/.adams for *nix and %USERHOME%\adams for Windows)
and the current directory that the application is executed from. The current
directory approach, if ADAMS is installed in a directory accessible to all users,
can be used to define system-wide configurations. The home directory approach,
on the other hand, is for user-specific customizations (e.g., preferred keyboard
shortcuts). Overriding a properties file works by simply creating a new file
with the exact same file name (case-sensitive) and providing a new value for
a key that exists in the default properties files. Only the file name needs to
be the same, you do not need to create a directory structure in the home or
current directory. Here is an example: if you want to override the properties
files adams/some/where/Blah.props, then you simply create a Blah.props file,

119

120 CHAPTER 8. CUSTOMIZING ADAMS

the adams/some/where part is omitted. The order in which properties files are
read, is as follows:

1. jar archive

2. home directory

3. current directory

It is also possible to override the default properties with platform-dependent
ones. At each point in the order that the properties are read, first the default
file is read (extension .props) and then it is attempted to load the platform
specific properties with its platform-specific extension:

1. Linux: .linux

2. Android: .android

3. Mac: .mac

4. Windows: .windows

The default home directory mentioned above can be changed using the ADAMS HOME

environment variable.

8.3 Main menu

The menu that ADAMS presents to the user, is defined in the following prop-
erties file:

adams/gui/Main.props

With this configuration you can determine the menu layout, the shortcuts,
whether additional menu items get automatically discovered and added (see
section 12.5 for details on adding new menu items) and whether certain menu
items should get black-listed, i.e., not shown in the menu (in case of automatic
menu item discovery).

Menu layout
The main menu is generated using the MenuBar key. This key simply lists the
names of the menus that the menu bar should offer in a comma-separated list.
Here is a simple example:

MenuBar=Program,Visualization,Windows

The menu items for each of the menus listed there have a key in the properties
file that starts with Menu- and then has the nme of the menu. The value itself
is once again a comma-separated list, but this time listing the class names of the
menu item. The “-” character can be used to insert a separator. For instance,
the entry for the Visualization key could look like thisL

Menu-Visualization=\

adams.gui.menu.ImageViewer,\

adams.gui.menu.PreviewBrowser

The Windows menu is a special one which gets populated automatically.

Shortcuts
Keyboard shortcuts do not only speed up interaction with an application, they

8.4. FLOW EDITOR 121

are also a very personal thing. A key for shortcut consists of the prefix Shortcut-
and the class name of the menu item. The value for the key is then ac-
cording to the format defined for the getKeyStroke(String s) method of the
javax.swing.KeyStroke class. You can use ctrl for the Control key, shift for
the Shift key, alt for the Alt key and meta for the Apple key. The following
key defines the Ctrl+F shortcut for the Flow editor.

Shortcut-adams.gui.menu.FlowEditor=ctrl pressed F

Automatic menu item discovery
Adding new menu items to the main menu, e.g., from other modules that you
refernce, can be quite useful. Automatic discovery takes out the hassle of having
to manually maintain the properties file by adding menu items whenever a
module offers a new menu item. Turning the automation on or off is done using
the following key and using either “true” or “false” as value:

AutomaticMenuItemDiscovery=true

Black-listing menu items
With automatic discover enabled, you give up control on what menu items are
being displayed (and the where as well). In some cases, in can be necessary to
suppress a menu item (or lift the ban for one). Suppressing or black-listing an
item is very easy, you simply need to add a key to properties file that prefixes
the menu item’s class name with Blacklisted-. The value for this property is of
course boolean, with the values “true” or “false”. For instance, the menu item
adams.gui.menu.SomeViewer can be suppressed using the following key:

Blacklisted-adams.gui.menu.SomeViewer=true

Moving menus
All menu items come with predefined categories, which translate to the menu
that they appear in. However, there may be cases that you want to rearranged
the menu slightly. For instance, the menu item adams.gui.menu.SomeViewer
can be reassigned to the menu Tools as follows:

Category-adams.gui.menu.SomeViewer=Tools

8.4 Flow editor

The flow editor already comes with a basic preference dialog (Program → Pref-
erences → Flow), but you can still customize it further. See section 12.6.1 for
customizing the shortcuts in the main menu and section 12.6.2 for customizing
the popup menu for the actor tree (menu layout and shortcuts). If you want to
attach keyboard shortcuts to some specific actions, like adding a specific actor
(something you do very often), then you can do that as well. Check out the
12.6.3 section.

122 CHAPTER 8. CUSTOMIZING ADAMS

8.5 Fonts

It is possible to modify the fonts that ADAMS uses for its widgets. Usually,
this is not necessary. However, in case the default doesn’t display certain char-
acters (e.g., insufficient unicode support), you can change the font used in text
fields/areas/panes. See Figure 8.1 for a screenshot of the preferences page for
fonts.

Figure 8.1: Font preferences

8.6 Proxy

In companies or organizations, the use of proxies for internet access is quite
common. In order for you to be able to go through the proxy, you need to
configure ADAMS’ proxy settings accordingly. You can find the settings in
the Preferences dialog (Program → Preferences → Proxy). Basically, you have
to specify the type of proxy (http or socks), the proxy server and the port
its listening on and also exclude hosts on your network from being accessed
through the proxy. These are usually: localhost, 127.0.0.1 and everything inside
your domain. For instance, if your local domain is blah.com, then you can
use the following wildcard: *.blah.com. Some proxies require authentication,
which you can provide as well in the dialog, once you have checked the Requires
authentication checkbox. See Figure 8.2 for an example setup.

8.7 Time zone

ADAMS allows you to change the time zone it is operated in to one that is
different from the system’s one. You can find the settings in the Preferences
dialog (Program → Preferences → Time zone). If you choose Default, then this
will simply use your system’s default time zone. See Figure 8.3 for an example
setup.

8.8. LOCALE 123

Figure 8.2: Proxy preferences

Figure 8.3: Time zone preferences

8.8 Locale

Just like with the time zone settings, you can also change the locale settings
that ADAMS is operating with. By default, it uses the system’s locale. You can
find the settings in the Preferences dialog (Program → Preferences → Locale).
If you choose Default, then this will simply use your system’s default locale. See
Figure 8.4 for an example setup.

8.9 Database access

In order to add support in ADAMS for other databases, the following steps are
required:

• Place the jar archive of the JDBC driver in the lib directory.

• Either update the Drivers.props properties file in the source tree, adding
the classname of the JDBC driver to the Drivers key. For instance, use

124 CHAPTER 8. CUSTOMIZING ADAMS

Figure 8.4: Locale preferences

oracle.jdbc.OracleDriver for the Oracle driver:

Drivers=\

com.mysql.jdbc.Driver,\

oracle.jdbc.OracleDriver

This is a comma-separated list, so just append your JDBC driver(s).
Alternatively, just place a new properties files Driver.props in one of the
locations that ADAMS is looking for them (see ??).

8.10 Browser

Since release 6, Java can launch the desktop’s default browser. With the huge
variety of desktops for Linux, this does not work properly all the time, unfortu-
nately. Or it simply launches the wrong browser. If your desktop on Linux is not
supported, ADAMS uses a fallback method to determine an available browser.
The LinuxBrowsers property in the adams/gui/core/Browser.props properties
file defines the order of the binaries that ADAMS looks for. The first binary
that it can find, it will use.

However, if you want to use a specific browser, you can do that as well.
You simply have to supply an absolute path to the browser’s binary in the
DefaultBrowser property. This will override any automatic browser discovery.
Here is an example for specifying the Firefox browser on Linux:

DefaultBrowser=/usr/bin/firefox

This override can be used on all platforms.

Chapter 9

Miscellaneous

9.1 Environment variables

ADAMS recognizes the following environment variables:

• ADAMS HOME - the directory to store ADAMS config files in, typically
$USER/.adams or %USERPROFILE%
.adams.

• ADAMS USERNAME - the user’s name, if necessary to set or override (default:
System.getProperty("user.name"))

• ADAMS USERHOME - the user’s home directory, if necessary to set or override
(default: System.getProperty("user.home"))

• ADAMS USERDIR - the user’s current working directory, if necessary to set
or override (default: System.getProperty("user.dir"))

• ADAMS PLACEHOLDERS - for overriding placeholders defined in the Placeholders.props
file(s) using semi-colon separated list of placeholder=value pairs

Launching
The Launcher (package: adams.core.management) supports these environment
variables:

• ADAMS LIBRARY PATH - adds -Djava.library.path= to the command-line

• ADAMS OPTS - gets appended to the generated command-line

The launcher.sh shell script supports the ADAMS PRIORITY environment vari-
able and inserts the value via the -priority argument of the Launcher class.

