
ADAMS

Advanced Data mining And Machine learning System

Module: adams-imaging

Peter Reutemann

January 10, 2024

©2009-2023

Contents

1 ADAMS 7

2 Java Advanced Imaging 9

3 LIRE 11

4 Object conversion 13

5 OCR 15

6 Interaction 17

7 Feature output 21

8 Miscellaneous flow components 23

Bibliography 27

3

4 CONTENTS

List of Figures

1.1 Flow for blurring images stored in a directory. 8
1.2 The original image. 8
1.3 The blurred image. 8

5.1 Preferences for tesseract. 15

6.1 Flow for generating ARFF file from user-labelled pixels. 18
6.2 User interface for labelling pixels, displaying some pixels labelled

already. 18
6.3 Example dataset generated using the PixelSelector. 19

5

6 LIST OF FIGURES

Chapter 1

ADAMS

ADAMS has custom image processing support that does not rely on other li-
braries.

The following actors are available:

• sink.ImageFileWriter – writes an image container to a file using the
specified writer.

• transformer.BufferedImageTransformer – performs a transformation
using an existing transformer class on the incoming image and outputs
another image again.

• transformer.BufferedImageFeatureGenerator – turns a BufferedImageContainer
into an weka.core.Instance object to be used in WEKA. The attaced
meta-data in form of a report can be added to the output object as well.

• transformer.ImageFileReader – reads an image file using the specified
image reader.

Figure 1.1 shows a flow1 for reading images, blurring them using a gaussian
blur transformer and displaying them side-by-side. Figures 1.2 and 1.3 show
original and blurred image.

1adams-imaging-gaussian blur.flow

7

8 CHAPTER 1. ADAMS

Figure 1.1: Flow for blurring images stored in a directory.

Figure 1.2: The original image. Figure 1.3: The blurred image.

Chapter 2

Java Advanced Imaging

Java Advanced Imaging (JAI) is an API to provide a simple, high-level program-
ming model which allows developers to create their own image manipulation
routines1.

Reading and writing images are done using the ImageFileReader transformer
and ImageFileWriter sink:

• ImageFileReader – use the JAIImageFileReader

• ImageFileWriter – use the JAIImageFileWriter

Since the JAI actors, readers and writers use BufferedImageContainer,
the BufferedImageTransformer and BufferedImageFeatureGenerator trans-
formers can be used.

1http://en.wikipedia.org/wiki/Java_Advanced_Imaging

9

http://en.wikipedia.org/wiki/Java_Advanced_Imaging

10 CHAPTER 2. JAVA ADVANCED IMAGING

Chapter 3

LIRE

The Lucene Image Retrieval library [4] provides a wide range of feature gener-
ators that work on BufferedImageContainer objects:

• AutoColorCorrelogram

• BasicFeatures

• BinaryPatternsPyramid

• CEDD

• ColorLayout

• EdgeHistogram

• FCTH

• FuzzyColorHistogram

• FuzzyOpponentHistogram

• Gabor

• JCD

• JpegCoefficientHistogram

• LocalBinaryPatterns

• LuminanceLayout

• OpponentHistogram

• PHOG

• RotationInvariantLocalBinaryPatterns

• ScalableColor

• SimpleColorHistogram

• Tamura

11

12 CHAPTER 3. LIRE

Chapter 4

Object conversion

The following conversions are available:

• ColorToHex – turns a Color into its hexa-decimal notation.

• HexToColor – turns a color in hexa-decimal notation back into a Color
object.

• LocatedObjectToRectangle – extracts the location of the object and stores
it in a rectangle object.

• LocatedObjectsToReport – converts the array of LocatedObject instances
into a Report.

• ObjectAnnotationsToImageSegmentationLayers – converts the object an-
notations into layers for image segmentation.

• QuadrilateralLocationCenter – outputs the center of the QuadrilateralLo-
cation object.

• QuadrilateralLocationToString – turns the QuadrilateralLocation object
into its string representation.

• RectangleCenter – outputs the center of the rectangle object.

• RectangleToString – converts the rectangle object into its string represen-
tation.

• StringToQuadrilateralLocation – creates a QuadrilateralLocation object
from this string representation.

• StringToRectangle – creates a rectangle object from the string represen-
tation.

13

14 CHAPTER 4. OBJECT CONVERSION

Chapter 5

OCR

A common task in image processing is optical character recognition (OCR).
ADAMS offers a simple wrapper around the open-source tesseract engine [7].
The engine is available for Windows, Linux and Mac OSX. It supports multiple
languages, however, these need to be installed in order to be actually available.

The follwoing actors are available:

• TesseractConfiguration – standalone for configuring OCR, mainly to define
where the tesseract executable is located.

