Package adams.flow.transformer
Class MOARegressorEvaluation
- java.lang.Object
-
- adams.core.logging.LoggingObject
-
- adams.core.logging.CustomLoggingLevelObject
-
- adams.core.option.AbstractOptionHandler
-
- adams.flow.core.AbstractActor
-
- adams.flow.transformer.AbstractTransformer
-
- adams.flow.transformer.MOARegressorEvaluation
-
- All Implemented Interfaces:
adams.core.AdditionalInformationHandler
,adams.core.CleanUpHandler
,adams.core.Destroyable
,adams.core.GlobalInfoSupporter
,adams.core.logging.LoggingLevelHandler
,adams.core.logging.LoggingSupporter
,adams.core.option.OptionHandler
,adams.core.QuickInfoSupporter
,adams.core.ShallowCopySupporter<adams.flow.core.Actor>
,adams.core.SizeOfHandler
,adams.core.Stoppable
,adams.core.StoppableWithFeedback
,adams.core.VariablesInspectionHandler
,adams.event.VariableChangeListener
,adams.flow.core.Actor
,adams.flow.core.ErrorHandler
,adams.flow.core.InputConsumer
,adams.flow.core.OutputProducer
,Serializable
,Comparable
public class MOARegressorEvaluation extends adams.flow.transformer.AbstractTransformer
Evaluates a MOA regressor using prequential evaluation. With each incoming instance, the regressor is first evaluated, then trained.
Input/output:
- accepts:
com.yahoo.labs.samoa.instances.Instance
com.yahoo.labs.samoa.instances.Instances
- generates:
moa.core.Measurement[]
-logging-level <OFF|SEVERE|WARNING|INFO|CONFIG|FINE|FINER|FINEST> (property: loggingLevel) The logging level for outputting errors and debugging output. default: WARNING
-name <java.lang.String> (property: name) The name of the actor. default: MOARegressorEvaluation
-annotation <adams.core.base.BaseAnnotation> (property: annotations) The annotations to attach to this actor. default:
-skip <boolean> (property: skip) If set to true, transformation is skipped and the input token is just forwarded as it is. default: false
-stop-flow-on-error <boolean> (property: stopFlowOnError) If set to true, the flow execution at this level gets stopped in case this actor encounters an error; the error gets propagated; useful for critical actors. default: false
-silent <boolean> (property: silent) If enabled, then no errors are output in the console; Note: the enclosing actor handler must have this enabled as well. default: false
-regressor <adams.flow.core.CallableActorReference> (property: regressor) The name of the callable MOA regressor to train/evaluate. default: MOARegressor
-evaluator <moa.options.ClassOption> (property: evaluator) The MOA evaluator to use for evaluating a trained MOA regressor. default: BasicRegressionPerformanceEvaluator
-output-interval <int> (property: outputInterval) The number of tokens to skip before evaluating the regressor stored in the token (only used when receiving Instance objects). default: 1 minimum: 1
- Author:
- fracpete (fracpete at waikato dot ac dot nz)
- See Also:
- Serialized Form
-
-
Field Summary
Fields Modifier and Type Field Description static String
BACKUP_REGRESSOR
the key for storing the current regressor in the backup.protected moa.evaluation.RegressionPerformanceEvaluator
m_ActualEvaluator
the actual evaluator to use.protected moa.classifiers.AbstractClassifier
m_ActualRegressor
the model to use for prediction/training.protected int
m_Count
the current count of tokens that have passed through this actor.protected moa.options.ClassOption
m_Evaluator
the evaluation to use.protected int
m_OutputInterval
the output interval.protected adams.flow.core.CallableActorReference
m_Regressor
the name of the callable regressor to use.-
Fields inherited from class adams.flow.transformer.AbstractTransformer
BACKUP_INPUT, BACKUP_OUTPUT, m_InputToken, m_OutputToken
-
Fields inherited from class adams.flow.core.AbstractActor
m_Annotations, m_BackupState, m_DetectedObjectVariables, m_DetectedVariables, m_ErrorHandler, m_Executed, m_Executing, m_ExecutionListeningSupporter, m_FullName, m_LoggingPrefix, m_Name, m_Parent, m_ScopeHandler, m_Self, m_Silent, m_Skip, m_StopFlowOnError, m_StopMessage, m_Stopped, m_StorageHandler, m_VariablesUpdated
-
-
Constructor Summary
Constructors Constructor Description MOARegressorEvaluation()
-
Method Summary
All Methods Instance Methods Concrete Methods Modifier and Type Method Description Class[]
accepts()
Returns the class that the consumer accepts.protected Hashtable<String,Object>
backupState()
Backs up the current state of the actor before update the variables.void
defineOptions()
Adds options to the internal list of options.protected String
doExecute()
Executes the flow item.String
evaluatorTipText()
