
ADAMS

Advanced Data mining And Machine learning System

Module: adams-meta

Peter Reutemann

January 10, 2024



©2009-2019



Contents

1 Dynamic use of templates 7

2 Copying callable actors 9

3 Including external actors 11

4 Auto-generated actors 13

5 Inactive actors 15

6 Miscellaneous 17

Bibliography 19

3



4 CONTENTS



List of Figures

5



6 LIST OF FIGURES



Chapter 1

Dynamic use of templates

The templating mechanism described in the “core-module” manual, shows how
to speed up the inception of new flows. But the templates can also be used in
a dynamic way at runtime using the following actors:

• TemplateStandalone – for templates that generate standalones

• TemplateSource – for templates that generate sources

• TemplateTransformer – for templates that generate transforming sub-
flows

• TemplateSink – for templates that generate sinks

The sub-flow generation is done in a lazy way, i.e., only when the aforementioned
template actor is executed, the template is generated. The sub-flow is used till
either the end of the flow execution or if a variable changes that is attached to
the template itself. In the latter case, the sub-flow gets re-generated the next
time the template actor gets executed. This dynamic sub-flow generation in
conjunction with variable use, allows to adapt and change the flow at runtime.
The example adams-core-template.flow demonstrates this.

7



8 CHAPTER 1. DYNAMIC USE OF TEMPLATES



Chapter 2

Copying callable actors

Callable actors can not only be used as synchronization points in the flow. It is
also possible to copy them, using them as templates. If you don’t want to use
external flows, but still need to use the same sub-flow multiple times and avoid
the bottle next of synchronous execution, then you can use one of the following
actors to create a copy of the callable at the very same location:

• CopyCallableStandalone – copies a callable standalone

• CopyCallableSource – copies a callable source

• CopyCallableTransformer – copies a callable transformer

• CopyCallableSink – copies a callable sink

9



10 CHAPTER 2. COPYING CALLABLE ACTORS



Chapter 3

Including external actors

Similar to the external actors of the adams-core module, the following actors
allow the use of external flow snippets. However, these flows simply replace
themselves with the content of the external flow and cannot be changed dynam-
ically with variables. Flexibility has been traded here for performance.

• IncludeExternalStandalone – includes an external standalone

• IncludeExternalSource – includes an external source

• IncludeExternalTransformer – includes an external transformer

• IncludeExternalSink – includes an external sink

11



12 CHAPTER 3. INCLUDING EXTERNAL ACTORS



Chapter 4

Auto-generated actors

In some cases, flows get generated on the fly with actors being added. If these
actors should need to be removed again, e.g., when restarting the flow, then it
is possible to use the following wrappers for auto-generated actors:

• AutogeneratedStandalone – encapsulates auto-generated standalones

• AutogeneratedSource – encapsulates auto-generated actors that act as source

• AutogeneratedTransformer – encapsulates auto-generated actors that form
a transformer

• AutogeneratedSink – encapsulates auto-generated actors that behave as
sink

NB: With the RemoveAutogeneratedActors processor it is possible to remove
all these actors again.

13



14 CHAPTER 4. AUTO-GENERATED ACTORS



Chapter 5

Inactive actors

In some cases, flows get generated on the fly with actors being added. Original
actors may get replaced, but you can keep them as inactive ones in the flow (no
setup or execution occurs), by wrapping them in one of these meta-actors:

• InactiveStandalone – encapsulates inactive standalones

• InactiveSource – encapsulates inactive actors that act as source

• InactiveTransformer – encapsulates inactive actors that form a trans-
former

• InactiveSink – encapsulates inactive actors that behave as sink

NB: With the ReactivateActors processor it is possible to activate all these
actors again, replacing the wrappers.

15



16 CHAPTER 5. INACTIVE ACTORS



Chapter 6

Miscellaneous

Below are other actors that haven’t been covered by the previous chapters:

• NewFlow – generates a new actor/flow using the specified template.

• CurrentFlow – just outputs the current flow.

• ExecuteActor – executes the actor passing through.

• FlowFileReader – reads a flow file from disk and forwards it.

• FlowFileWriter – writes the incoming flow to disk.

• FlowDisplay – displays an actor or flow.

• ProcessActor – applies an ActorProcessor to the incoming flow (eg listing
variables, updating variable names).

• SpecifiedActor – outputs the actor identified via its path in the flow, e.g.,
for storing an actor setup in a file.

17



18 CHAPTER 6. MISCELLANEOUS



Bibliography

[1] ADAMS – Advanced Data mining and Machine learning System
http://adams.cms.waikato.ac.nz/

19

http://adams.cms.waikato.ac.nz/

	Dynamic use of templates
	Copying callable actors
	Including external actors
	Auto-generated actors
	Inactive actors
	Miscellaneous
	Bibliography