Logging
When using FileHandler or RotatingFileHandler (package: adams.core.logging)
for managing the logging output (e.g., via the ‘-logging-handler‘ command-line
option), then the ADAMS LOGFILE PREFIX environment variable can be used to
prefix the files. This is useful for separating the log files when running multiple
ADAMS processes on the same machine (e.g., as Linux daemon or Windows
service).

Classes, when implementing the adams.core.logging.LoggingSupporter

interface, allow setting their logging level via environment variables, consisting

125

126 CHAPTER 9. MISCELLANEOUS

of their class name and the .LOGLEVEL suffix. Dots can be replaced with under-
scores and uppercase can be used as well. For instance, for class hello.world.App,
you could use:

• hello.world.App.LOGLEVEL

• hello world App LOGLEVEL

• HELLO.WORLD.APP.LOGLEVEL

• HELLO WORLD APP LOGLEVEL

You can even use the simple class name, i.e., dropping the package name
(hello.world). However, that may have unexpected side-effects if the simple
class name is not unique.
As for the actual logging level, you can choose from:

• OFF

• SEVERE

• WARNING

• INFO

• CONFIG

• FINE

• FINER

• FINEST

WARNING is typically the default level, to avoid unnecessary output.

Properties files
For configurations managed by ADAMS and stored in properties files (.props),
you can override values from these with environment variables as well. E.g., for
properties file adams/core/io/FileUtils.props ADAMS checks for the envi-
ronment variables adams core io FileUtils and ADAMS CORE IO FILEUTILS.
The content of such a variable is a semi-colon separated list of property=value
pairs:

MaxExtensionLength=7;IgnoredExtensionSuffixes=7z,bz2,gz,z

9.2 Troubleshooting

• ADAMS is unusable on Linux after coming back from sleep, due to a
Exception in thread ”AWT-EventQueue-0” java.lang.ClassCastException:
sun.awt.image.BufImgSurfaceData cannot be cast to sun.java2d.xr.XRSurfaceData
– this error occurs on some Linux machines starting with Java 8 (or 1.8.0).
You can avoid this by setting the JAVA TOOL OPTIONS environment vari-
able with the following value:

-Dsun.java2d.xrender=false

On Linux or Mac OSX, you would place the following command in your
$HOME/.profile file (effective after logging out and back in again):

export JAVA_TOOL_OPTIONS="-Dsun.java2d.xrender=false"

9.2. TROUBLESHOOTING 127

• Rendering images on screen, e.g., in the image viewer, is blocking the
Linux system. You may be able to resolve this by tuning on OpenGL
rendering by supplying the following option to the JVM1:

-Dsun.java2d.opengl=true

On Linux or Mac OSX, you would place the following command in your
$HOME/.profile file (effective after logging out and back in again):

export JAVA_TOOL_OPTIONS="-Dsun.java2d.opengl=true"

1Found here: http://www.oracle.com/technetwork/java/javase/java2d-142140.html#

gdpji

http://www.oracle.com/technetwork/java/javase/java2d-142140.html#gdpji
http://www.oracle.com/technetwork/java/javase/java2d-142140.html#gdpji

128 CHAPTER 9. MISCELLANEOUS

Part II

Developing with ADAMS

129

Chapter 10

Tools

ADAMS, like any other complex project, is using a revision control system to
keep track of changes in the code and a build system to turn the source code
into executable code.

The requirements are as follows:

• Java 1.8+

• Maven 3.0+

• TexLive 2010+ (for compiling the LaTeX documentation)

The following sections cover the various tools and environments that are
used when developing for/with ADAMS.

10.1 Git

The revision control system that ADAMS uses as backend is Git[4], hosted on
Github[5]. The ADAMS repository is accessible via the following URL:

https://github.com/Waikato/adams-base

You can clone the code in the console using the following command, provided
you have the git command-line tools installed:

git clone https://github.com/Waikato/adams-base.git

Further modules are available from these repositories:

• addons (less common used modules)
https://github.com/Waikato/adams-addons

• incubator (experimental modules)
https://github.com/Waikato/adams-incubator

• libraries (modules with additional libraries, like CUDA)
https://github.com/Waikato/adams-libraries

• spectral-base (modules for spectral data analysis)
https://github.com/Waikato/adams-spectral-base

• applications (meta-modules that combine various modules into domain-
specific applications)
https://github.com/Waikato/adams-applications

131

https://github.com/Waikato/adams-base
https://github.com/Waikato/adams-addons
https://github.com/Waikato/adams-incubator
https://github.com/Waikato/adams-libraries
https://github.com/Waikato/adams-spectral-base
https://github.com/Waikato/adams-applications

132 CHAPTER 10. TOOLS

10.2 Maven

ADAMS was designed to be a modular framework, but not only multi-module
but multi-project and each of the projects consisting of multiple modules. In
order to manage such a complex setup, a build system that can handle all this
was necessary. Apache Maven [6] fits the bill quite well, coming with a huge
variety of available plug-ins that perform many of the tasks that are necessary for
build management, e.g., generating binary and source code archives, automatic
generation of documentation.

10.2.1 Nexus repository manager

By default, maven merely uses a remote site that one copies archives via scp

or sftp. This approach does not offer a fine-grained access control, you either
have access or you don’t. Also, if you are deploying snapshots on a constant
basis, these will start to clutter your server hosting the archives, since none of
them will ever get removed - even if they are completely obsolete. For better
management of the maven repository, Sonatype’s Nexus repository manager [7]
is used.

In addition to hosting the ADAMS artifacts, Nexus also functions as a proxy
to common maven repositories like Maven Central, JBoss Public, java.net, Code-
haus, Apache and Google Code.

The manager instance for ADAMS is accessible under the following URL:
https://adams.cms.waikato.ac.nz/nexus/

10.2.2 Configuring Maven

In order to gain access to the repositories hosted by the Nexus repository man-
ager, maven needs to be configured properly. The following steps guide you
through the process:

Create maven home directory
First, you need to create maven’s home directory, if it doesn’t exist already.
The directory is usually located in your home directory and is called .m2. The
full path, on Unix/Linux/Mac systems, is as follows:

$HOME/.m2

On Windows, use the following instead:

%USERPROFILE\.m2%

Configure maven
Download the following configuration file and place it in your maven home
directory that you just created:

https://adams.cms.waikato.ac.nz/resources/settings.xml

This file will point maven to ADAMS’ repository manager, which manages not
only all the ADAMS modules, but also all its dependencies. It specifies a range
of public repositories, like Maven Central.

https://adams.cms.waikato.ac.nz/nexus/
https://adams.cms.waikato.ac.nz/resources/settings.xml

10.2. MAVEN 133

Proxy
If you are behind a proxy, you need to tell Maven about it. Let’s assume that
your proxy is called proxy.blah.com and its port is 3128.

If you don’t need a password to connect to it, you have to add the following
tag to your settings.xml file:

<proxies>

<proxy>

<active>true</active>

<protocol>http</protocol>

<host>proxy.blah.com</host>

<port>3128</port>

<nonProxyHosts>localhost|*.blah.com</nonProxyHosts>

</proxy>

</proxies>

If your proxy requires a user/password, then you have to 1) generate a master
password with Maven (which gets stored in settings-security.xml in your Maven
home directory) and then 2) the actual password for the proxy. The details are
explained on the Maven homepage1. Once you’ve created the passwords, you
have to add the following tag to your settings.xml file and replace the USER
and ENCRYPTED PASSWORD placeholders accordingly:

<proxies>

<proxy>

<active>true</active>

<protocol>http</protocol>

<host>proxy.blah.com</host>

<port>3128</port>

<username>USER</username>

<password>{ENCRYPTED_PASSWORD}</password>

<nonProxyHosts>localhost|*.blah.com</nonProxyHosts>

</proxy>

</proxies>

10.2.3 Common commands

Here are a few common maven commands, if you obtained ADAMS from sub-
version:

• Removing all previously generated output:
mvn clean

• Compiling the code:
mvn compile

• Executing the junit tests:
mvn test

• Executing a specific junit test:
mvn test -Dtest=<class.name.of.test>

• Packaging up everything:
mvn package

1http://maven.apache.org/guides/mini/guide-encryption.html

http://maven.apache.org/guides/mini/guide-encryption.html

134 CHAPTER 10. TOOLS

• Installing the ADAMS jars in your local maven repository (that will also
run the tests):
mvn install

• You can skip the junit test execution (when packaging or installing) by
adding the following option to the maven command-line:
-DskipTests=true

10.2.4 3rd-party libraries

Make sure that libraries that you use are publicly available from Maven Central,
http://search.maven.org/, otherwise they won’t be considered.

