Uses of Interface
adams.data.binning.algorithm.BinningAlgorithm
-
Packages that use BinningAlgorithm Package Description adams.data.binning.algorithm adams.data.statistics adams.flow.transformer weka.classifiers -
-
Uses of BinningAlgorithm in adams.data.binning.algorithm
Subinterfaces of BinningAlgorithm in adams.data.binning.algorithm Modifier and Type Interface Description interfaceFixedBinWidthBinningAlgorithmInterface for binning algorithms that require a fixed bin width.interfaceFixedNumBinsBinningAlgorithmInterface for binning algorithms that require to specify the number of bins.Classes in adams.data.binning.algorithm that implement BinningAlgorithm Modifier and Type Class Description classAbstractBinningAlgorithmAncestor for binning algorithms.classAbstractEqualWidthBinningAlgorithmAncestor for algorithms that use bins with the same width.classDensityBinningPerforms density-based binning.classFreedmanDiaconisChoiceBinningThe Freedman-Diaconis' choice is based on the interquartile range.classFrequencyBinningPerforms frequency binning.classManualBinningGenerates a predefined number of equal sized bins.classNoBinningPerforms no real binning, just places all items in one bin.classRiceRuleBinningThe Rice Rule is presented as a simple alternative to Sturges's rule.classScottsNormalReferenceRuleBinningScott's normal reference rule is optimal for random samples of normally distributed data, in the sense that it minimizes the integrated mean squared error of the density estimate.classSquareRootChoiceBinningTakes the square root of the number of data points in the sample used by Excel histograms and many others) and rounds to the next integer.classSturgesFormulaBinningSturges' formula is derived from a binomial distribution and implicitly assumes an approximately normal distribution.Methods in adams.data.binning.algorithm that return BinningAlgorithm Modifier and Type Method Description BinningAlgorithmBinningAlgorithmUser. getAlgorithm()Returns the binning algorithm.Methods in adams.data.binning.algorithm with parameters of type BinningAlgorithm Modifier and Type Method Description voidBinningAlgorithmUser. setAlgorithm(BinningAlgorithm value)Sets the binning algorithm. -
Uses of BinningAlgorithm in adams.data.statistics
Fields in adams.data.statistics declared as BinningAlgorithm Modifier and Type Field Description protected BinningAlgorithmArrayBinning. m_Algorithmthe binning algorithm.Methods in adams.data.statistics that return BinningAlgorithm Modifier and Type Method Description BinningAlgorithmArrayBinning. getAlgorithm()Returns the binning algorithm.Methods in adams.data.statistics with parameters of type BinningAlgorithm Modifier and Type Method Description voidArrayBinning. setAlgorithm(BinningAlgorithm value)Sets the binning algorithm. -
Uses of BinningAlgorithm in adams.flow.transformer
Fields in adams.flow.transformer declared as BinningAlgorithm Modifier and Type Field Description protected BinningAlgorithmSpreadSheetRowBinning. m_Algorithmthe binning algorithm to use.Methods in adams.flow.transformer that return BinningAlgorithm Modifier and Type Method Description BinningAlgorithmSpreadSheetRowBinning. getAlgorithm()Returns the binning algorithm to use.Methods in adams.flow.transformer with parameters of type BinningAlgorithm Modifier and Type Method Description voidSpreadSheetRowBinning. setAlgorithm(BinningAlgorithm value)Sets the binning algorithm to use. -
Uses of BinningAlgorithm in weka.classifiers