• TesseractOCR – this transformer turns an image file into one or more text
files, which need to be further processed in the flow then.1

By default, the TesseractConfiguration standalone uses the globally defined
preferences as default values. In the preferences dialog (Main menu → Pro-
gram → Preferences → Tesseract) you can specify the location of the tesseract
executable and the default language (see Figure 5.1).

Figure 5.1: Preferences for tesseract.

1adams-imaging-ocr.flow

15

16 CHAPTER 5. OCR

Chapter 6

Interaction

The PixelSelector transformer allows the user to interact with the flow. The
interaction with the user works as follows: an image viewer instance is displayed
when the PixelSelector transformer receives an image token as input. The use
then right-clicks on a pixel that he wants to process, e.g., labelling for WEKA
data generation. After all the pixels have been selected and processed, the user
then hits the OK button to close the dialog. The PixelSelector then forwards
the image container with the attached, enriched report for further processing.

The PixelSelector transformer is very generic, which means the actor is re-
sponsible for the actions that the user can select from the right-click menu. This
is done by selecting the appropriate actions from the list of available ones, e.g.,
AddClassification (package adams.flow.transformer.pixelselector), which
is used for attaching classification labels to pixels. In order to make these se-
lections visible not just in the report that is displayed on the right-hand side
in the dialog, appropriate overlays can be selected as well, e.g., the Classi-
ficationOverlay (package adams.flow.transformer.pixelselector) overlay,
which displays the pixels with the associated labels on the screen.

Figure 6.1 shows a flow1 that lets the user hand-label all JPG images in a
directory and generated WEKA data from it. It uses a cropped region of 5x5
pixels around the selected pixels for the data generation. The user interface for
selecting the pixels is shown in Figure 6.2 and a resulting dataset in Figure 6.3.

Of course, due to the interactive nature, labelling is performed on-the-fly
and no record is kept. Once the image has been processed, the PixelSelector
will forget about it. If you want to preserve the attached report, you can use
the ReportFileWriter transformer to save the report to disk.

In order to re-use a previously saved report, you can use the SetReportFrom-
File or SetReportFromSource transformer to replace the default report in the
image container after you loaded the image with the one stored on disk. This
allows you to continue work with previously generated labels, saving you a lot
of work.

Since the SetReportFromFile and SetReportFromSource transformers gener-
ate ReportHandler tokens, you need to explicitly cast the type of the tokens to
the desired one, e.g., BufferedImageContainer, using the Cast control actor.

1adams-imaging-pixelselector.flow

17

18 CHAPTER 6. INTERACTION

Figure 6.1: Flow for generating ARFF file from user-labelled pixels.

Figure 6.2: User interface for labelling pixels, displaying some pixels labelled
already.

19

Figure 6.3: Example dataset generated using the PixelSelector.

20 CHAPTER 6. INTERACTION

Chapter 7

Feature output

Of course, the data can be turned into a format that is suitable for machine learn-
ing applications like WEKA ([9]). For JAI transformer tokens, the BufferedIm-
ageFeatureGenerator can be used to generate such output.

21

22 CHAPTER 7. FEATURE OUTPUT

Chapter 8

Miscellaneous flow
components

The imaging module offers some more actors that have not been introduced yet.
Available conditions:

• HasExifTag – checks whether the specified tag is present in the data com-
ing through.

Available sources:

• ColorProvider – outputs Color objects generated by a configured color
provider.

• NewImage – creates an image with a specific color and user-defined dimen-
sions.

Available transformers:

• ChangeImageObjectPrefix – replaces the prefix of objects in a report with
a new one.

• ColorProvider – outputs Color objects whenever a token passes through.

• CompareObjectLocations – for visually comparing annotations and pre-
dicted object locations side-by-side on the same image.

• CountObjectsInRegion – counts the objects that fall within the defined
region (partial counts possible, too).

• DecodeBarcode – allows extracting of barcodes like EAN and QRCode
from images1.

• DetermineOverlappingAreas – computes the areas of overlapping image
objects between two reports (annotations and predictions).

• DetermineOverlappingObjects – computes overlapping image objects
between two reports (annotations and predictions).

• Draw – Performs draw operations on images, like setting pixels, drawing
lines, rectangles, ovals, text, images2 and even barcodes (e.g., EAN and
QRCode)3.

1adams-imaging-barcode.flow
2adams-imaging-draw.flow
3adams-imaging-barcode.flow

23

24 CHAPTER 8. MISCELLANEOUS FLOW COMPONENTS

• ExifTagOperation – allows operations on EXIF meta-data tags.

• GetImageObjectIndices – lists all the indices of the objects stored in the
report, as located by the specified finder.