10.2.5 Troubleshooting

• SSL handshake alert: unrecognized name – this error occurs starting
with Java 7 (or 1.7.0). You can avoid this by setting the JAVA TOOL OPTIONS

environment variable with the following value:

-Djsse.enableSNIExtension=false

On Linux or Mac OSX, you would place the following command in your
$HOME/.profile file (effective after logging out and back in again):

export JAVA_TOOL_OPTIONS="-Djsse.enableSNIExtension=false"

You can see whether this is set correctly, when Maven reports the following
just after issuing a mvn command on command-line:

Picked up JAVA_TOOL_OPTIONS: -Djsse.enableSNIExtension=false

http://search.maven.org/

10.3. INTELLIJ IDEA 135

10.3 IntelliJ IDEA

IntelliJ IDEA[8] is a light-weight, but very powerful integrated development
environment (IDE), developed by JetBrains2.

10.3.1 Plug-ins

The community edition of IntelliJ IDEA (version 14 at time of writing) already
comes bundled with all the necessary plugins for ADAMS development. You
only need to set up ADAMS.

10.3.2 Setting up ADAMS

You can import ADAMS using the start screen of IntelliJ by clicking on Import
project as seen in Figure 10.2.

Figure 10.1: IDEA: Importing ADAMS a project.

Or by selecting File -¿ Import project... from the main menu (see Figure
10.2). Then, select the top-level directory of ADAMS and import it as Maven
project:

• import module from external model: Maven

• check import Maven projects automatically

• check create module groups for multi-module Maven projects

• select any relevant Maven profiles (or just use all of them)

If you want to add other projects, like adams-addons or adams-incubator, you
must import them via File -¿ Project structure... from the main menu. There,
select Modules and when clicking on the green plus sign, select Import module.

2https://www.jetbrains.com/

https://www.jetbrains.com/

136 CHAPTER 10. TOOLS

Figure 10.2: IDEA: Selecting the project path.

Once you’ve imported ADAMS, you can configure the JDK that you want
to use (1.8 at the time of writing). For this, open Project structure from the
main menu.

Under SDKs you can define all the SDKs that you want to be able to use.
Simply click on the green plus and select the top-level directory of your JDK
(see Figure 10.3).

And under Project, you can then select the SDK that you want to use for
the current project (see Figure 10.4).

ADAMS uses mixed spaces/tabs for indentation, with indentation being 2
spaces and a tab representing 8 spaces. Figure 10.5 shows where to set these
values.

Usually, you don’t want to compile when you launch the application, but
whenever you change the code. Hence, enable ”auto make”, as shown in Figure
10.6.

Despite having auto make enabled, it pays off to have a build action before
launching applications. Hence change the Before launch action to use Make,
no error check. Furthermore, you will most likely have the module’s top level
directory as the default working directory when starting up the application.
You can set this using the MODULEDIR variable (see Figure 10.7).

For creating a launcher (or Run configuration), you select Run -¿ Edit con-
figurations... from the main menu. When clicking on the green plus sign, use
Application as template and fill in adams.gui.Main as the main class and the
amount of RAM that you want to use, eg 2GB (see Figure 10.8).

10.3. INTELLIJ IDEA 137

Figure 10.3: IDEA: Configuring the SDKs.

Figure 10.4: IDEA: Selecting the project SDK.

138 CHAPTER 10. TOOLS

Figure 10.5: IDEA: Code formatting.

Figure 10.6: IDEA: Automatic compilation.

10.3. INTELLIJ IDEA 139

Figure 10.7: IDEA: Application defaults.

Figure 10.8: IDEA: Launching ADAMS.

140 CHAPTER 10. TOOLS

10.4 Eclipse

Prior to using IntelliJ IDEA, the choice of IDE was Eclipse[9]. It offers great
support for Maven and LaTeX - provided you install the proper plug-ins.

10.4.1 Plug-ins

In order to get the most out of developing with Eclipse, it is recommended to
install the following plug-ins:

• m2e – adds proper maven support
http://eclipse.org/m2e/

• texlipse – turns Eclipse into a type-setting environment with syntax high-
lighting, previewing, etc. This allows you to program and document with
the same application.
http://texlipse.sourceforge.net/

Furthermore, install the buildhelper m2e connector:

Window

-> Preferences

-> Maven

-> Discovery

For viewing the source code correctly, use the following code formatting
setup:
https://adams.cms.waikato.ac.nz/resources/eclipse-code-formatting.

xml

10.4.2 Setting up ADAMS

After installing the recommended plug-ins, you can proceed to import the
ADAMS source code that you checked out earlier using subversion. Import-
ing maven projects is extremely easy:

• right-click in the Navigator or Project Explorer and select Import...

• select Maven → Existing Maven projects

• choose the top-level directory of your ADAMS source code tree (the one
that contains all the modules and the system-wide pom.xml)

• select all the projects that you want to work with and hit Finish

For projects that have LaTeX documentation, you have to make sure that the
texlipse plugin is configured correctly, otherwise you might end up losing files.
Figure 10.9 shows an example setup for the manual of the adams-core module.
This module has the adams-core-manual sub-directory below the latex directory,
with a LaTeX file of the same name, i.e., adams-core-manual.tex. This LaTeX
file is listed as the main TeX file in the setup. Since the documentation is gen-
erated using pdflatex, the output format is pdf and the build command pdflatex.
It is very important not to place any temporary files in the source directory,
as they might get deleted during an Eclipse clean project operation. Instead,
the output directory should be target/latex/<documentation sub-dir> (e.g.,
target/latex/adams-core-manual), and the output file target/latex/<documentation
sub-dir>/<documentation sub-dir>.pdf (e.g., target/latex/adams-core-manual/adams-
core-manual.pdf).

http://eclipse.org/m2e/
http://texlipse.sourceforge.net/
https://adams.cms.waikato.ac.nz/resources/eclipse-code-formatting.xml
https://adams.cms.waikato.ac.nz/resources/eclipse-code-formatting.xml

10.5. CUSTOM MAVEN PROJECT 141

Figure 10.9: Eclipse: texlipse configuration for the adams-core module.

10.5 Custom Maven project

The ADAMS website allows you to create a custom Maven setup of a custom-
tailored ADAMS distribution with just the modules that you want to include.
You can access this functionality here:
https://adams.cms.waikato.ac.nz/roll-your-own

Figure 10.10 shows a screenshot of the website.

10.6 Non-maven approach

Though it is recommended, the use of Maven is not required. If you download
a release or snapshot of ADAMS, you can simply link your project against all
the jars in the lib directory for compiling your code.

Creating a new release can be done like this as well: simply drop any ad-
ditional jars that your project requires and/or generates in the lib directory.
You only need to create a new archive from the ADAMS directory to get an
extended ADAMS release/snapshot. No need to update any scripts, as all jars
in the lib directory get added to the classpath automatically.

When using Eclipse or IntelliJ IDEA with this approach, the only disadvan-
tage is that you will have to manually attach the sources to the project (located
in the src directory). Otherwise you won’t be able to view ADAMS classes
as source code. This is something that gets handled automatically by the m2e
Eclipse plugin for Maven.

https://adams.cms.waikato.ac.nz/roll-your-own

142 CHAPTER 10. TOOLS

Figure 10.10: Screenshot of the “Roll your own” section of the ADAMS website.

Chapter 11

Using the API

Using the graphical user interface may be sufficient for most users, but as soon
as you want to embed one framework in another, you need to get down and
dirty with the API. This chapter addresses some core elements of the ADAMS
API, mainly the flow related APIs.

11.1 Flow

The API of the flow component of ADAMS is simple by design. The idea was to
provide not just a graphical interface for setting up and manipulating flows, but
also enabling other people for embedding flows in their own code. Limiting the
interface to only a few methods was therefore necessary. The following sections
provide an in-depth discussion of the API.

