Uses of Class
adams.data.statistics.AbstractArrayStatistic
-
Packages that use AbstractArrayStatistic Package Description adams.data.spreadsheet.colstatistic adams.data.spreadsheet.rowscore adams.data.spreadsheet.rowstatistic adams.data.statistics adams.flow.transformer -
-
Uses of AbstractArrayStatistic in adams.data.spreadsheet.colstatistic
Fields in adams.data.spreadsheet.colstatistic declared as AbstractArrayStatistic Modifier and Type Field Description protected AbstractArrayStatistic
ArrayStatistic. m_Statistic
the array statistic to use.Methods in adams.data.spreadsheet.colstatistic that return AbstractArrayStatistic Modifier and Type Method Description AbstractArrayStatistic
ArrayStatistic. getStatistic()
Returns the array statistic to apply.Methods in adams.data.spreadsheet.colstatistic with parameters of type AbstractArrayStatistic Modifier and Type Method Description void
ArrayStatistic. setStatistic(AbstractArrayStatistic value)
Sets the array statistic to apply. -
Uses of AbstractArrayStatistic in adams.data.spreadsheet.rowscore
Fields in adams.data.spreadsheet.rowscore declared as AbstractArrayStatistic Modifier and Type Field Description protected AbstractArrayStatistic
ArrayStatistic. m_Statistic
the row statistic to use.Methods in adams.data.spreadsheet.rowscore that return AbstractArrayStatistic Modifier and Type Method Description AbstractArrayStatistic
ArrayStatistic. getStatistic()
Returns the row statistic in use.Methods in adams.data.spreadsheet.rowscore with parameters of type AbstractArrayStatistic Modifier and Type Method Description void
ArrayStatistic. setStatistic(AbstractArrayStatistic value)
Sets the row statistic to use. -
Uses of AbstractArrayStatistic in adams.data.spreadsheet.rowstatistic
Fields in adams.data.spreadsheet.rowstatistic declared as AbstractArrayStatistic Modifier and Type Field Description protected AbstractArrayStatistic
ArrayStatistic. m_Statistic
the array statistic to use.Methods in adams.data.spreadsheet.rowstatistic that return AbstractArrayStatistic Modifier and Type Method Description AbstractArrayStatistic
ArrayStatistic. getStatistic()
Returns the array statistic to apply.Methods in adams.data.spreadsheet.rowstatistic with parameters of type AbstractArrayStatistic Modifier and Type Method Description void
ArrayStatistic. setStatistic(AbstractArrayStatistic value)
Sets the array statistic to apply. -
Uses of AbstractArrayStatistic in adams.data.statistics
Subclasses of AbstractArrayStatistic in adams.data.statistics Modifier and Type Class Description class
AbstractArrayDistance<T extends Number>
Ancestor for distance measures.class
AbstractOptionalSampleArrayStatistic<T extends Serializable>
Abstract super class for array statistics that can interprete the arrays either as samples or populations.class
ArrayAndrewsCurves<T extends Number>
Generates Andrews Curves from array data.
César Ignacio García Osorio, Colin Fyfe (2003).class
ArrayAngle<T extends Number>
Calculates the angle between the first array and the remaining arrays.class
ArrayBinning<T extends Number>
Bins the data from given array using the specified algorithm and post-processing approach.class
ArrayChebyshevDistance
Calculates the Chebyshev distance between the first array and the remaining arrays.class
ArrayCorrelationCoefficient<T extends Number>
Calculates the correlation coefficient between the first array and the remaining arrays.class
ArrayCovariance<T extends Number>
Calculates the covariance between the first array and the remaining arrays.class
ArrayDifference<T extends Number>
Calculates the difference between the arrays.class
ArrayEuclideanDistance
Calculates the Euclidean distance between the first array and the remaining arrays.class
ArrayHistogram<T extends Number>
Generates a histogram from the given array.
The formulas for the various width/#bin calculations can be found here:
WikiPedia (2010).class
ArrayKendallTheil<T extends Number>
Calculates the Kendall-Theil robust slope (also called Theil-Sen estimator) between the first array and the remaining arrays.class
ArrayLength<T extends Serializable>
Determines the length of an array.class
ArrayLinearRegression<T extends Number>
Calculates the slope and intercept of linear regression between two arrays (x and y).
