Uses of Interface
adams.core.Randomizable
-
-
Uses of Randomizable in adams.core
Subinterfaces of Randomizable in adams.core Modifier and Type Interface Description interfaceOptionalRandomizableInterface for classes that have support optional randomization. -
Uses of Randomizable in adams.data.random
Subinterfaces of Randomizable in adams.data.random Modifier and Type Interface Description interfaceDistributionBasedRandomNumberGenerator<T extends Number>Interface for distribution-based random number generators.interfaceSeededRandomNumberGenerator<T extends Number>Interface for seeded random number generators.Classes in adams.data.random that implement Randomizable Modifier and Type Class Description classAbstractDistributionBasedRandomNumberGenerator<T extends Number>Ancestor for distribution-based random number generators.classAbstractSeededRandomNumberGenerator<T extends Number>Ancestor for seeded random number generators.classJavaRandomByteRandom generator that generates random bytes using Java's java.util.Random class.classJavaRandomDoubleRandom generator that generates random doubles (0-1) using Java's java.util.Random class.classJavaRandomIntRandom generator that generates random integers using Java's java.util.Random class. -
Uses of Randomizable in adams.data.splitgenerator
Subinterfaces of Randomizable in adams.data.splitgenerator Modifier and Type Interface Description interfaceCrossValidationFoldGenerator<I,O>Interface for generating cross-validation folds.interfacePerFoldCrossValidationFoldGenerator<I,O>Interface for cross-validation fold generators that can return the indices per fold.interfaceRandomSplitGenerator<I,O>Interface for generators of random splits of datasets.interfaceSplitGenerator<I,O>Interface for classes that generate dataset splits.interfaceStratifiableSplitGenerator<I,O>Interface for split generators that can stratify the randomized data. -
Uses of Randomizable in adams.data.splitgenerator.generic.randomization
Classes in adams.data.splitgenerator.generic.randomization that implement Randomizable Modifier and Type Class Description classDefaultRandomizationRandomizes the data using a random number generator initialized with the seed value. -
Uses of Randomizable in adams.flow.transformer
Classes in adams.flow.transformer that implement Randomizable Modifier and Type Class Description classSpreadSheetAnonymizeAnonymizes a range of columns in a spreadsheet.classSpreadSheetRandomSystematicSamplePerforms random systematic sampling on the rows of the incoming spreadsheet.
Divides the rows into N blocks with N being the sample size.classWekaAttributeSelectionPerforms attribute selection on the incoming data.
In case of input in form of a class adams.flow.container.WekaTrainTestSetContainer object, the train and test sets stored in the container are being used.
NB: In case of cross-validation no reduced or transformed data can get generated!classWekaBootstrappingPerforms bootstrapping on the incoming evaluation and outputs a spreadsheet where each row represents the results from bootstrapping sub-sample.classWekaClassifierRankerPerforms a quick evaluation using cross-validation on a single dataset (or evaluation on a separate test set if the number of folds is less than 2) to rank the classifiers received on the input and forwarding the x best ones.classWekaCrossValidationClustererEvaluatorCross-validates a clusterer on an incoming dataset.classWekaCrossValidationEvaluatorCross-validates a classifier on an incoming dataset.classWekaCrossValidationSplitGenerates train/test pairs like during a cross-validation run.classWekaRandomSplitSplits a dataset into a training and test set according to a specified split percentage. -
Uses of Randomizable in adams.flow.transformer.indexedsplitsrunsgenerator
Classes in adams.flow.transformer.indexedsplitsrunsgenerator that implement Randomizable Modifier and Type Class Description classInstancesCrossValidationFoldGeneratorSplit generator that generates folds for cross-validation for Instances objects.classInstancesGroupedCrossValidationFoldGeneratorSplit generator that generates folds for cross-validation for Instances objects.classInstancesGroupedRandomSplitGeneratorRandom split generator that works on Instances objects (groups instances).classInstancesRandomSplitGeneratorRandom split generator that works on Instances objects.classManualSplitGeneratorUses the manually defined split ranges to generate the splits.classSpreadSheetRandomSplitGeneratorRandom split generator that works on spreadsheets. -
Uses of Randomizable in adams.flow.transformer.negativeregions
