Class WekaRepeatedCrossValidationEvaluator

  • All Implemented Interfaces:
    AdditionalInformationHandler, CleanUpHandler, Destroyable, GlobalInfoSupporter, LoggingLevelHandler, LoggingSupporter, OptionHandler, QuickInfoSupporter, ShallowCopySupporter<Actor>, SizeOfHandler, Stoppable, StoppableWithFeedback, ThreadLimiter, VariablesInspectionHandler, InstancesViewSupporter, VariableChangeListener, Actor, ErrorHandler, InputConsumer, OutputProducer, Serializable, Comparable

    public class WekaRepeatedCrossValidationEvaluator
    extends AbstractCallableWekaClassifierEvaluator
    implements ThreadLimiter, InstancesViewSupporter
    Performs repeated cross-validation a classifier on an incoming dataset. The classifier setup being used in the evaluation is a callable 'Classifier' actor.

    Input/output:
    - accepts:
       weka.core.Instances
    - generates:
       adams.flow.container.WekaEvaluationContainer[]


    -logging-level <OFF|SEVERE|WARNING|INFO|CONFIG|FINE|FINER|FINEST> (property: loggingLevel)
        The logging level for outputting errors and debugging output.
        default: WARNING
        min-user-mode: Expert
     
    -name <java.lang.String> (property: name)
        The name of the actor.
        default: WekaRepeatedCrossValidationEvaluator
     
    -annotation <adams.core.base.BaseAnnotation> (property: annotations)
        The annotations to attach to this actor.
        default:
     
    -skip <boolean> (property: skip)
        If set to true, transformation is skipped and the input token is just forwarded
        as it is.
        default: false
     
    -stop-flow-on-error <boolean> (property: stopFlowOnError)
        If set to true, the flow execution at this level gets stopped in case this
        actor encounters an error; the error gets propagated; useful for critical
        actors.
        default: false
        min-user-mode: Expert
     
    -silent <boolean> (property: silent)
        If enabled, then no errors are output in the console; Note: the enclosing
        actor handler must have this enabled as well.
        default: false
        min-user-mode: Expert
     
    -classifier <adams.flow.core.CallableActorReference> (property: classifier)
        The callable classifier actor to cross-validate on the input data.
        default: WekaClassifierSetup
     
    -no-predictions <boolean> (property: discardPredictions)
        If enabled, the collection of predictions during evaluation is suppressed,
         wich will conserve memory.
        default: false
     
    -runs <int> (property: runs)
        The number of cross-validation runs to perform.
        default: 10
        minimum: 1
     
    -folds <int> (property: folds)
        The number of folds to use in the cross-validation; use -1 for leave-one-out
        cross-validation (LOOCV); overrides the value defined by the fold generator
        scheme.
        default: 10
        minimum: -1
     
    -num-threads <int> (property: numThreads)
        The number of threads to use for parallel execution; > 0: specific number
        of cores to use (capped by actual number of cores available, 1 = sequential
        execution); = 0: number of cores; < 0: number of free cores (eg -2 means
        2 free cores; minimum of one core is used); overrides the value defined
        by the fold generator scheme.
        default: 1
     
    -generator <weka.classifiers.CrossValidationFoldGenerator> (property: generator)
        The scheme to use for generating the folds; the actor options take precedence
        over the scheme's ones.
        default: weka.classifiers.DefaultCrossValidationFoldGenerator
     
    Author:
    fracpete (fracpete at waikato dot ac dot nz)
    See Also:
    Serialized Form
    • Field Detail

      • m_Runs

        protected int m_Runs
        the number of runs to perform.
      • m_Folds

        protected int m_Folds
        the number of folds.
      • m_NumThreads

        protected int m_NumThreads
        the number of threads to use for parallel execution.
      • m_UseViews

        protected boolean m_UseViews
        whether to use views.
      • m_JobRunnerSetup

        protected transient JobRunnerSetup m_JobRunnerSetup
        the jobrunner setup.
    • Constructor Detail

      • WekaRepeatedCrossValidationEvaluator

        public WekaRepeatedCrossValidationEvaluator()
    • Method Detail

      • outputTipText

        public String outputTipText()
        Returns the tip text for this property.
        Overrides:
        outputTipText in class AbstractWekaClassifierEvaluator
        Returns:
        tip text for this property suitable for displaying in the GUI or for listing the options.
      • setFolds

        public void setFolds​(int value)
        Sets the number of folds.
        Parameters:
        value - the folds, -1 for LOOCV
      • getFolds

        public int getFolds()
        Returns the number of folds.
        Returns:
        the folds
      • foldsTipText

        public String foldsTipText()
        Returns the tip text for this property.
        Returns:
        tip text for this property suitable for displaying in the GUI or for listing the options.
      • setRuns

        public void setRuns​(int value)
        Sets the number of runs to perform.
        Parameters:
        value - the runs
      • getRuns

        public int getRuns()
        Returns the number of runs to perform.
        Returns:
        the runs
      • runsTipText

        public String runsTipText()
        Returns the tip text for this property.
        Returns:
        tip text for this property suitable for displaying in the GUI or for listing the options.
      • setNumThreads

        public void setNumThreads​(int value)
        Sets the number of threads to use for cross-validation.
        Specified by:
        setNumThreads in interface ThreadLimiter
        Parameters:
        value - the number of threads: -1 = # of CPUs/cores; 0/1 = sequential execution
      • getNumThreads

        public int getNumThreads()
        Returns the number of threads to use for cross-validation.
        Specified by:
        getNumThreads in interface ThreadLimiter
        Returns:
        the number of threads: -1 = # of CPUs/cores; 0/1 = sequential execution
      • numThreadsTipText

        public String numThreadsTipText()
        Returns the tip text for this property.
        Returns:
        tip text for this property suitable for displaying in the GUI or for listing the options.
      • setUseViews

        public void setUseViews​(boolean value)
        Sets whether to use views instead of dataset copies, in order to conserve memory.
        Specified by:
        setUseViews in interface InstancesViewSupporter
        Parameters:
        value - true if to use views
      • getUseViews

        public boolean getUseViews()
        Returns whether to use views instead of dataset copies, in order to conserve memory.
        Specified by:
        getUseViews in interface InstancesViewSupporter
        Returns:
        true if using views
      • useViewsTipText

        public String useViewsTipText()
        Returns the tip text for this property.
        Returns:
        tip text for this property suitable for displaying in the GUI or for listing the options.
      • setGenerator

        public void setGenerator​(CrossValidationFoldGenerator value)
        Sets the scheme for generating the folds.
        Parameters:
        value - the generator
      • generatorTipText

        public String generatorTipText()
        Returns the tip text for this property.
        Returns:
        tip text for this property suitable for displaying in the GUI or for listing the options.
      • accepts

        public Class[] accepts()
        Returns the class that the consumer accepts.
        Specified by:
        accepts in interface InputConsumer
        Returns:
        weka.core.Instances.class
      • doExecute

        protected String doExecute()
        Executes the flow item.
        Specified by:
        doExecute in class AbstractActor
        Returns:
        null if everything is fine, otherwise error message