If more than two arrays supplied, then the linear regression is computed between the first (x) and all the other ones (y).class
ArrayManhattanDistance
Calculates the Manhattan distance between the first array and the remaining arrays.class
ArrayMax<T extends Number>
Determines the max value in a numeric array.class
ArrayMean<T extends Number>
Calculates the mean for a numeric array.class
ArrayMeanAbsoluteError<T extends Number>
Calculates the mean absolute error (MAE) between the first array (actual) and the remaining arrays (predicted).class
ArrayMedian<T extends Number>
Calculates the median for a numeric array.class
ArrayMin<T extends Number>
Determines the min value in a numeric array.class
ArrayMinkowskiDistance
Calculates the Minkowski distance between the first array and the remaining arrays.class
ArrayNormalize<T extends Number>
Normalizes the array(s), i.e., the sum of its/their values is 1.0.class
ArrayNormalizeRange<T extends Number>
Normalizes the array(s) to the specified lower and upper bound.class
ArrayPercentile<T extends Number>
Determines the percentile for an array.class
ArrayRelativeAbsoluteError<T extends Number>
Calculates the relative absolute error (RAE) between the first array (actual) and the remaining arrays (predicted).class
ArrayRootMeanSquaredError<T extends Number>
Calculates the root mean squared error (RMSE) between the first array (actual) and the remaining arrays (predicted).class
ArrayRootRelativeSquaredError<T extends Number>
Calculates the root relative squared error (RRSE) between the first array (actual) and the remaining arrays (predicted).class
ArrayRSquared<T extends Number>
Calculates the R^2 between the first array and the remaining arrays.class
ArrayStandardDeviation<T extends Number>
Calculates the standard deviation for a numeric array.class
ArrayStandardize<T extends Number>
Standardizes the values in the array(s) to have mean 0 and stdev 1.class
ArrayStandardScores<T extends Number>
Calculates the standard scores (or z scores) of the provided arrays.The arrays must be numeric, of course.class
ArraySum<T extends Number>
Determines the sum of all values in a numeric array.class
MultiArrayStatistic<T extends Number>
Merges the spreadsheets generated by its sub-statistics into a single one.Fields in adams.data.statistics declared as AbstractArrayStatistic Modifier and Type Field Description protected AbstractArrayStatistic[]
AbstractDataContainerStatistics. m_Statistics
the statistics to calculate.protected AbstractArrayStatistic[]
MultiArrayStatistic. m_SubStatistics
the statistics to perform and merge into single spreadsheet.Methods in adams.data.statistics that return AbstractArrayStatistic Modifier and Type Method Description static AbstractArrayStatistic
AbstractArrayStatistic. forCommandLine(String cmdline)
Instantiates the statistic from the given commandline (i.e., classname and optional options).static AbstractArrayStatistic
AbstractArrayStatistic. forName(String classname, String[] options)
Instantiates the statistic with the given options.AbstractArrayStatistic[]
AbstractDataContainerStatistics. getStatistics()
Returns the statistics to use.AbstractArrayStatistic[]
MultiArrayStatistic. getSubStatistics()
Returns the base statistics to use.AbstractArrayStatistic
AbstractArrayStatistic. shallowCopy()
Returns a shallow copy of itself, i.e., based on the commandline options.AbstractArrayStatistic
AbstractArrayStatistic. shallowCopy(boolean expand)
Returns a shallow copy of itself, i.e., based on the commandline options.Methods in adams.data.statistics with parameters of type AbstractArrayStatistic Modifier and Type Method Description void
AbstractDataContainerStatistics. setStatistics(AbstractArrayStatistic[] value)
Sets the statistics to use.void
MultiArrayStatistic. setSubStatistics(AbstractArrayStatistic[] value)
Sets the base statistics to use. -
Uses of AbstractArrayStatistic in adams.flow.transformer
Fields in adams.flow.transformer declared as AbstractArrayStatistic Modifier and Type Field Description protected AbstractArrayStatistic
ArrayStatistic. m_Statistic
the statistic to generate.protected AbstractArrayStatistic
SpreadSheetStatistic. m_Statistic
the statistic to generate.protected AbstractArrayStatistic
WekaInstancesStatistic. m_Statistic
the statistic to generate.Methods in adams.flow.transformer that return AbstractArrayStatistic Modifier and Type Method Description AbstractArrayStatistic
ArrayStatistic. getStatistic()
Returns the statistic in use.AbstractArrayStatistic
SpreadSheetStatistic. getStatistic()
Returns the statistic in use.AbstractArrayStatistic
WekaInstancesStatistic. getStatistic()
Returns the statistic in use.Methods in adams.flow.transformer with parameters of type AbstractArrayStatistic Modifier and Type Method Description void
ArrayStatistic. setStatistic(AbstractArrayStatistic value)
Sets the statistic to use.void
SpreadSheetStatistic. setStatistic(AbstractArrayStatistic value)
Sets the statistic to use.void
WekaInstancesStatistic. setStatistic(AbstractArrayStatistic value)
Sets the statistic to use.
-