Uses of Class
adams.data.instancesanalysis.pls.AbstractPLS
-
Packages that use AbstractPLS Package Description adams.data.instancesanalysis adams.data.instancesanalysis.pls weka.classifiers.functions weka.filters.supervised.attribute -
-
Uses of AbstractPLS in adams.data.instancesanalysis
Fields in adams.data.instancesanalysis declared as AbstractPLS Modifier and Type Field Description protected AbstractPLSPLS. m_Algorithmthe algorithm to use.Methods in adams.data.instancesanalysis that return AbstractPLS Modifier and Type Method Description AbstractPLSPLS. getAlgorithm()Returns the algorithm to use.Methods in adams.data.instancesanalysis with parameters of type AbstractPLS Modifier and Type Method Description voidPLS. setAlgorithm(AbstractPLS value)Sets the algorithm to use. -
Uses of AbstractPLS in adams.data.instancesanalysis.pls
Subclasses of AbstractPLS in adams.data.instancesanalysis.pls Modifier and Type Class Description classAbstractMultiClassPLSAncestor for schemes that predict multiple classes.classAbstractSingleClassPLSAncestor for schemes that predict a single class.classDIPLSDomain Invariant Partial Least Squares (DIPLS).
For more information see:
Ramin Nikzad-Langerodi, Werner Zellinger, Edwin Lughofer,, Susanne Saminger-Platz.classKernelPLSKernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space
For more information see:
Roman Rosipal, Leonard J.classNIPALSNonlinear Iterative Partial Least Squares (NIPALS).
For more information see:
scikit-learn.classOPLSOrthogonal Projections to latent structures (O-PLS).
For more informatio see:
Johan Trygg, Svante Wold (2001).classPLS1Implementation of PLS1 algorithm.
For more information see:
Tormod Naes, Tomas Isaksson, Tom Fearn, Tony Davies (2002).classPRMPartial robust M-regression (PRM).
For more information see:
Sven Serneels, Christophe Croux, Peter Filzmoser, Pierre J.Van Espen (2005).classSIMPLSImplementation of SIMPLS algorithm.
Available matrices: W, B
For more information see:
Tormod Naes, Tomas Isaksson, Tom Fearn, Tony Davies (2002).classSparsePLSNonlinear Iterative Partial Least Squares (SparsePLS).
Automatically standardizes X and Y internally.
For more information see:
Chun H, Keles S. (2010).classVCPLSVariance constrained partial least squares.
For more information see:
Xiubao Jiang, Xinge You, Shujian Yu, Dacheng Tao, C.L. -
Uses of AbstractPLS in weka.classifiers.functions
Fields in weka.classifiers.functions declared as AbstractPLS Modifier and Type Field Description protected AbstractPLSPLSRegressor. m_Algorithmthe PLS algorithmprotected AbstractPLSPLSWeighted. m_Algorithmthe PLS algorithmMethods in weka.classifiers.functions that return AbstractPLS Modifier and Type Method Description AbstractPLSPLSRegressor. getAlgorithm()Returns the PLS algorithm to use.AbstractPLSPLSWeighted. getAlgorithm()Get the PLS algorithm.protected AbstractPLSPLSRegressor. getDefaultAlgorithm()Returns the default algorithm.AbstractPLSPLSWeighted. getDefaultAlgorithm()Returns the default PLS filter.Methods in weka.classifiers.functions with parameters of type AbstractPLS Modifier and Type Method Description voidPLSRegressor. setAlgorithm(AbstractPLS value)Sets the PLS algorithm to use.voidPLSWeighted. setAlgorithm(AbstractPLS value)Set the PLS algorithm (only used for setup). -
Uses of AbstractPLS in weka.filters.supervised.attribute
Fields in weka.filters.supervised.attribute declared as AbstractPLS Modifier and Type Field Description protected AbstractPLSMultiPLS. m_Algorithmthe PLS algorithm.protected AbstractPLSPLS. m_Algorithmthe PLS algorithm.Fields in weka.filters.supervised.attribute with type parameters of type AbstractPLS Modifier and Type Field Description protected Map<String,AbstractPLS>MultiPLS. m_PLSthe PLS algorithms corresponding to the Y attributes.Methods in weka.filters.supervised.attribute that return AbstractPLS Modifier and Type Method Description AbstractPLSMultiPLS. getAlgorithm()Returns the PLS algorithm to use.AbstractPLSPLS. getAlgorithm()Returns the PLS algorithm to use.protected AbstractPLSMultiPLS. getDefaultAlgorithm()Returns the default algorithm.protected AbstractPLSPLS. getDefaultAlgorithm()Returns the default algorithm.Methods in weka.filters.supervised.attribute with parameters of type AbstractPLS Modifier and Type Method Description voidMultiPLS. setAlgorithm(AbstractPLS value)Sets the PLS algorithm to use.voidPLS. setAlgorithm(AbstractPLS value)Sets the PLS algorithm to use.
-