Class AbstractExperiment

    • Field Detail

      • m_ResetResults

        protected boolean m_ResetResults
        whether to reset the results before starting the experiment.
      • m_Classifiers

        protected weka.classifiers.Classifier[] m_Classifiers
        the classifiers to evaluate.
      • m_Datasets

        protected PlaceholderFile[] m_Datasets
        the datasets to evaluate.
      • m_ClassLabelIndex

        protected Index m_ClassLabelIndex
        the class label index for per-class stats.
      • m_UseFilename

        protected boolean m_UseFilename
        whether to use the filename (w/o path) instead of relationname.
      • m_PrefixDatasetsWithIndex

        protected boolean m_PrefixDatasetsWithIndex
        whether to prefix the relation names with the index.
      • m_Runs

        protected int m_Runs
        the number of runs.
      • m_Notes

        protected BaseText m_Notes
        the notes for the experiment.
      • m_StatusMessageHandler

        protected transient StatusMessageHandler m_StatusMessageHandler
        for notifications.
      • m_Running

        protected transient boolean m_Running
        whether the experiment is running.
      • m_Stopped

        protected transient boolean m_Stopped
        whether the experiment was stopped.
      • m_CommandLineHandler

        protected transient WekaCommandLineHandler m_CommandLineHandler
        for handling commandlines.
      • m_Results

        protected SpreadSheet m_Results
        the generated results.
      • m_Generated

        protected List<SpreadSheet> m_Generated
        the results generated by the evaluations.
      • m_JobRunner

        protected JobRunner m_JobRunner
        the JobRunner template.
      • m_ActualJobRunner

        protected transient JobRunner m_ActualJobRunner
        JobRunner for the classifier/dataset combinations.
      • m_JobCounter

        protected int m_JobCounter
        the counter for finished jobs.
      • m_JobTotal

        protected int m_JobTotal
        the total number of jobs.
    • Constructor Detail

      • AbstractExperiment

        public AbstractExperiment()
    • Method Detail

      • setResetResults

        public void setResetResults​(boolean value)
        Sets whether to clear the results before starting the experiment.
        Specified by:
        setResetResults in interface ResettableExperiment
        Parameters:
        value - true if to clear results
      • getResetResults

        public boolean getResetResults()
        Returns whether to clear the results before starting the experiment.
        Specified by:
        getResetResults in interface ResettableExperiment
        Returns:
        true if to clear results
      • resetResultsTipText

        public String resetResultsTipText()
        Returns the tip text for this property.
        Returns:
        tip text for this property suitable for displaying in the GUI or for listing the options.
      • setResultsHandler

        public void setResultsHandler​(AbstractResultsHandler value)
        Sets the results handler to use.
        Parameters:
        value - the handler
      • getResultsHandler

        public AbstractResultsHandler getResultsHandler()
        Returns the results handler to use.
        Returns:
        the handler
      • resultsHandlerTipText

        public String resultsHandlerTipText()
        Returns the tip text for this property.
        Returns:
        tip text for this property suitable for displaying in the GUI or for listing the options.
      • setClassifiers

        public void setClassifiers​(weka.classifiers.Classifier[] value)
        Sets the classifiers to use.
        Parameters:
        value - the classifiers
      • getClassifiers

        public weka.classifiers.Classifier[] getClassifiers()
        Returns the classifiers.
        Returns:
        the classifiers
      • classifiersTipText

        public String classifiersTipText()
        Returns the tip text for this property.
        Returns:
        tip text for this property suitable for displaying in the GUI or for listing the options.
      • addClassifier

        public void addClassifier​(weka.classifiers.Classifier cls)
        Adds a classifier.
        Parameters:
        cls - the classifier to add
      • setDatasets

        public void setDatasets​(PlaceholderFile[] value)
        Sets the datasets to use.
        Parameters:
        value - the datasets
      • getDatasets

        public PlaceholderFile[] getDatasets()
        The datasets in use.
        Returns:
        the datasets
      • datasetsTipText