Fields in weka.classifiers declared as BinningAlgorithm Modifier and Type Field Description protected BinningAlgorithmBinnedNumericClassCrossValidationFoldGenerator. m_Algorithmthe binning algorithm.protected BinningAlgorithmBinnedNumericClassRandomSplitGenerator. m_Algorithmthe binning algorithm.protected BinningAlgorithmGroupedBinnedNumericClassCrossValidationFoldGenerator. m_Algorithmthe binning algorithm.protected BinningAlgorithmGroupedBinnedNumericClassRandomSplitGenerator. m_Algorithmthe binning algorithm.protected BinningAlgorithm[]BestBinnedNumericClassRandomSplitGenerator. m_Algorithmsthe algorithms to evaluate.Methods in weka.classifiers that return BinningAlgorithm Modifier and Type Method Description BinningAlgorithmBinnedNumericClassCrossValidationFoldGenerator. getAlgorithm()Returns the binning algorithm.BinningAlgorithmBinnedNumericClassRandomSplitGenerator. getAlgorithm()Returns the binning algorithm.BinningAlgorithmGroupedBinnedNumericClassCrossValidationFoldGenerator. getAlgorithm()Returns the binning algorithm.BinningAlgorithmGroupedBinnedNumericClassRandomSplitGenerator. getAlgorithm()Returns the binning algorithm.BinningAlgorithm[]BestBinnedNumericClassRandomSplitGenerator. getAlgorithms()Returns the binning algorithms to choose from.Methods in weka.classifiers with parameters of type BinningAlgorithm Modifier and Type Method Description voidBinnedNumericClassCrossValidationFoldGenerator. setAlgorithm(BinningAlgorithm value)Sets the binning algorithm.voidBinnedNumericClassRandomSplitGenerator. setAlgorithm(BinningAlgorithm value)Sets the binning algorithm.voidGroupedBinnedNumericClassCrossValidationFoldGenerator. setAlgorithm(BinningAlgorithm value)Sets the binning algorithm.voidGroupedBinnedNumericClassRandomSplitGenerator. setAlgorithm(BinningAlgorithm value)Sets the binning algorithm.voidBestBinnedNumericClassRandomSplitGenerator. setAlgorithms(BinningAlgorithm[] value)Sets the binning algorithms to choose from.Constructors in weka.classifiers with parameters of type BinningAlgorithm Constructor Description BestBinnedNumericClassRandomSplitGenerator(weka.core.Instances data, BinningAlgorithm[] algorithms, double percentage)Initializes the generator.BestBinnedNumericClassRandomSplitGenerator(weka.core.Instances data, BinningAlgorithm[] algorithms, long seed, double percentage)Initializes the generator.BestBinnedNumericClassRandomSplitGenerator(weka.core.Instances data, BinningAlgorithm[] algorithms, long seed, double percentage, boolean preserveOrder)Initializes the generator.BinnedNumericClassCrossValidationFoldGenerator(weka.core.Instances data, BinningAlgorithm algorithm, int numFolds, long seed, boolean stratify)Initializes the generator.BinnedNumericClassCrossValidationFoldGenerator(weka.core.Instances data, BinningAlgorithm algorithm, int numFolds, long seed, boolean randomize, boolean stratify, String relName)Initializes the generator.BinnedNumericClassRandomSplitGenerator(weka.core.Instances data, BinningAlgorithm algorithm, double percentage)Initializes the generator.BinnedNumericClassRandomSplitGenerator(weka.core.Instances data, BinningAlgorithm algorithm, long seed, double percentage)Initializes the generator.BinnedNumericClassRandomSplitGenerator(weka.core.Instances data, BinningAlgorithm algorithm, long seed, double percentage, boolean preserveOrder)Initializes the generator.GroupedBinnedNumericClassCrossValidationFoldGenerator(weka.core.Instances data, BinningAlgorithm algorithm, int numFolds, long seed, boolean randomize, boolean stratify, BaseRegExp regExp, String group, String relName)Initializes the generator.GroupedBinnedNumericClassCrossValidationFoldGenerator(weka.core.Instances data, BinningAlgorithm algorithm, int numFolds, long seed, boolean stratify, BaseRegExp regExp, String group)Initializes the generator.GroupedBinnedNumericClassRandomSplitGenerator(weka.core.Instances data, BinningAlgorithm algorithm, double percentage, BaseRegExp regExp, String group)Initializes the generator.GroupedBinnedNumericClassRandomSplitGenerator(weka.core.Instances data, BinningAlgorithm algorithm, long seed, double percentage, boolean preserveOrder, BaseRegExp regExp, String group)Initializes the generator.GroupedBinnedNumericClassRandomSplitGenerator(weka.core.Instances data, BinningAlgorithm algorithm, long seed, double percentage, BaseRegExp regExp, String group)Initializes the generator.
-