Returns the tip text for this property.Class[]
generates()
Returns the class of objects that it generates.protected moa.evaluation.RegressionPerformanceEvaluator
getCurrentEvaluator()
Returns the current evaluator, based on the class option.protected moa.evaluation.RegressionPerformanceEvaluator
getDefaultEvaluator()
Returns the default evaluator.protected moa.options.ClassOption
getDefaultOption()
Returns the default class option.moa.options.ClassOption
getEvaluator()
Returns the evaluator in use.int
getOutputInterval()
Returns the number of tokens after which to evaluate the regressor.String
getQuickInfo()
Returns a quick info about the actor, which will be displayed in the GUI.adams.flow.core.CallableActorReference
getRegressor()
Returns the callable regressor to use.protected moa.classifiers.AbstractClassifier
getRegressorInstance()
Returns an instance of the callable regressor.String
globalInfo()
Returns a string describing the object.protected void
initialize()
Initializes the members.String
outputIntervalTipText()
Returns the tip text for this property.protected void
pruneBackup()
Removes entries from the backup.String
regressorTipText()
Returns the tip text for this property.protected void
reset()
Initializes the members.protected void
restoreState(Hashtable<String,Object> state)
Restores the state of the actor before the variables got updated.void
setEvaluator(moa.options.ClassOption value)
Sets the evaluator to use.void
setOutputInterval(int value)
Sets the number of tokens after which to evaluate the regressor.void
setRegressor(adams.flow.core.CallableActorReference value)
Sets the callable regressor to use.void
wrapUp()
Cleans up after the execution has finished.-
Methods inherited from class adams.flow.transformer.AbstractTransformer
currentInput, execute, hasInput, hasPendingOutput, input, output, postExecute
-
Methods inherited from class adams.flow.core.AbstractActor
annotationsTipText, canInspectOptions, canPerformSetUpCheck, cleanUp, compareTo, configureLogger, destroy, equals, finalUpdateVariables, findVariables, findVariables, forceVariables, forCommandLine, forName, forName, getAdditionalInformation, getAnnotations, getDefaultName, getDetectedVariables, getErrorHandler, getFlowActors, getFlowExecutionListeningSupporter, getFullName, getName, getNextSibling, getParent, getParentComponent, getPreviousSibling, getRoot, getScopeHandler, getSilent, getSkip, getStopFlowOnError, getStopMessage, getStorageHandler, getVariables, handleError, handleException, hasErrorHandler, hasStopMessage, index, isBackedUp, isExecuted, isExecuting, isFinished, isHeadless, isStopped, nameTipText, performSetUpChecks, performVariableChecks, preExecute, pruneBackup, setAnnotations, setErrorHandler, setName, setParent, setSilent, setSkip, setStopFlowOnError, setUp, setVariables, shallowCopy, shallowCopy, silentTipText, sizeOf, skipTipText, stopExecution, stopExecution, stopFlowOnErrorTipText, updateDetectedVariables, updatePrefix, updateVariables, variableChanged
-
Methods inherited from class adams.core.option.AbstractOptionHandler
cleanUpOptions, finishInit, getDefaultLoggingLevel, getOptionManager, loggingLevelTipText, newOptionManager, setLoggingLevel, toCommandLine, toString
-
Methods inherited from class adams.core.logging.LoggingObject
getLogger, getLoggingLevel, initializeLogging, isLoggingEnabled
-
Methods inherited from class java.lang.Object
clone, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface adams.flow.core.Actor
cleanUp, compareTo, destroy, equals, findVariables, getAnnotations, getDefaultName, getDetectedVariables, getErrorHandler, getFlowExecutionListeningSupporter, getFullName, getName, getNextSibling, getParent, getParentComponent, getPreviousSibling, getRoot, getScopeHandler, getSilent, getSkip, getStopFlowOnError, getStopMessage, getStorageHandler, getVariables, handleError, hasErrorHandler, hasStopMessage, index, isExecuted, isFinished, isHeadless, isStopped, setAnnotations, setErrorHandler, setName, setParent, setSilent, setSkip, setStopFlowOnError, setUp, setVariables, shallowCopy, shallowCopy, sizeOf, stopExecution, stopExecution, toCommandLine, variableChanged
-
-
-
-
Field Detail
-
BACKUP_REGRESSOR
public static final String BACKUP_REGRESSOR
the key for storing the current regressor in the backup.- See Also:
- Constant Field Values
-
m_Regressor
protected adams.flow.core.CallableActorReference m_Regressor
the name of the callable regressor to use.
-
m_ActualRegressor
protected moa.classifiers.AbstractClassifier m_ActualRegressor
the model to use for prediction/training.