11.1.1 Life-cycle of an actor

Any actor, whether a simple one like the Display actor or a control actor like
Branch, has the following lifecycle of method calls:

• setUp() – performs initializations and checks, ensuring that the actor can
be executed

• execute() – executes the actor, i.e., transformers process the input data
and generate output data

• wrapUp() – finishes the execution, frees up some memory that was allo-
cated during execution

• cleanUp() – removal of graphical output, like dialogs/frame and destruc-
tion of internal data structures

The setUp() and execute() methods return null if everything was OK, otherwise
the reason (i.e., error message) why the method didn’t succeed. The execute()
method is executed as long as finished() returns false.

OutputProducer
As long as the hasPendingOutput() method of an actor implementing Output-
Producer returns true, output tokens will get collected and passed on to the
next InputConsumer.

143

144 CHAPTER 11. USING THE API

11.1.2 Setting up a flow

ADAMS distinguishes between primitive actors, like the Display actor, and
ones that handle other actors, like the Branch actor. The actor handlers can
be divided into ones that have a fixed number of sub-actors, like the IfThenElse
actors (always two sub-actors), and others that can have a more or less arbitrary
number of sub-actors (a lower bound may be defined, though), like the Branch
actor.

Usually, the Flow control actor is the outermost actor. But this is not
necessary. In theory, any actor can be setup, executed and destroyed again.
Only if you need things like variables and internal storage, you will need a
control actor like the Flow actor to provide this kind of functionality.

Setting up a flow conists basically of nesting the actors like in the flow ed-
itor. The tree structure in the flow editor is a 1-to-1 representation of the
underlying actor nesting. For actors that handle sub-actors (implementing the
ActorHandler interface), you can use the set(int, AbstractActor) method
for setting/replacing a sub-actor at the specified index. Actors that imple-
ment the MutableActorHandler interface instead, adding of new actors is much
simpler: either using the add(AbstractActor) method (appends the actor at
the end) or add(int, AbstractActor), which adds/inserts the actor at the
specified location. To remove any previous existing actors, you can call the
removeAll() method. Instead of adding the actors one-by-one, some actors
(mainly MutableActorHandler ones) offer methods for setting/getting an array
of sub-actors, like the setActors and getActors methods of the Flow actor.

The following piece of code sets up a little flow that generates a number of
random numbers between 100 and 200, which get used as input in a mathemat-
ical expression (simply dividing the numbers by PI), before dumped them into
a text file in the temp directory.

import adams.flow.control.Flow;

import adams.flow.source.RandomNumberGenerator;

import adams.data.random.JavaRandomInt;

import adams.flow.transformer.MathExpression;

import adams.parser.MathematicalExpressionText;

import adams.flow.sink.DumpFile;

import adams.core.io.PlaceholderFile;

...

Flow flow = new Flow();

RandomNumberGenerator rng = new RandomNumberGenerator();

rng.setMaxNum(10);

JavaRandomInt jri = new JavaRandomInt();

jri.setMinValue(100);

jri.setMaxValue(200);

rng.setGenerator(jri);

flow.add(rng);

MathExpression math = new MathExpression();

MathematicalExpressionText expr = new MathematicalExpressionText();

expr.setValue("X / PI");

math.setExpression(expr);

11.1. FLOW 145

flow.add(math);

DumpFile df = new DumpFile();

df.setOutputFile(new PlaceholderFile("${TMP}/random.txt"));

flow.add(df);

11.1.3 Listening to the data

Using the ProgrammaticTokenListener transformer, it is possible for non-flow
code to listen to data that is passing through the flow. The following code listens
to the tokens that a ForLoop source is generating. This transformer allows
background flows to update, for instance, Swing user interface components.

import adams.flow.control.Flow;

import adams.flow.transformer.ProgrammaticTokenListener;

import adams.flow.transformer.ProgrammaticTokenListener.TokenListener;

...

Flow flow = new Flow();

ForLoop loop = new ForLoop();

flow.add(loop);

ProgrammaticTokenListener listener = new ProgrammaticTokenListener();

listener.addTokenListener((Token token) -> System.out.println("[WIRE] " + token.getPayload()));

flow.add(listener);

msg = flow.setUp();

if (msg != null)

throw new IllegalStateException(msg);

flow.execute();

flow.wrapUp();

flow.cleanUp();

146 CHAPTER 11. USING THE API

Chapter 12

Extending ADAMS

The overarching goal of ADAMS was to develop a plug-in framework, which
makes extending it very easy. The built-in dynamic class discovery is at the
heart of it. The following sections cover various aspects of extending ADAMS,
from merely adding a subclass to creating a new project built on top of ADAMS.

12.1 Instantiating classes and copying objects

12.1.1 Instantiating classes

ADAMS is, more or less, a plain old Java application, i.e., you could instantiate
classes in your code simply by using:

Class cls = Class.forName("my.pkg.MyClass");

However, ADAMS also incorporates other frameworks like Weka, which come
with their own class-loading mechanism. In order to handle situations like this,
you have to use the following class for instantiating other classes from their
respective class name:

adams.core.classmanager.ClassManager

Under the hood, implementations of the CustomClassManager interface (pack-
age adams.core.classmanager) take care of the actual instantiation of classes.
ClassManager records the underlying manager responsible for instantiating par-
ticular classes, speeding up the process the second time a class is being instan-
tiated.

As an example, you would correctly instantiate the above class as follows:

Class cls = ClassManager.getSingleton().forName("my.pkg.MyClass");

12.1.2 Copying objects

Generating deep copies of objects via serialization also has to go through the
ClassManager singleton, as not all classes may be accessible to the default class
loader. The following two methods are available:

• deepCopy(Object o) – prints any errors in the console

• deepCopy(Object o, boolean silent) – suppresses errors when silent

147

148 CHAPTER 12. EXTENDING ADAMS

12.2 Dynamic class discovery

ADAMS is a flexible plug-in framework thanks to the dynamic class discovery
that is offered through the adams.core.ClassLocator class. But merely locat-
ing classes is just half of the story, you also have to organize them. This is where
the adams.core.ClassLister class and its properties file ClassLister.props

(located in the adams.core package, below src/main/resources) come into
play. The ClassLister class iterates through the keys in the properties file,
which are names of superclasses, and locates all the derived classes in the listed
packages, the comma-separated list which represents the value of the property.

Here is an example for the conversion schemes that can be used with the
Convert transformer:

adams.data.conversion.Conversion=\

adams.data.conversion

The superclass in this case is the adams.data.conversion.Conversion inter-
face and only one package is listed for exploration, adams.data.conversion.

Instead of adding new keys and packages to this central properties file, when-
ever a new modules requires additional class discovery, the developer can just
simply add an extra file in their module. The only restriction is that it has to
be located in the adams.core package (below src/main/resources).

This works for adding new keys, i.e., new superclasses, as well as for merely
adding additional packages to existing superclasses. In the latter case, only the
additional packages have to be specified, since ADAMS will automatically merge
keys across multiple properties files.

12.2.1 Additional package

Coming back to the previous example of the conversion schemes, module funky-
module, package org.funky.conversion contains additional conversion schemes.
These are all derived from AbstractConversion, which implements the Conversion
interface. In that case, the ClassLister.props file would contain the following
entry:

adams.data.conversion.Conversion=\

org.funky.conversion

When starting up, ADAMS will merge the two props files and the key will look
like this, listing both packages:

adams.data.conversion.Conversion=\

adams.data.conversion,\

org.funky.conversion

12.2.2 Additional class hierarchy

Adding a new class hierarchy works just the same. You merely have to use the
superclass or interface that all other classes are derived from as key in the props
file and list all the packages to look for derived classes. Here is an example
for a class hierarchy derived from org.funky.AbstractFunkiness, which has
derived classes in the packages org.funky and org.notsofunky:

12.2. DYNAMIC CLASS DISCOVERY 149

org.funky.AbstractFunkiness=\

org.funky,\

org.notsofunky

For new class hierarchies, I recommend you sub-classing AbstractOptionHandler

(package: adams.core.option). This will ensure that option-handling will work
properly and that the classes are serializable.

12.2.3 Blacklisting classes

In production environments it might not always be wise to list all the classes
that are available, e.g., experimental classes. ADAMS provides a mechanism
to exclude certain classes, using pattern matching (using regular expressions).
These patterns are listed in the ClassLister.blacklist properties file. The
format for this file is similar to the ClassLister.props file, with the key be-
ing the superclass and the value a comma-separated list of patterns. In the
following an example that excludes a specified data conversion class called
SuperExperimentalConversion from being listed:

adams.data.conversion.Conversion=\

org\.funky\.conversion\.SuperExperimentalConversion

If you want to exclude all conversions of the og.funk.conversion package that
contain the word Experimental, then use the following pattern:

adams.data.conversion.Conversion=\

org\.funky\.conversion\..*Experimental.*

12.2.4 Blacklisting classpath elements

ADAMS inspects by default the whole classpath, which can take significant
time. It therefore allows the user to list directories, files and file patterns that
can be used for blacklisting parts of the classpath. This can be done through
the ClasspathBlacklist.props properties file.
The format is as follows:

Directories=dir1,dir2,...

