Uses of Interface
adams.core.Randomizable
-
-
Uses of Randomizable in adams.core
Subinterfaces of Randomizable in adams.core Modifier and Type Interface Description interface
OptionalRandomizable
Interface for classes that have support optional randomization. -
Uses of Randomizable in adams.data.random
Subinterfaces of Randomizable in adams.data.random Modifier and Type Interface Description interface
DistributionBasedRandomNumberGenerator<T extends Number>
Interface for distribution-based random number generators.interface
SeededRandomNumberGenerator<T extends Number>
Interface for seeded random number generators.Classes in adams.data.random that implement Randomizable Modifier and Type Class Description class
AbstractDistributionBasedRandomNumberGenerator<T extends Number>
Ancestor for distribution-based random number generators.class
AbstractSeededRandomNumberGenerator<T extends Number>
Ancestor for seeded random number generators.class
JavaRandomByte
Random generator that generates random bytes using Java's java.util.Random class.class
JavaRandomDouble
Random generator that generates random doubles (0-1) using Java's java.util.Random class.class
JavaRandomInt
Random generator that generates random integers using Java's java.util.Random class. -
Uses of Randomizable in adams.data.splitgenerator
Subinterfaces of Randomizable in adams.data.splitgenerator Modifier and Type Interface Description interface
CrossValidationFoldGenerator<I,O>
Interface for generating cross-validation folds.interface
RandomSplitGenerator<I,O>
Interface for generators of random splits of datasets.interface
SplitGenerator<I,O>
Interface for classes that generate dataset splits.interface
StratifiableSplitGenerator<I,O>
Interface for split generators that can stratify the randomized data. -
Uses of Randomizable in adams.data.splitgenerator.generic.randomization
Classes in adams.data.splitgenerator.generic.randomization that implement Randomizable Modifier and Type Class Description class
DefaultRandomization
Randomizes the data using a random number generator initialized with the seed value. -
Uses of Randomizable in adams.flow.transformer
Classes in adams.flow.transformer that implement Randomizable Modifier and Type Class Description class
SpreadSheetAnonymize
Anonymizes a range of columns in a spreadsheet.class
SpreadSheetRandomSystematicSample
Performs random systematic sampling on the rows of the incoming spreadsheet.
Divides the rows into N blocks with N being the sample size.class
WekaAttributeSelection
Performs attribute selection on the incoming data.
In case of input in form of a class adams.flow.container.WekaTrainTestSetContainer object, the train and test sets stored in the container are being used.
NB: In case of cross-validation no reduced or transformed data can get generated!
Input/output:
- accepts:
weka.core.Instances
adams.flow.container.WekaTrainTestSetContainer
- generates:
adams.flow.container.WekaAttributeSelectionContainer
Container information:
- adams.flow.container.WekaTrainTestSetContainer: Train, Test, Seed, FoldNumber, FoldCount, Train original indices, Test original indices
- adams.flow.container.WekaAttributeSelectionContainer: Train, Reduced, Transformed, Test, Test reduced, Test transformed, Evaluation, Statistics, Selected attributes, Seed, FoldCount
class
WekaBootstrapping
Performs bootstrapping on the incoming evaluation and outputs a spreadsheet where each row represents the results from bootstrapping sub-sample.class
WekaClassifierRanker
Performs a quick evaluation using cross-validation on a single dataset (or evaluation on a separate test set if the number of folds is less than 2) to rank the classifiers received on the input and forwarding the x best ones.class
WekaCrossValidationClustererEvaluator
Cross-validates a clusterer on an incoming dataset.class
WekaCrossValidationEvaluator
Cross-validates a classifier on an incoming dataset.class
WekaCrossValidationSplit
Generates train/test pairs like during a cross-validation run.class
WekaRandomSplit
Splits a dataset into a training and test set according to a specified split percentage. -
Uses of Randomizable in adams.flow.transformer.indexedsplitsrunsgenerator
Classes in adams.flow.transformer.indexedsplitsrunsgenerator that implement Randomizable Modifier and Type Class Description class
InstancesCrossValidationFoldGenerator
Split generator that generates folds for cross-validation for Instances objects.class
InstancesGroupedCrossValidationFoldGenerator
Split generator that generates folds for cross-validation for Instances objects.class
InstancesGroupedRandomSplitGenerator
Random split generator that works on Instances objects (groups instances).class
InstancesRandomSplitGenerator
Random split generator that works on Instances objects.class
ManualSplitGenerator