-
m_Evaluator
protected moa.options.ClassOption m_Evaluator
the evaluation to use.
-
m_ActualEvaluator
protected moa.evaluation.RegressionPerformanceEvaluator m_ActualEvaluator
the actual evaluator to use.
-
m_OutputInterval
protected int m_OutputInterval
the output interval.
-
m_Count
protected int m_Count
the current count of tokens that have passed through this actor.
-
-
Method Detail
-
globalInfo
public String globalInfo()
Returns a string describing the object.- Specified by:
globalInfo
in interfaceadams.core.GlobalInfoSupporter
- Specified by:
globalInfo
in classadams.core.option.AbstractOptionHandler
- Returns:
- a description suitable for displaying in the gui
-
defineOptions
public void defineOptions()
Adds options to the internal list of options.- Specified by:
defineOptions
in interfaceadams.core.option.OptionHandler
- Overrides:
defineOptions
in classadams.flow.core.AbstractActor
-
reset
protected void reset()
Initializes the members.- Overrides:
reset
in classadams.flow.core.AbstractActor
-
initialize
protected void initialize()
Initializes the members.- Overrides:
initialize
in classadams.flow.core.AbstractActor
-
setRegressor
public void setRegressor(adams.flow.core.CallableActorReference value)
Sets the callable regressor to use.- Parameters:
value
- the regressor name
-
getRegressor
public adams.flow.core.CallableActorReference getRegressor()
Returns the callable regressor to use.- Returns:
- the regressor name
-
regressorTipText
public String regressorTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
getDefaultEvaluator
protected moa.evaluation.RegressionPerformanceEvaluator getDefaultEvaluator()
Returns the default evaluator.- Returns:
- the evaluator
-
getDefaultOption
protected moa.options.ClassOption getDefaultOption()
Returns the default class option.- Returns:
- the option
-
setEvaluator
public void setEvaluator(moa.options.ClassOption value)
Sets the evaluator to use.- Parameters:
value
- the evaluator
-
getEvaluator
public moa.options.ClassOption getEvaluator()
Returns the evaluator in use.- Returns:
- the evaluator
-
evaluatorTipText
public String evaluatorTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
getCurrentEvaluator
protected moa.evaluation.RegressionPerformanceEvaluator getCurrentEvaluator()
Returns the current evaluator, based on the class option.- Returns:
- the evaluator
- See Also:
getEvaluator()
-
setOutputInterval
public void setOutputInterval(int value)
Sets the number of tokens after which to evaluate the regressor.- Parameters:
value
- the interval
-
getOutputInterval
public int getOutputInterval()
Returns the number of tokens after which to evaluate the regressor.- Returns:
- the interval
-
outputIntervalTipText
public String outputIntervalTipText()
Returns the tip text for this property.- Returns:
- tip text for this property suitable for displaying in the GUI or for listing the options.
-
getQuickInfo
public String getQuickInfo()
Returns a quick info about the actor, which will be displayed in the GUI.- Specified by:
getQuickInfo
in interfaceadams.flow.core.Actor
- Specified by:
getQuickInfo
in interfaceadams.core.QuickInfoSupporter
- Overrides:
getQuickInfo
in classadams.flow.core.AbstractActor
- Returns:
- null if no info available, otherwise short string
-
accepts
public Class[] accepts()
Returns the class that the consumer accepts.- Returns:
- com.yahoo.labs.samoa.instances.Instance.class, com.yahoo.labs.samoa.instances.Instances.class
-
generates
public Class[] generates()
Returns the class of objects that it generates.- Returns:
- moa.core.Measurement[].class
-
pruneBackup
protected void pruneBackup()
Removes entries from the backup.- Overrides:
pruneBackup
in classadams.flow.core.AbstractActor
-
backupState
protected Hashtable<String,Object> backupState()
Backs up the current state of the actor before update the variables.- Overrides:
backupState
in classadams.flow.transformer.AbstractTransformer
- Returns:
- the backup
-
restoreState
protected void restoreState(Hashtable<String,Object> state)
Restores the state of the actor before the variables got updated.- Overrides:
restoreState
in classadams.flow.transformer.AbstractTransformer
- Parameters:
state
- the backup of the state to restore from
-
getRegressorInstance
protected moa.classifiers.AbstractClassifier getRegressorInstance()
Returns an instance of the callable regressor.- Returns:
- the classifier
-
doExecute
protected String doExecute()
Executes the flow item.- Specified by:
doExecute
in classadams.flow.core.AbstractActor
- Returns:
- null if everything is fine, otherwise error message
-
wrapUp
public void wrapUp()
Cleans up after the execution has finished.- Specified by:
wrapUp
in interfaceadams.flow.core.Actor
- Overrides:
wrapUp
in classadams.flow.transformer.AbstractTransformer
-
-