Files=file1,file2,...

FilePatterns=regexp1,regexp2,...

Using the file patterns is the most flexible for blacklisting jar files, e.g.:

Directories=

Files=

FilePatterns=\

mysql-connector-java.*,\

jide-oss.*,\

logback.*,slf4j.*,\

rsyntaxtextarea.*,\

trove4j.*\,

jodd-core.*\,

java-cup-runtime.*

150 CHAPTER 12. EXTENDING ADAMS

12.2.5 Applications without dynamic class discovery

In order to speed up start up time, applications can get built with dynamic class
discovery turned off. These applications use class/package hierarchies that were
determined at build time. When starting up ADAMS, you will see the following
in the terminal:

adams.core.ClassLister: Using statically defined classes/packages

For these applications to use dynamic class discovery again, simply place an
empty ClassLister.classes file in the classpath. E.g., in the directory containing
the bin sub-directory with the scripts.

If you want to turn off dynamic class discovery in your Maven build, then add
the following to your build plugins in your pom.xml (and set the ${adams.version}
accordingly):

<plugin>

<groupId>nz.ac.waikato.cms.adams</groupId>

<artifactId>adams-maven-plugin</artifactId>

<version>${adams.version}</version>

<executions>

<execution>

<goals>

<goal>classlister</goal>

</goals>

</execution>

</executions>

</plugin>

The above Maven plugin generates two files, ClassLister.classes and ClassLister.packages.
You can generate these files also manually by calling the adams.core.ClassLister
class as follows:

adams.core.ClassLister -action classes -output /some/where/ClassLister.classes

adams.core.ClassLister -action packages -output /some/where/ClassLister.packages

These two files need to be in the root of the classpath used by ADAMS. If
you are using a regular build of ADAMS, then this would in the directory that
contains the bin and lib directories.

12.3 Creating a new actor

Being a workflow-centric application, it is most likely the case that a new module
will contain new actors and not just newly derived subclasses of already existing
superclasses. For this reason, the development of new actors is explained in
detail.

Developing a new actor is fairly easy, you only need to do the following:

• create a new class

• create an icon, which is displayed in the flow editor

• [optional, but recommended] create a JUnit test for the actor

12.3. CREATING A NEW ACTOR 151

12.3.1 Creating a new class

Any actor has to be derived from adams.flow.core.Actor. Depending on whether
the actor consumes or produces data, there are two more interfaces available:

• adams.flow.core.InputConsumer – for actors that process data that they
receive at their input

• adams.flow.core.OutputProducer – for actors that generate data of some
form

In general, four types of actors can be distinguished, based on the combina-
tions of these two interfaces:

• standalone – no input, no output

• source – only output

• transformer – input and output

• sink – only input

In order to make development of new actors easier and to avoid duplicate code
as much as possible, there are already a bunch of abstract classes in ADAMS
that implement these interfaces:

• adams.flow.standalone.AbstractStandalone – for standalones

• adams.flow.source.AbstractSource – for data producing source actors

• adams.flow.transformer.AbstractTransformer – for simple transformers that
take one input token and generate at most one output token.

• adams.flow.sink.AbstractSink – the ancestor of all sinks, actors that only
consume data

There are plenty more abstract super classes, since there are actors that perform
similar tasks. Some of them are listed below:

• adams.flow.sink.AbstractDisplay – for actors displaying data in a frame or
dialog

• adams.flow.sink.AbstractGraphicalDisplay – for actors that display graph-
ical data, e.g., a graph, which can be saved to an image file automatically

• adams.flow.sink.AbstractTextualDisplay – for actors that display text

A special interface, adams.flow.core.ControlActor, is an indicator interface for
actors that control the flow or the flow of data somehow. For instance, a Branch
actor controls the flow of data, since it provides each sub-branch with the same
data token that it received.

Actors that manage sub-actors, need to implement the adams.flow.core.ActorHandler
interface.

The special superclass adams.flow.control.AbstractControlActor already im-
plements the ActorHandler and ControlActor interfaces and implements some of
the functionality. The AbstractConnectorControlActor class in the same pack-
age, is used for control actors which sub-actors are connected, like the Sequence
actor. The sub-actors in the Branch actor, on the other hand, are not connected,
but treated individually.

The following methods you will usually have to implement:

• globalInfo() – The general help text for the actor.

152 CHAPTER 12. EXTENDING ADAMS

• doExecute() – Here the actual execution code is located, the pre- and
post- methods, you usually won’t have to touch. All three methods are
called in the execute() method.

12.3.2 Option handling

Option handling in ADAMS is available through classes implementing the OptionHandler
interface (package adams.core.option). Most classes or class hierarchies, that
includes the actors, are simply derived from AbstractOptionHandler, which
implements this interface and all the required methods. For adding a new op-
tion, there are usually only three things to do:

1. add the (protected) field

2. add the get-, set- and tiptext-methods that make up the new property
of this class

3. add an option definition

12.3.2.1 Example

The following shows how to implement a new option for an integer field volume
that only allows values from 1 to 11. For clarity’s sake, Javadoc comments have
been left out.
First of all, we define the (serializable) field:

protected int m_Volume;

Then we add the required methods1:

public void setVolume(int value) {

if (getOptionManager().isValid("volume", value)) // checks numeric bounds

m_Volume = value;

reset(); // notify object that the settings have changed

}

}

public int getVolume() {

return m_Volume;

}

public String volumeTipText() {

return "The volume to crank up the speakers to.";

}

And finally, we define the option, by overriding the defineOptions() method.
Otherwise, the option won’t show up in the GUI and you won’t be able to set
the value via a command-line string.

public void defineOptions() {

super.defineOptions();

m_OptionManager.add(

"volume", // flag on the command-line without the leading "-"

"volume", // the Java Bean property for getting/setting the value

1, // the default volume

1, // the minimum value

11); // the maximum value

}

1The tiptext method generates the help text in the GUI and command-line, so you should
never omit this.

12.3. CREATING A NEW ACTOR 153

For numeric values, like integers and doubles, you can specify the lower and
upper bounds, if that makes sense, like in our example here. If one of them is
to be unbounded, simply use null. If both are unbounded, then simply omit
the last two parameters.

12.3.3 Variable side-effects

Actors keep track of variables that have been attached to either one of their
own options (e.g., fieldIndex option of the StringCut transformer) or to options
of one their sub-objects (e.g., the numDecimals option of the DoubleToString
conversion used by the Convert transformer). Options like sub-actors, as used
by actor handlers such as Tee or Branch, are excluded from this monitoring.

Attaching a variable to an option has some side-effects that you need to be
aware of when variable values change:

• affected actors get re-initialized, since the configuration has changed, re-
suling in calls of the reset() and setUp() methods.

• actor handlers recursively call the setUp() of their sub-actors.

In order to prevent losing the internal state, due calling the reset() method, you
can backup the current state of member variables in an actor. For instance, the
Count control actor keeps track how many tokens have passed through. This
counter gets zeroed when calling reset(). You can backup/restore the current
state using the backupState and restoreState methods. These methods use an
internal hashtable to backup key-value pairs. The following code is used by
Count to backup the counter m Current :

public final static String BACKUP_CURRENT = "current";

protected Hashtable<String,Object> backupState() {

Hashtable<String,Object> result = super.backupState();

result.put(BACKUP_CURRENT, m_Current);

return result;

}

protected void restoreState(Hashtable<String,Object> state) {

if (state.containsKey(BACKUP_CURRENT)) {

m_Current = (Integer) state.get(BACKUP_CURRENT);

state.remove(BACKUP_CURRENT);

}

super.restoreState(state);

}

Of course, this counter now never gets zeroed, since we back it up all the
time. In order to zero the internal counter, i.e., if an option of the Count actor
itself was modified and it should get zeroed, you have to prune the backup. You
can do this by using the pruneBackup method, which gets called in case one of
its own members got modified. The code to achieve this is as follows:

protected void pruneBackup() {

super.pruneBackup();

pruneBackup(BACKUP_CURRENT);

}

154 CHAPTER 12. EXTENDING ADAMS

12.3.4 Graphical output

Using the AbstractGraphicalDisplay as superclass instead of AbstractDisplay,
allows you to take advantage of some additional functionality: menu, SendTo
framework integration.