• GetImageObjects – lists all the objects stored in the report, as located
by the specified finder.

• GetImageObjectMetaData – retrieves the meta-data of the located object.

• ImageInfo – Allows you to obtain width and height information from an
image.

• ImageLabeler – allows the user to interactively label/classify images, at-
taching the label to the report. annotate objects (i.e., attach labels) that
were located in an image.

• ImageMetaData – Extracts meta-data (EXIF or IPTC) from an image as
spreadsheet using various libraries (e.g., Sanselan[6], Meta-Data Extractor[5]).4

• ImageObjectAnnotator – allows the user to interactively annotate objects
(i.e., attach labels) that were located in an image.

• ImageObjectFilter – filters the objects in the meta-data of an image using
the specified object finder and filter.

• ImageObjectInfo – extracts information from a image object stored in a
report.

• ImageObjectIndexOffset – changes the index of the objects in the report
by the specified offset.

• ImageObjectOverlap – superceded by DetermineOverlappingObjects.

• ImageSegmentationAnnotator – allows the user to interactively annotate
images for image segmentation.

• ImageObjectOverlapMatrix – computes a matrix of overlapping objects
between annotations and predictions, which can be turned into a confusion
matrix.

• ImageObjectToVariables – turns the properties of the image object (of
type LocatedObject) passing through into variables.

• ImageSegmentationContainerFilter – allows the user to apply a filter
to an image segmentation container.

• ImageSegmentationContainerOperation – allows the user to apply op-
erations to image segmentation containers.

• ImageSegmentationFileReader – for reading image segmentation file for-
mats

• ImageSharpness – determines whether image is in focus or not.

• IntersectOverUnion – superceded by DetermineOverlappingObjects.

• LocateObjects – provides a framework for algorithms that locate objects
in images.

• MergeObjectLocations – merges objects locations in the current image
container with the ones obtained from a report available from storage.

• NegativeRegions – generates negative region objects for images passing
through.

• RemoveImageObject – removes the specified image object from the report.

• RemoveOverlappingImageObjects – for cleaning up overlapping objects,
e.g., as post-processing from predicting bounding boxes.

4adams-imaging-meta data.flow

25

• ScaleReportObjects – scales the x/y and width/height of the objects
stored in reports.

• SetImageObjectMetaData – sets/updates the meta-data of a located ob-
ject.

• ViaAnnotations – turns reports into JSON annotations that can be used
by VIA[8].

• ViaAnnotationsToReports – turns VIA JSON annotations into separate
reports, one per annotated image.

Available sinks:

• ImageHistogram – displays the histogram of an image (gray or color).

• ImageSegmentationFileWriter – for reading image segmentation file for-
mats

• ImageSegmentationViewer – for viewing image segmentation containers

26 CHAPTER 8. MISCELLANEOUS FLOW COMPONENTS

Bibliography

[1] ADAMS – Advanced Data mining and Machine learning System
https://adams.cms.waikato.ac.nz/

[2] JAI – Java Advanced Imaging API
http://java.sun.com/javase/technologies/desktop/media/jai/

[3] ImageMagick – Software suite to Convert, Edit, and Compose Images
http://www.imagemagick.org/

[4] LIRE – Lucene Image Retrieval
http://code.google.com/p/lire/

[5] MetaData-Exrtactor – Library for reading metadata from image files.
https://code.google.com/p/metadata-extractor/

[6] Sanselan – Apache Imaging (formerly known as Sanselan)
http://commons.apache.org/proper/commons-imaging/

[7] tesseract – An OCR Engine that was developed at HP Labs between 1985
and 1995. . . and now at Google.
http://code.google.com/p/tesseract-ocr/

[8] VIA – VGG Image Annotator
http://www.robots.ox.ac.uk/~vgg/software/via/

[9] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, Ian H. Witten (2009); The WEKA Data Mining Software:
An Update; SIGKDD Explorations, Volume 11, Issue 1.
http://www.cs.waikato.ac.nz/ml/weka/

27

https://adams.cms.waikato.ac.nz/
http://java.sun.com/javase/technologies/desktop/media/jai/
http://www.imagemagick.org/
http://code.google.com/p/lire/
https://code.google.com/p/metadata-extractor/
http://commons.apache.org/proper/commons-imaging/
http://code.google.com/p/tesseract-ocr/
http://www.robots.ox.ac.uk/~vgg/software/via/
http://www.cs.waikato.ac.nz/ml/weka/

	ADAMS
	Java Advanced Imaging
	LIRE
	Object conversion
	OCR
	Interaction
	Feature output
	Miscellaneous flow components
	Bibliography