Classes in adams.flow.transformer.negativeregions that implement Randomizable Modifier and Type Class Description classRandomRegionsGenerates specified number of random regions and then prunes ones that overlap with other regions or annotations. -
Uses of Randomizable in adams.flow.transformer.preparefilebaseddataset
Classes in adams.flow.transformer.preparefilebaseddataset that implement Randomizable Modifier and Type Class Description classAbstractRandomizableFileBasedDatasetPreparation<T>Ancestor for schemes that randomize the files.classCrossValidationGenerates cross-validation folds.classGroupedCrossValidationGenerates grouped cross-validation folds.classGroupedTrainTestSplitGenerates a train/test split using the specified grouping.classGroupedTrainValidateTestSplitGenerates a train/validate/test split using the specified grouping.classTrainTestSplitGenerates a train/test split.classTrainValidateTestSplitGenerates a train/validate/test split. -
Uses of Randomizable in adams.gui.visualization.image.leftclick
Classes in adams.gui.visualization.image.leftclick that implement Randomizable Modifier and Type Class Description classRandomBoundingBoxAllows the user to create randomly sized bounding boxes around the left-click position. -
Uses of Randomizable in adams.gui.visualization.sequence.pointpreprocessor
Classes in adams.gui.visualization.sequence.pointpreprocessor that implement Randomizable Modifier and Type Class Description classJitterAdds random jitter to data points, to make it easier to see overlapping ones. -
Uses of Randomizable in adams.ml.evaluation
Classes in adams.ml.evaluation that implement Randomizable Modifier and Type Class Description classAbstractSplitGeneratorAncestor for helper classes that generates dataset splits.classDefaultCrossValidationFoldGeneratorHelper class for generating cross-validation folds.classDefaultRandomSplitGeneratorGenerates random splits of datasets. -
Uses of Randomizable in adams.opt.genetic
Classes in adams.opt.genetic that implement Randomizable Modifier and Type Class Description classAbstractClassifierBasedGeneticAlgorithmAncestor for genetic algorithms that evaluate classifiers.classAbstractClassifierBasedGeneticAlgorithmWithSecondEvaluationAncestor for genetic algorithms that offer a second evaluation using a different seed value.classAbstractGeneticAlgorithmBase class for genetic algorithms.classDarkLordclassHermioneHermione.classPackDataGeneticAlgorithm??? -
Uses of Randomizable in adams.opt.optimise
Classes in adams.opt.optimise that implement Randomizable Modifier and Type Class Description classRandomOptimiserGenerate random parameter values. -
Uses of Randomizable in weka.classifiers
Subinterfaces of Randomizable in weka.classifiers Modifier and Type Interface Description interfaceCrossValidationFoldGeneratorInterface for generating cross-validation folds.interfacePerFoldCrossValidationFoldGeneratorInterface for cross-validation fold generators that can return the indices per fold.interfaceRandomSplitGeneratorInterface for generators of random splits of datasets.interfaceSplitGeneratorInterface for helper classes that generate dataset splits.Classes in weka.classifiers that implement Randomizable Modifier and Type Class Description classAbstractSplitGeneratorAncestor for helper classes that generates dataset splits.classBestBinnedNumericClassRandomSplitGeneratorPicks the best binning algorithm from the provided ones.classBinnedNumericClassCrossValidationFoldGeneratorHelper class for generating cross-validation folds.classBinnedNumericClassRandomSplitGeneratorGenerates random splits of datasets with numeric classes using a binning algorithm.classDefaultCrossValidationFoldGeneratorHelper class for generating cross-validation folds.classDefaultRandomSplitGeneratorGenerates random splits of datasets.classGroupedBinnedNumericClassCrossValidationFoldGeneratorHelper class for generating cross-validation folds.classGroupedBinnedNumericClassRandomSplitGeneratorGenerates random splits of datasets with numeric classes using a binning algorithm.classGroupedCrossValidationFoldGeneratorHelper class for generating cross-validation folds.classGroupedCrossValidationFoldGeneratorUsingNumericClassValuesHelper class for generating cross-validation folds.
Uses the string representation of the numeric class values as grouping.classGroupedRandomSplitGeneratorGenerates random splits of datasets, making sure that groups of instances stay together (identified via a regexp).classLeaveOneOutByValueGeneratorGenerates train/test split pairs using the unique values from the specified attribute.classMultiLevelSplitGeneratorGenerates splits based on groups extracted via regular expressions.
-