Methods that require implementation are as follows:

• globalInfo() – a short description of the sink, available as help in the
GUI

• accepts() – the classes that this sink can process and display

• newPanel() – generates the panel that is added to the dialog

• clearPanel() – removes the currently displayed data

• display(Token) – processes and displays the content of the token pro-
vided (of one of the accepted classes)

If it is necessary to extend the default menu, you can override the createMenuBar()
method, which generates the JMenuBar that is used in the dialog.

It is recommended to implement the DisplayPanelProvider interface as
well. By doing this, the sink can be selected in the DisplayPanelManager sink,
which keeps a graphical history of the tokens passing through, by creating a
single panel per token.

12.3.5 Textual output

Instead of directly sub-classing AbstractDisplay, you should use AbstractTextualDisplay
instead. This abstract class already implements various interfaces like MenuBarProvider
and SendToActionSupporter, to provide the user with a menu for saving the
output, changing font size, etc and also enabling the user to take advantage of
the SendTo framework. In the simplest case, this is printing the textual output
on a printer.

You only need to implement the following methods in order to get a fully
functional interface:

• globalInfo() – a short description of the sink, available as help in the
GUI

• accepts() – the classes that this sink can process and display

• newPanel() – generates the panel that is added to the dialog

• clearPanel() – clears the (textual) content of the panel

• display(Token) – processes and displays the content of the token pro-
vided (of one of the accepted classes)

• supplyText() – returns text that is currently on display

If it is necessary to extend the default menu, you can override the createMenuBar()
method, which generates the JMenuBar that is used in the dialog.

12.3.6 Creating an icon

The icon has to be placed in the adams.gui.images package with the same name
as the class, but with a GIF or PNG extension. E.g., the Display actor’s full
class name is adams.flow.sink.Display. This means that ADAMS expects an
image called adams.flow.sink.Display.gif or adams.flow.sink.Display.png in the

12.4. EXTENDING ACTOR SUGGESTIONS 155

adams.gui.images package. NB: Since ADAMS uses Maven as build system,
non-Java files need to placed below the src/main/resources directory.

There are already some templates available for new icons:

• adams.flow.standalone.Unknown.gif – red outline

• adams.flow.source.Unknown.gif – orange outline

• adams.flow.transformer.Unknown.gif – green outline

• adams.flow.sink.Unknown.gif – grey outline

• adams.flow.control.Unknown.gif – blue outline

Just create a copy of one of these icons and modify it to make your actor
distinguishable from all the others in the flow editor.

12.3.7 Creating a JUnit test

JUnit 3.8.x [10] is used as basis for the unit tests. Test classes are placed in
src/test/java and have to be suffixed with Test. E.g., the Display actor has a
test class called DisplayTest in package adams.flow.sink.

A flow unit test needs to be derived from adams.flow.AbstractFlowTest and
only the getActor() method needs to be implemented by default. This method
typically returns a Flow actor which is set up and executed. If any step in the
lifecycle of the actor returns an error, the unit test will fail.

If required, a regression test can be performed. For this, you merely need
to implement a method called testRegression(), which calls the performRe-
gressionTest(File) or performRegressionTest(File[]) method. These methods
record the content of the specified files in a special reference file (found be-
low src/test/resources) and the next time the test is run the newly generated
output is compared against the stored reference data. If the data differs, the
regression test will fail. Please note, that you should remove temporary files
that you use for regression tests in the setUp() and tearDown() methods of the
unit test, to provide a clean environment to this and other tests.

Historically, unit tests required a test database to be present (as defined by
src/test/resources/adams/test/TestDatabase.props). However, you can
turn this off by creating a TestDatabase.props file in the project’s home di-
rectory (Linux/Mac: $HOME/.adams, Windows: \%USERPROFILE\%_adams):

DatabaseEnabled=false

12.4 Extending Actor suggestions

The flow editor comes with some predefined rules for suggesting actors based
on the context that you are trying to add an actor using the context sensitive
popup menu. These rules cover common sequences in actors, but are by no
means exhaustive. Therefore, you can always amend these, whether it be due
to adding a new actor or simply by using certain sequences of actors that are
not yet covered by the rules. The properties file that houses these rules is
ActorSuggestion.props (package adams.gui.flow.tree). Below is the grammar for
the rules:

expr_list ::= expr_list expr_part | expr_part ;

expr_part ::= IF boolexpr THEN cmdexpr ;

156 CHAPTER 12. EXTENDING ADAMS

boolexpr ::= (boolean)

| boolean

| boolexpr AND boolexpr

| boolexpr OR boolexpr

| TRUE

| FALSE

| NOT boolexpr

| ISFIRST

| ISLAST

| PARENT IS classexpr

| PARENT LIKE classexpr

| PARENT ALLOWS STANDALONE

| PARENT ALLOWS SOURCE

| ANYPARENT IS classexpr

| ANYPARENT LIKE classexpr

| PRECEDING GENERATES classexpr

| FOLLOWING ACCEPTS classexpr

| BEFORE STANDALONE

| AFTER STANDALONE

| BEFORE SOURCE

| AFTER SOURCE

| BEFORE TRANSFORMER

| AFTER TRANSFORMER

| BEFORE SINK

| AFTER SINK

| BEFORE classexpr

| AFTER classexpr

;

classexpr ::= "classname (interface or class)"

;

cmdexpr ::= classname

| "classname + options"

;

Notes

• ANYPARENT tests any parent to the root until successful or no more parents

• IS uses exact classname testing

• LIKE tests whether the class is either a subclass of a class or implements
a class

• A cmdexpr string surrounded by double quotes can also contain placehold-
ers:

– classname: $PARENT.CLASS, $LASTPARENT.CLASS, $PRECEDING.CLASS,
$FOLLOWING.CLASS

– actor’s name: $PARENT.NAME, $LASTPARENT.NAME, $PRECEDING.NAME,
$FOLLOWING.NAME

– actor’s fullname: $PARENT.FULL, $LASTPARENT.FULL, $PRECEDING.FULL,
$FOLLOWING.FULL

• $LASTPARENT.X refers to the last parent that was located, e.g., using IF

ANYPARENT... or IF PARENT.... If none set, then the immediate parent
is used.

12.5. MAIN MENU 157

And here are some examples:

• Adding CallableActors below the Flow actor if it would be the first actor:

adams-core.CallableActors=\

IF PARENT IS adams.flow.control.Flow AND ISFIRST \

THEN adams.flow.standalone.CallableActors

• Suggesting Switch after the EnterValue actor:

adams-core.Switch=\

IF AFTER adams.flow.source.EnterValue \

THEN adams.flow.control.Switch

• The SimplePlot after any actor that generates plot containers:

adams-core.SimplePlot1=\

IF PRECEDING GENERATES adams.flow.container.SequencePlotterContainer \

THEN adams.flow.sink.SimplePlot

12.5 Main menu

The main menu of ADAMS can use a pre-defined menu structure, as defined in
the adams/gui/Main.props properties file. But it also offers dynamic addition
of other menu items at runtime.

In order for new menu items being picked up at runtime, you need to derive
a new menu item definition from the following class (or one of the appropriate
abstract classes derived from it):

adams.gui.application.AbstractMenuItemDefinition

For instance, if you merely want the menu item to open a browser with a specific
URL (displaying the homepage or some help page), then you can derive the menu
item from the following class:

adams.gui.application.AbstractURLMenuItemDefinition

If you don’t want to modify the dynamic class discovery (ClassLister.props),
then you have to place your newly created menu item definition in the following
package:

adams.gui.menu

In order to get implement a menu item, derived from AbstractMenuItemDefinition,
you need to implement or override the following methods:

• getTitle() – The text of the menu item.

• getIconName() – By default, the menu item won’t have an icon, specify
the filename (without path) of the icon that you would like to use. The
icon is expected to reside in the adams/gui/images directory.

• getCategory() – This string defines the menu the item will get added to.
Existing ones are, e.g., Tools or Maintenance. You don’t have to use an
existing one, new categories get automatically added as new menus.

158 CHAPTER 12. EXTENDING ADAMS

• isSingleton() – If your menu item can be launched multiple times, then
return false, otherwise true.

• getUserMode() – This defines the visibility of your menu item. Whether
it is intended for regular users, experts or developers. What level is being
displayed is defined – normally – by the application’s –user-mode <mode>
command-line option when starting the application.

