Uses of Class
adams.data.statistics.AbstractArrayStatistic
-
Packages that use AbstractArrayStatistic Package Description adams.data.spreadsheet.colstatistic adams.data.spreadsheet.rowscore adams.data.spreadsheet.rowstatistic adams.data.statistics adams.flow.transformer -
-
Uses of AbstractArrayStatistic in adams.data.spreadsheet.colstatistic
Fields in adams.data.spreadsheet.colstatistic declared as AbstractArrayStatistic Modifier and Type Field Description protected AbstractArrayStatisticArrayStatistic. m_Statisticthe array statistic to use.Methods in adams.data.spreadsheet.colstatistic that return AbstractArrayStatistic Modifier and Type Method Description AbstractArrayStatisticArrayStatistic. getStatistic()Returns the array statistic to apply.Methods in adams.data.spreadsheet.colstatistic with parameters of type AbstractArrayStatistic Modifier and Type Method Description voidArrayStatistic. setStatistic(AbstractArrayStatistic value)Sets the array statistic to apply. -
Uses of AbstractArrayStatistic in adams.data.spreadsheet.rowscore
Fields in adams.data.spreadsheet.rowscore declared as AbstractArrayStatistic Modifier and Type Field Description protected AbstractArrayStatisticArrayStatistic. m_Statisticthe row statistic to use.Methods in adams.data.spreadsheet.rowscore that return AbstractArrayStatistic Modifier and Type Method Description AbstractArrayStatisticArrayStatistic. getStatistic()Returns the row statistic in use.Methods in adams.data.spreadsheet.rowscore with parameters of type AbstractArrayStatistic Modifier and Type Method Description voidArrayStatistic. setStatistic(AbstractArrayStatistic value)Sets the row statistic to use. -
Uses of AbstractArrayStatistic in adams.data.spreadsheet.rowstatistic
Fields in adams.data.spreadsheet.rowstatistic declared as AbstractArrayStatistic Modifier and Type Field Description protected AbstractArrayStatisticArrayStatistic. m_Statisticthe array statistic to use.Methods in adams.data.spreadsheet.rowstatistic that return AbstractArrayStatistic Modifier and Type Method Description AbstractArrayStatisticArrayStatistic. getStatistic()Returns the array statistic to apply.Methods in adams.data.spreadsheet.rowstatistic with parameters of type AbstractArrayStatistic Modifier and Type Method Description voidArrayStatistic. setStatistic(AbstractArrayStatistic value)Sets the array statistic to apply. -
Uses of AbstractArrayStatistic in adams.data.statistics
Subclasses of AbstractArrayStatistic in adams.data.statistics Modifier and Type Class Description classAbstractArrayDistance<T extends Number>Ancestor for distance measures.classAbstractOptionalSampleArrayStatistic<T extends Serializable>Abstract super class for array statistics that can interprete the arrays either as samples or populations.classArrayAndrewsCurves<T extends Number>Generates Andrews Curves from array data.
César Ignacio García Osorio, Colin Fyfe (2003).classArrayAngle<T extends Number>Calculates the angle between the first array and the remaining arrays.classArrayBinning<T extends Number>Bins the data from given array using the specified algorithm and post-processing approach.classArrayChebyshevDistanceCalculates the Chebyshev distance between the first array and the remaining arrays.classArrayCorrelationCoefficient<T extends Number>Calculates the correlation coefficient between the first array and the remaining arrays.classArrayCosineSimilarity<T extends Number>Calculates the cosine similarity between the first array and the remaining arrays.classArrayCovariance<T extends Number>Calculates the covariance between the first array and the remaining arrays.classArrayDifference<T extends Number>Calculates the difference between the arrays.classArrayEuclideanDistanceCalculates the Euclidean distance between the first array and the remaining arrays.classArrayHistogram<T extends Number>Generates a histogram from the given array.
The formulas for the various width/#bin calculations can be found here:
WikiPedia (2010).classArrayKendallTheil<T extends Number>Calculates the Kendall-Theil robust slope (also called Theil-Sen estimator) between the first array and the remaining arrays.classArrayLength<T extends Serializable>Determines the length of an array.classArrayLinearRegression<T extends Number>Calculates the slope and intercept of linear regression between two arrays (x and y).