        public String datasetsTipText()
        Returns the tip text for this property.
        Returns:
        tip text for this property suitable for displaying in the GUI or for listing the options.
      • addDataset

        public void addDataset​(PlaceholderFile file)
        Adds a dataset.
        Parameters:
        file - the dataset to add
      • setClassAttribute

        public void setClassAttribute​(AbstractClassAttributeHeuristic value)
        Sets the heuristic for determining the class attribute (if not explicitly set).
        Parameters:
        value - the heuristic
      • getClassAttribute

        public AbstractClassAttributeHeuristic getClassAttribute()
        Returns the heuristic for determining the class attribute (if not explicitly set).
        Returns:
        the heuristic
      • classAttributeTipText

        public String classAttributeTipText()
        Returns the tip text for this property.
        Returns:
        tip text for this property suitable for displaying in the GUI or for listing the options.
      • setClassLabelIndex

        public void setClassLabelIndex​(Index value)
        Sets the index of the class label to use when generating per-class statistics.
        Parameters:
        value - the index
      • getClassLabelIndex

        public Index getClassLabelIndex()
        Returns the index of the class label to use when generating per-class statistics.
        Returns:
        the index
      • classLabelIndexTipText

        public String classLabelIndexTipText()
        Returns the tip text for this property.
        Returns:
        tip text for this property suitable for displaying in the GUI or for listing the options.
      • setUseFilename

        public void setUseFilename​(boolean value)
        Sets whether to use the filename (w/o path) instead of the relationname.
        Specified by:
        setUseFilename in interface ExperimentWithCustomizableRelationNames
        Parameters:
        value - true if to use filename
      • useFilenameTipText

        public String useFilenameTipText()
        Returns the tip text for this property.
        Returns:
        tip text for this property suitable for displaying in the GUI or for listing the options.
      • prefixDatasetsWithIndexTipText

        public String prefixDatasetsWithIndexTipText()
        Returns the tip text for this property.
        Returns:
        tip text for this property suitable for displaying in the GUI or for listing the options.
      • setRuns

        public void setRuns​(int value)
        Sets the number of runs.
        Parameters:
        value - the runs
      • getRuns

        public int getRuns()
        Returns the number of runs.
        Returns:
        the runs
      • runsTipText

        public String runsTipText()
        Returns the tip text for this property.
        Returns:
        tip text for this property suitable for displaying in the GUI or for listing the options.
      • setNotes

        public void setNotes​(BaseText value)
        Sets the notes for the experiment.
        Parameters:
        value - the notes
      • getNotes

        public BaseText getNotes()
        Returns the notes for the experiment.
        Returns:
        the notes
      • notesTipText

        public String notesTipText()
        Returns the tip text for this property.
        Returns:
        tip text for this property suitable for displaying in the GUI or for listing the options.
      • setJobRunner

        public void setJobRunner​(JobRunner value)
        Sets the jobrunner for the experiment.
        Parameters:
        value - the jobrunner
      • getJobRunner

        public JobRunner getJobRunner()
        Returns the jobrunner for the experiment.
        Returns:
        the jobrunner
      • jobRunnerTipText

        public String jobRunnerTipText()
        Returns the tip text for this property.
        Returns:
        tip text for this property suitable for displaying in the GUI or for listing the options.
      • setStatusMessageHandler

        public void setStatusMessageHandler​(StatusMessageHandler value)
        Sets the status message handler to use.
        Parameters:
        value - the handler, null to turn off
      • getStatusMessageHandler

        public StatusMessageHandler getStatusMessageHandler()
        Returns the current status message handler in use.
        Returns:
        the handler, null if none set
      • preExecute

        protected String preExecute()
        Hook method just before the experiment is run (after initialization).
        Returns:
        null if successful, otherwise error message
      • toInstances

        public weka.core.Instances toInstances()
        Returns the collected results.
        Returns:
        the results as Instances
      • log