• launch() – This method finally launches your custom code. More details
below.

The launch() method
For the best integration within ADAMS, the launch() will create a java.swingx.JPanel
derived panel and create an internal frame using the following call:

JPanel panel = new MyFunkyPanel();

ChildFrame frame = createChildFrame(panel);

Using this approach, your panel with show up in the Windows menu of the main
menu of ADAMS.

Menu items derived from AbstractURLMenuItemDefinition don’t need to
implement this method, they merely need to supply a URL string with the
getURL() method. Their launch() method uses this URL to open a browser
with.

12.6 Flow editor

The flow editor itself allows for some customization:

• Adding menu items to the main menu.

• Changing the layout of the tree popup menu.

12.6.1 Main menu

The flow editor can add new menu items dynamically to its main menu. You can
only need to derive a new class from the following abstract superclass and place
it in the adams.gui.flow.menu package (or update the ClassLister.props file
accordingly if in another package):

adams.gui.flow.menu.AbstractFlowEditorMenuItem

When you implement your new class, you need to do three things:

1. Determine in which menu the item should get added (you can start a new
menu as well).

2. Create the AbstractBaseAction that does the actual work and also de-
fines how your menu item looks.

3. React to updates in the user interface.

Here is an example class, called RunningHelloWorld, which is available if there
is at least one flow currently running. The menu item titled “Say hi” simply
pops up a dialog with the words “Hello World!”.

12.6. FLOW EDITOR 159

package adams.gui.flow.menu;

import adams.gui.action.AbstractBaseAction;
import adams.gui.core.GUIHelper;
import adams.gui.flow.FlowEditorPanel;

public class RunningHelloWorld extends AbstractFlowEditorMenuItem {
// we want to add our menu item to the "View" menu
public String getMenu() {

return FlowEditorPanel.MENU_VIEW;
}
// the action that handles the dialog
protected AbstractBaseAction newAction() {

return new AbstractBaseAction("Say hi") {
GUIHelper.showInformationMessage(getOwner(), "Hello World!");

}
}
// action is only available if at least one flow is running
public void updateAction() {

m_Action.setEnabled(getOwner().isAnyRunning());
}

}

Shortcuts definitions can be stored in the FlowEditorShortcuts.props files
(package adams.gui.flow, below src/main/resources). The definition can be
accessed and converted into a KeyStroke object using the the following call:

adams.gui.core.GUIHelper.getKeyStroke(

adams.gui.flow.FlowEditorPanel.getEditorShortcut("File.New"));

This example accesses the shortcut definition stored in property Shortcuts.File.New.

12.6.2 Popup menu

Each item in the popup menu that is displayed in the tree when opening the
right-click menu for one or more actors is derived from the following class:

adams.gui.flow.tree.menu.AbstractTreePopupMenuItem

Even sub-menus are derived from this superclass, but instead of returning a sim-
ple JMenuItem object in the getMenuItem(StateContainer) method, a JMenu

object is returned, which encapsulates other menu items.
The layout of this popup menu is defined in the FlowEditor.props file, in

the adams.gui.flow package (below the src/main/resources directory). The
key for the menu is called Tree.PopupMenu and the value for this property is
a simple comma-separated list of class names (use “-” if you want to add a
separator).

Instead of modifying the Tree.PopupMenu property (it is easy to forget an
item), you can easily inject menu items using the Tree.PopupMenuExtensions

property. This property is also a comma-separated list, but comes with a slightly
different format for the list elements:

{before|after}:classname_of_anchor:classname_to_inject

The classname of anchor refers to a menu item that is currently listed in Tree.PopupMenu.
From this, the before or after flag then determines where the new menu item,
i.e., classname to inject, gets injected into the menu.

Shortcuts definitions can be stored in the FlowEditorShortcuts.props files
(package adams.gui.flow, below src/main/resources). The definition can be
accessed and converted into a KeyStroke object using the the following call:

160 CHAPTER 12. EXTENDING ADAMS

adams.gui.core.GUIHelper.getKeyStroke(

adams.gui.flow.FlowEditorPanel.getTreeShortcut("Help"));

This example accesses the shortcut definition stored in property Tree.Shortcuts.Help.
The following example menu item pops up a “Hello World!” dialog if the

flow/actor is editable:

package adams.gui.flow.tree.menu;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import javax.swing.JMenuItem;
import adams.gui.core.GUIHelper;
import adams.gui.flow.tree.StateContainer;

public class HelloWorldItem extends AbstractTreePopupMenuItem {
protected JMenuItem getMenuItem(final StateContainer state) {

JMenuItem result = new JMenuItem("Hello world");
result.setEnabled(getShortcut().stateApplies(state));
result.setAccelerator(getShortcut().getKeyStroke());
result.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
getShortcut().execute(state);

}
});
return result;

}
protected AbstractTreeShortcut newShortcut() {

return new AbstractTreeShortcut() {
protected String getTreeShortCutKey() {

return "HelloWorld"; // won’t do anything unless props file is updated
}
public boolean stateApplies(StateContainer state) {

return state.editable;
}
protected void doExecute(StateContainer state) {

GUIHelper.showInformationMessage(state.tree, "Hello World!");
}

};
}

}

12.6.3 Keyboard actions

Despite the flow editor attempting to over a fast and efficient interface, cer-
tain actions, like adding a Trigger, simply take time through a graphical user
interface. Automating common tasks, such as adding common actors, and
tying them to a keyboard shortcut can improve efficiency even more. The
Tree.KeyboardActions property of the FlowEditor.props (also available through
the preferences) allows you to specify a blank-separated list of actions that get
tied to keyboard shortcuts.

The following actions are current available (derived from AbstractKeyboard-
Action, located in package adams.gui.flow.tree.keyboardaction):

• AddActorHere

• AddActorAfter

• AddActorBeneath

• AddTemplateHere

• AddTemplateAfter

• AddTemplateBeneath

• EncloseActor

Below an example that defines shortcuts for adding and enclosing actors:

12.7. IMAGE VIEWER 161

Tree.KeyboardActions=\
"adams.gui.flow.tree.keyboardaction.AddActorHere -actor adams.flow.control.Trigger -shortcut \\"F3\\"" \
"adams.gui.flow.tree.keyboardaction.AddActorAfter -actor adams.flow.control.Trigger -shortcut \\"alt F3\\"" \
"adams.gui.flow.tree.keyboardaction.AddActorBeneath -actor adams.flow.control.Trigger -shortcut \\"shift F3\\"" \
"adams.gui.flow.tree.keyboardaction.EncloseActor -actor adams.flow.control.Sequence -shortcut \\"F4\\""

12.7 Image viewer

The Image viewer allows you to add custom plugins to the menu. The superclass
for all plugins is:

adams.gui.visualization.image.plugins.AbstractImageViewerPlugin

• canExecute(ImagePanel) – determines whether the plugin can be applied
to the current image panel.

• doExecute() – executes the plugin and returns a string depending on suc-
cess (null) or failure (error message).

• createLogEntry() – can be used to output a string that should appear the
in viewer’s log tab; return null if that does not apply.

12.8 Database access

In order to add support in ADAMS for a database, in addition to MySQL2

(sqlite3, PostgreSQL4 and MS SQL Server/Sybase5 are supported through the
adams-db module), the following steps are required:

• Add a dependency for the JDBC driver to your pom.xml project definition
(search on Maven Central6). For instance, adding the Oracle JDBC driver:

<dependency>

<groupId>com.oracle</groupId>

<artifactId>ojdbc14</artifactId>

<version>10.2.0.4.0</version>

</dependency>

• Add or update the Drivers.props properties file, adding the classname of
the JDBC driver to the Drivers key. For instance, use oracle.jdbc.OracleDriver
for the Oracle driver:

Driver=oracle.jdbc.OracleDriver

This is a comma-separated list. If there are already entries, just append
your JDBC driver(s).