If more than two arrays supplied, then the linear regression is computed between the first (x) and all the other ones (y).classArrayManhattanDistanceCalculates the Manhattan distance between the first array and the remaining arrays.classArrayMax<T extends Number>Determines the max value in a numeric array.classArrayMean<T extends Number>Calculates the mean for a numeric array.classArrayMeanAbsoluteError<T extends Number>Calculates the mean absolute error (MAE) between the first array (actual) and the remaining arrays (predicted).classArrayMedian<T extends Number>Calculates the median for a numeric array.classArrayMin<T extends Number>Determines the min value in a numeric array.classArrayMinkowskiDistanceCalculates the Minkowski distance between the first array and the remaining arrays.classArrayNormalize<T extends Number>Normalizes the array(s), i.e., the sum of its/their values is 1.0.classArrayNormalizeRange<T extends Number>Normalizes the array(s) to the specified lower and upper bound.classArrayPercentile<T extends Number>Determines the percentile for an array.classArrayRelativeAbsoluteError<T extends Number>Calculates the relative absolute error (RAE) between the first array (actual) and the remaining arrays (predicted).classArrayRootMeanSquaredError<T extends Number>Calculates the root mean squared error (RMSE) between the first array (actual) and the remaining arrays (predicted).classArrayRootRelativeSquaredError<T extends Number>Calculates the root relative squared error (RRSE) between the first array (actual) and the remaining arrays (predicted).classArrayRSquared<T extends Number>Calculates the R^2 between the first array and the remaining arrays.classArrayStandardDeviation<T extends Number>Calculates the standard deviation for a numeric array.classArrayStandardize<T extends Number>Standardizes the values in the array(s) to have mean 0 and stdev 1.classArrayStandardScores<T extends Number>Calculates the standard scores (or z scores) of the provided arrays.The arrays must be numeric, of course.classArraySum<T extends Number>Determines the sum of all values in a numeric array.classMultiArrayStatistic<T extends Number>Merges the spreadsheets generated by its sub-statistics into a single one.Fields in adams.data.statistics declared as AbstractArrayStatistic Modifier and Type Field Description protected AbstractArrayStatistic[]AbstractDataContainerStatistics. m_Statisticsthe statistics to calculate.protected AbstractArrayStatistic[]MultiArrayStatistic. m_SubStatisticsthe statistics to perform and merge into single spreadsheet.Methods in adams.data.statistics that return AbstractArrayStatistic Modifier and Type Method Description static AbstractArrayStatisticAbstractArrayStatistic. forCommandLine(String cmdline)Instantiates the statistic from the given commandline (i.e., classname and optional options).static AbstractArrayStatisticAbstractArrayStatistic. forName(String classname, String[] options)Instantiates the statistic with the given options.AbstractArrayStatistic[]AbstractDataContainerStatistics. getStatistics()Returns the statistics to use.AbstractArrayStatistic[]MultiArrayStatistic. getSubStatistics()Returns the base statistics to use.AbstractArrayStatisticAbstractArrayStatistic. shallowCopy()Returns a shallow copy of itself, i.e., based on the commandline options.AbstractArrayStatisticAbstractArrayStatistic. shallowCopy(boolean expand)Returns a shallow copy of itself, i.e., based on the commandline options.Methods in adams.data.statistics with parameters of type AbstractArrayStatistic Modifier and Type Method Description voidAbstractDataContainerStatistics. setStatistics(AbstractArrayStatistic[] value)Sets the statistics to use.voidMultiArrayStatistic. setSubStatistics(AbstractArrayStatistic[] value)Sets the base statistics to use. -
Uses of AbstractArrayStatistic in adams.flow.transformer
Fields in adams.flow.transformer declared as AbstractArrayStatistic Modifier and Type Field Description protected AbstractArrayStatisticArrayStatistic. m_Statisticthe statistic to generate.protected AbstractArrayStatisticSpreadSheetStatistic. m_Statisticthe statistic to generate.protected AbstractArrayStatisticWekaInstancesStatistic. m_Statisticthe statistic to generate.Methods in adams.flow.transformer that return AbstractArrayStatistic Modifier and Type Method Description AbstractArrayStatisticArrayStatistic. getStatistic()Returns the statistic in use.AbstractArrayStatisticSpreadSheetStatistic. getStatistic()Returns the statistic in use.AbstractArrayStatisticWekaInstancesStatistic. getStatistic()Returns the statistic in use.Methods in adams.flow.transformer with parameters of type AbstractArrayStatistic Modifier and Type Method Description voidArrayStatistic. setStatistic(AbstractArrayStatistic value)Sets the statistic to use.voidSpreadSheetStatistic. setStatistic(AbstractArrayStatistic value)Sets the statistic to use.voidWekaInstancesStatistic. setStatistic(AbstractArrayStatistic value)Sets the statistic to use.
-