Uses the manually defined split ranges to generate the splits.class
SpreadSheetRandomSplitGenerator
Random split generator that works on spreadsheets. -
Uses of Randomizable in adams.flow.transformer.negativeregions
Classes in adams.flow.transformer.negativeregions that implement Randomizable Modifier and Type Class Description class
RandomRegions
Generates specified number of random regions and then prunes ones that overlap with other regions or annotations. -
Uses of Randomizable in adams.flow.transformer.preparefilebaseddataset
Classes in adams.flow.transformer.preparefilebaseddataset that implement Randomizable Modifier and Type Class Description class
AbstractRandomizableFileBasedDatasetPreparation<T>
Ancestor for schemes that randomize the files.class
CrossValidation
Generates cross-validation folds.class
GroupedCrossValidation
Generates grouped cross-validation folds.class
GroupedTrainTestSplit
Generates a train/test split using the specified grouping.class
GroupedTrainValidateTestSplit
Generates a train/validate/test split using the specified grouping.class
TrainTestSplit
Generates a train/test split.class
TrainValidateTestSplit
Generates a train/validate/test split. -
Uses of Randomizable in adams.gui.visualization.image.leftclick
Classes in adams.gui.visualization.image.leftclick that implement Randomizable Modifier and Type Class Description class
RandomBoundingBox
Allows the user to create randomly sized bounding boxes around the left-click position. -
Uses of Randomizable in adams.gui.visualization.sequence.pointpreprocessor
Classes in adams.gui.visualization.sequence.pointpreprocessor that implement Randomizable Modifier and Type Class Description class
Jitter
Adds random jitter to data points, to make it easier to see overlapping ones. -
Uses of Randomizable in adams.ml.evaluation
Classes in adams.ml.evaluation that implement Randomizable Modifier and Type Class Description class
AbstractSplitGenerator
Ancestor for helper classes that generates dataset splits.class
DefaultCrossValidationFoldGenerator
Helper class for generating cross-validation folds.class
DefaultRandomSplitGenerator
Generates random splits of datasets. -
Uses of Randomizable in adams.opt.genetic
Classes in adams.opt.genetic that implement Randomizable Modifier and Type Class Description class
AbstractClassifierBasedGeneticAlgorithm
Ancestor for genetic algorithms that evaluate classifiers.class
AbstractClassifierBasedGeneticAlgorithmWithSecondEvaluation
Ancestor for genetic algorithms that offer a second evaluation using a different seed value.class
AbstractGeneticAlgorithm
Base class for genetic algorithms.class
DarkLord
class
Hermione
Hermione.class
PackDataGeneticAlgorithm
??? -
Uses of Randomizable in adams.opt.optimise
Classes in adams.opt.optimise that implement Randomizable Modifier and Type Class Description class
RandomOptimiser
Generate random parameter values. -
Uses of Randomizable in weka.classifiers
Subinterfaces of Randomizable in weka.classifiers Modifier and Type Interface Description interface
CrossValidationFoldGenerator
Interface for generating cross-validation folds.interface
RandomSplitGenerator
Interface for generators of random splits of datasets.interface
SplitGenerator
Interface for helper classes that generate dataset splits.Classes in weka.classifiers that implement Randomizable Modifier and Type Class Description class
AbstractSplitGenerator
Ancestor for helper classes that generates dataset splits.class
BestBinnedNumericClassRandomSplitGenerator
Picks the best binning algorithm from the provided ones.class
BinnedNumericClassCrossValidationFoldGenerator
Helper class for generating cross-validation folds.class
BinnedNumericClassRandomSplitGenerator
Generates random splits of datasets with numeric classes using a binning algorithm.class
DefaultCrossValidationFoldGenerator
Helper class for generating cross-validation folds.class
DefaultRandomSplitGenerator
Generates random splits of datasets.class
GroupedBinnedNumericClassCrossValidationFoldGenerator
Helper class for generating cross-validation folds.class
GroupedBinnedNumericClassRandomSplitGenerator
Generates random splits of datasets with numeric classes using a binning algorithm.class
GroupedCrossValidationFoldGenerator
Helper class for generating cross-validation folds.class
GroupedCrossValidationFoldGeneratorUsingNumericClassValues
Helper class for generating cross-validation folds.
Uses the string representation of the numeric class values as grouping.class
GroupedRandomSplitGenerator
Generates random splits of datasets, making sure that groups of instances stay together (identified via a regexp).class
LeaveOneOutByValueGenerator
Generates train/test split pairs using the unique values from the specified attribute.class
MultiLevelSplitGenerator
Generates splits based on groups extracted via regular expressions.
-