        protected void log​(String msg)
        Displays the message.
        Parameters:
        msg - the message to display
      • log

        protected void log​(String msg,
                           Throwable t)
        Displays the error.
        Parameters:
        msg - the message to display
        t - the exception
      • initResults

        protected SpreadSheet initResults()
        Initializes the results.
        Returns:
        the results
      • initExecute

        protected String initExecute()
        Initializes the experiment.
      • loadDataset

        protected weka.core.Instances loadDataset​(int index)
        Loads the dataset.
        Parameters:
        index - the index of the dataset to load
        Returns:
        the dataset
      • configureRowFinder

        protected MultiRowFinder configureRowFinder​(int currentRun,
                                                    weka.classifiers.Classifier cls,
                                                    weka.core.Instances data)
        Configures the row finder that determines whether the classifier/dataset combination is still required.
        Parameters:
        currentRun - the current run
        cls - the classifier to check
        data - the dataset to check
        Returns:
        the row finder setup
      • isComplete

        protected boolean isComplete​(int[] rows)
        Checks whether the number of rows located in the current results are complete.
        Parameters:
        rows - the located results
        Returns:
        true if complete
      • locateRows

        protected int[] locateRows​(int run,
                                   weka.classifiers.Classifier cls,
                                   weka.core.Instances data)
        Returns the rows for the classifier/dataset combination.
        Parameters:
        run - the run
        cls - the classifier to check
        data - the dataset to check
        Returns:
        the rows
      • isRequired

        protected boolean isRequired​(int currentRun,
                                     weka.classifiers.Classifier cls,
                                     weka.core.Instances data)
        Checks whether the classifier/dataset combination is required.
        Parameters:
        currentRun - the current run
        cls - the classifier to check
        data - the dataset to check
        Returns:
        true if required
      • removeIncomplete

        protected void removeIncomplete​(int currentRun,
                                        weka.classifiers.Classifier cls,
                                        weka.core.Instances data)
        Removes the incomplete rows of the classifier/dataset combination.
        Parameters:
        currentRun - the current run
        cls - the classifier to check
        data - the dataset to check
      • showProgress

        protected void showProgress()
        Updates the progress of the experiment.
      • clearProgress

        protected void clearProgress()
        Clears the progress of the experiment.
      • initProgress

        public void initProgress()
        Initializes progress.
      • incProgress

        public void incProgress()
        Increments and updates the progress.
      • appendResults

        public void appendResults​(SpreadSheet results)
        Adds the results to the existing ones.
        Parameters:
        results - the results to add
      • evaluate

        protected abstract AbstractExperiment.AbstractExperimentJob<? extends AbstractExperiment> evaluate​(int currentRun,
                                                                                                           weka.classifiers.Classifier cls,
                                                                                                           weka.core.Instances data)
        Creates a runnabel to evaluate the classifier on the dataset.
        Parameters:
        currentRun - the current run
        cls - the classifier to evaluate
        data - the dataset to evaluate on
        Returns:
        the runnable
      • doExecute

        protected String doExecute()
        Runs the actual experiment.
        Returns:
        null if successful, otherwise error message
      • sortResults

        protected void sortResults()
      • postExecute

        protected void postExecute​(boolean success)
        Hook method just after the experiment was run.
        Parameters:
        success - true if successfully run
      • execute

        public String execute()
        Executes the experiment.
        Returns:
        null if successful, otherwise error message
      • stopExecution

        public void stopExecution()
        Stops the execution.
        Specified by:
        stopExecution in interface Stoppable
      • isStopped

        public boolean isStopped()
        Returns whether the experiment has been stopped.
        Specified by:
        isStopped in interface StoppableWithFeedback
        Returns:
        true if stopped
      • shortenCommandLine

        public static String shortenCommandLine​(weka.classifiers.Classifier cls)
        Returns a shortened commandline string for the classifier.
        Parameters:
        cls - the classifier to get the shortened commandline for
        Returns:
        the shortened commandline