2http://www.mysql.com/
3http://www.sqlite.org/
4http://www.postgresql.org/
5http://jtds.sourceforge.net/
6http://search.maven.org/

http://www.mysql.com/
http://www.sqlite.org/
http://www.postgresql.org/
http://jtds.sourceforge.net/
http://search.maven.org/

162 CHAPTER 12. EXTENDING ADAMS

Chapter 13

JUnit tests

Any additional JUnit test should be derived from the following superclass:

adams.test.AdamsTestCase

Regression tests
It is possible to suppress regression tests:

• all: -Dadams.test.noregression=true

• quick info: -Dadams.test.quickinfo.noregression=true

• data processors: -Dadams.test.data.noregression=true

• actors: -Dadams.test.flow.noregression=true

163

164 CHAPTER 13. JUNIT TESTS

Chapter 14

Temporary files

By default, the $TMP placeholder uses the system’s temporary directory. This
is determine by Java’s java.io.tmpdir system property. However, by setting
the adams.io.tmpdir system property, one can override this application-wide.
You can use -Dadams.io.tmpdir=/some/where/tmp in the command-line as
parameter to the JVM.

165

166 CHAPTER 14. TEMPORARY FILES

Chapter 15

Parser plugins

The parsers for expressions, like mathematical expressions and boolean expres-
sions are quite powerful as they are. However, in the past, adding new functions
required changing the lexer and parser generator grammars, re-generating Java
code and recompiling. It is now possible to add functions (return a value) and
procedures (don’t return anything - not used at the moment, reserved for future
use) by simply deriving classes from an abstract superclass.

A new function only needs to implement the adams.parser.plugin.ParserFunction
interface (analog for procedures: adams.parser.plugin.ParserProcedure). The
function name is defined by the getFunctionName() method, with the name
only consisting of letters, numbers and underscores. You can supply up to
10 parameters to your function. In order to avoid clashes in the parser, this
function name then gets prefixed with f (analog for procedures: p).

Below is an example function for return the value of an environment variable,
with the name env and available in the parser via f env(name):

public class Env extends AbstractParserFunction {

public String getFunctionName() {

return "env";

}

public String getFunctionSignature() {

return getFunctionName() + "(String): String";

}

public String getFunctionHelp() {

return getFunctionSignature() + "\n"

+ "\tFirst argument is the name of the environment variable to retrieve.\n"

+ "\tThe result is the value of the environment variable.";

}

protected String check(Object[] params) {

if (params.length != 1)

return "Only accepts single parameter, which must be name of the "

+ "environment variable to retrieve!";

return null;

}

protected Object doCallFunction(Object[] params) {

return System.getenv().get(params[0]);

}

}

167

168 CHAPTER 15. PARSER PLUGINS

15.1 Programmatic hooks

A flow is usually a self-contained unit, which makes it hard to hook into it from
a programmatic point of view. However, using the ProgrammaticSink pseudo-
sink you can easily add listeners that listen for tokens arriving at this actor.
Here is a little code snippet that shows how to use this sink. The flow simply
generates integer tokens in the ForLoop actor and the ProgrammaticSink simply
outputs the tokens to stdout.

public static void main(String[] args) throws Exception {

Environment.setEnvironmentClass(Environment.class);

// assemble flow

Flow flow = new Flow();

ForLoop forloop = new ForLoop();

flow.add(forloop);

ProgrammaticSink psink = new ProgrammaticSink();

psink.addTokenListener(new TokenListener() {

public void processToken(TokenEvent e) {

System.out.println(e.getToken().getPayload());

}

});

flow.add(psink);

// setup flow

String result = flow.setUp();

if (result != null) {

System.err.println("Failed to set up flow: " + result);

return;

}

// execute flow

result = flow.execute();

if (result != null) {

System.err.println("Failed to execute flow: " + result);

flow.wrapUp();

flow.cleanUp();

return;

}

// finish up

flow.wrapUp();

flow.cleanUp();

}

Bibliography

[1] Kepler – A free and open source, scientific workflow application.
https://kepler-project.org/

[2] KeplerWeka – A module for the Kepler workflow engine, which adds
WEKA functionality.
http://keplerweka.sourceforge.net/

[3] ADAMS – Reutemann, Peter and Vanschoren, Joaquin (2012). Scien-
tific Workflow Management with ADAMS. Proceedings of the Machine
Learning and Knowledge Discovery in Databases (ECML-PKDD), Part
II, LNCS 7524, pp. 833–837.
https://adams.cms.waikato.ac.nz/

[4] Git – a free and open source distributed version control system designed
to handle everything from small to very large projects with speed and
efficiency.
https://git-scm.com/

[5] GitHub – One of the largest public platforms hosting git repositories,
open-source and business alike.
https://github.com/

[6] Apache Maven – Software project management and comprehension tool.
http://maven.apache.org/

[7] Nexus – Repository manager for Apache Maven.
http://nexus.sonatype.org/

[8] IntelliJ IDEA – Even the community edition of IntelliJ IDEA is a powerful
environment for development Java projects.
https://www.jetbrains.com/idea/

[9] Eclipse – An open development platform comprised of extensible frame-
works, tools and runtimes for building, deploying and managing software
across the lifecycle.
http://eclipse.org/

[10] JUnit – JUnit is a unit testing framework for the Java programming lan-
guage.
http://junit.org/

169

https://kepler-project.org/
http://keplerweka.sourceforge.net/
https://adams.cms.waikato.ac.nz/
https://git-scm.com/
https://github.com/
http://maven.apache.org/
http://nexus.sonatype.org/
https://www.jetbrains.com/idea/
http://eclipse.org/
http://junit.org/

170 BIBLIOGRAPHY

[11] DateFormat – For parsing date/time strings and turning date/time ob-
jects into strings. http://download.oracle.com/javase/1.5.0/docs/

api/java/text/DateFormat.html

[12] Regular expressions – The regular expression handling as available
in Java. http://download.oracle.com/javase/1.6.0/docs/api/java/
util/regex/Pattern.html

[13] JSON – JavaScript Object Notation. http://json.org/

[14] NSSM – The Non-Sucking Service Manager. http://nssm.cc/

http://download.oracle.com/javase/1.5.0/docs/api/java/text/DateFormat.html
http://download.oracle.com/javase/1.5.0/docs/api/java/text/DateFormat.html
http://download.oracle.com/javase/1.6.0/docs/api/java/util/regex/Pattern.html
http://download.oracle.com/javase/1.6.0/docs/api/java/util/regex/Pattern.html
http://json.org/
http://nssm.cc/

	I Using ADAMS
	Introduction
	Flows
	Actors
	Creating flows
	Hello World
	Processing data
	Control actors
	Have some Tee
	Pull the Trigger
	Branching – or how to grow your flow
	Further control actors

	Protecting sub-flows

	Running flows
	Flow runner - GUI
	Flow runner - command-line

	Arrays and collections
	Converting objects
	String handling
	File handling
	Numeric operations
	Properties
	Maps
	Databases
	Callable actors
	External actors
	Interactive actors
	Templates
	Variables
	Temporary storage
	Debugging your flow
	Breakpoints
	Monitoring

	Passwords
	External processes and classes
	Screenshots
	Manual
	Automatic
	Flickering dialogs

	Colors

	Visualization
	Image viewer
	Preview browser

	Remote commands
	Registering flows
	Linux servers
	Windows servers
	Executing commands

	Tools
	File commander
	File monitor
	Find in files
	Flow editor
	Flow runner
	Text editor
	Comparing text

	Maintenance
	Placeholder management
	Named setup management
	Favorites management

	Help
	Actor usage
	Class help
	System info
	System performance
	Memory
	Miscellaneous

	Customizing ADAMS
	Environment variables
	Properties files
	Main menu
	Flow editor
	Fonts
	Proxy
	Time zone
	Locale
	Database access
	Browser

	Miscellaneous
	Environment variables
	Troubleshooting

	II Developing with ADAMS
	Tools
	Git
	Maven
	Nexus repository manager
	Configuring Maven
	Common commands
	3rd-party libraries
	Troubleshooting

	IntelliJ IDEA
	Plug-ins
	Setting up ADAMS

	Eclipse
	Plug-ins
	Setting up ADAMS

	Custom Maven project
	Non-maven approach

	Using the API
	Flow
	Life-cycle of an actor
	Setting up a flow
	Listening to the data

	Extending ADAMS
	Instantiating classes and copying objects
	Instantiating classes
	Copying objects

	Dynamic class discovery
	Additional package
	Additional class hierarchy
	Blacklisting classes
	Blacklisting classpath elements
	Applications without dynamic class discovery

	Creating a new actor
	Creating a new class
	Option handling
	Example

	Variable side-effects
	Graphical output
	Textual output
	Creating an icon
	Creating a JUnit test

	Extending Actor suggestions
	Main menu
	Flow editor
	Main menu
	Popup menu
	Keyboard actions

	Image viewer
	Database access

	JUnit tests
	Temporary files
	Parser plugins
	Programmatic hooks

	Bibliography

