Uses of Interface
adams.ml.data.Dataset
-
-
Uses of Dataset in adams.data.binning
Methods in adams.data.binning that return Dataset Modifier and Type Method Description static DatasetBinnableDataset. toDataset(List<Binnable<DataRow>> list)Turns a binnable list back into Rows. -
Uses of Dataset in adams.flow.container
Constructors in adams.flow.container with parameters of type Dataset Constructor Description TrainTestSetContainer(Dataset train, Dataset test)Initializes the container.TrainTestSetContainer(Dataset train, Dataset test, Long seed)Initializes the container.TrainTestSetContainer(Dataset train, Dataset test, Long seed, Integer foldNumber, Integer foldCount)Initializes the container.TrainTestSetContainer(Dataset train, Dataset test, Long seed, Integer foldNumber, Integer foldCount, int[] trainOriginal, int[] testOriginal)Initializes the container. -
Uses of Dataset in adams.ml.capabilities
Methods in adams.ml.capabilities that return Dataset Modifier and Type Method Description static DatasetCapabilitiesHelper. adjust(Dataset data, Capabilities caps)Tries to adjust the dataset to the capabilities.static DatasetCapabilitiesHelper. adjust(Dataset data, CapabilitiesHandler handler)Tries to adjust the dataset to the capabilities of the handler.Methods in adams.ml.capabilities with parameters of type Dataset Modifier and Type Method Description static DatasetCapabilitiesHelper. adjust(Dataset data, Capabilities caps)Tries to adjust the dataset to the capabilities.static DatasetCapabilitiesHelper. adjust(Dataset data, CapabilitiesHandler handler)Tries to adjust the dataset to the capabilities of the handler.static CapabilitiesCapabilitiesHelper. forDataset(Dataset data)Returns capabilities that are required for the specified dataset.static CapabilitiesCapabilitiesHelper. forDataset(Dataset data, int col)Returns capabilities that are required for the specified dataset column.static StringCapabilitiesHelper. handles(CapabilitiesHandler handler, Dataset data)Returns whether the capabilities handler handles the dataset.static StringCapabilitiesHelper. handles(Capabilities caps, Dataset data)Returns whether the capabilities can handle the dataset.static StringCapabilitiesHelper. handles(Capabilities caps, Dataset data, int col)Returns whether the capabilities can handle the dataset column. -
Uses of Dataset in adams.ml.data
Classes in adams.ml.data that implement Dataset Modifier and Type Class Description classDatasetViewProvides a view of another dataset.classDefaultDatasetExtendedDefaultSpreadSheetclass, providing additional machine learning functionality.classInstancesViewProvides a view of anInstancesobject.Fields in adams.ml.data declared as Dataset Modifier and Type Field Description protected DatasetDatasetView. m_Datasetthe underlying spreadsheet.protected DatasetDatasetInfo. m_Headerthe header.Methods in adams.ml.data that return Dataset Modifier and Type Method Description DatasetDataset. getClone()Returns a clone of itself.DatasetDatasetView. getClone()Returns a clone of itself.DatasetDefaultDataset. getClone()Returns a clone of itself.DatasetInstancesView. getClone()Returns a clone of itself.DatasetDatasetView. getDataset()Returns the underlying dataset.DatasetDataset. getHeader()Returns the a spreadsheet with the same header and comments.DatasetDatasetInfo. getHeader()Returns the header.DatasetDatasetView. getHeader()Returns the view with the same header and comments.DatasetDefaultDataset. getHeader()Returns the a spreadsheet with the same header and comments.DatasetInstancesView. getHeader()Returns the a spreadsheet with the same header and comments.static DatasetWekaConverter. toDataset(weka.core.Instances data)Converts a Weka Instances object into an ADAMS Dataset.Methods in adams.ml.data with parameters of type Dataset Modifier and Type Method Description static int[]DatasetUtils. getNumericColumns(Dataset data)Determines the numeric columns in a dataset.static List<double[]>DatasetUtils. numericToArrays(Dataset data)Turns all the numeric columns into a list of double arrays.static List<double[]>DatasetUtils. numericToArrays(Dataset data, int[] cols)Turns the specified numeric columns into a list of double arrays.static Jama.MatrixDatasetUtils. numericToJama(Dataset data)Turns all the numeric columns into a Jama Matrix.static Jama.MatrixDatasetUtils. numericToJama(Dataset data, int[] cols)Turns the specified numeric columns into a Jama Matrix.static com.github.waikatodatamining.matrix.core.MatrixDatasetUtils. numericToMatrixAlgo(Dataset data)Turns all the numeric columns into a Jama Matrix.static com.github.waikatodatamining.matrix.core.MatrixDatasetUtils. numericToMatrixAlgo(Dataset data, int[] cols)Turns the specified numeric columns into a Jama Matrix.static weka.core.InstancesWekaConverter. toInstances(Dataset data)Converts an ADAMS Dataset to Weka Instances.Constructors in adams.ml.data with parameters of type Dataset Constructor Description DatasetInfo(Dataset data)Initializes the dataset structure.DatasetView(Dataset dataset, int[] rows, int[] columns)Initializes the view. -
Uses of Dataset in adams.ml.evaluation
Fields in adams.ml.evaluation declared as Dataset Modifier and Type Field Description protected DatasetAbstractSplitGenerator. m_Datathe original dataset.Methods in adams.ml.evaluation that return Dataset Modifier and Type Method Description DatasetAbstractSplitGenerator. getData()Returns the original data.Methods in adams.ml.evaluation with parameters of type Dataset Modifier and Type Method Description voidAbstractSplitGenerator. setData(Dataset value)Sets the original data.voidDefaultCrossValidationFoldGenerator. setData(Dataset value)Sets the original data.Constructors in adams.ml.evaluation with parameters of type Dataset Constructor Description DefaultCrossValidationFoldGenerator(Dataset data, int numFolds, long seed, boolean stratify)Initializes the generator.DefaultCrossValidationFoldGenerator(Dataset data, int numFolds, long seed, boolean randomize, boolean stratify)Initializes the generator.DefaultRandomSplitGenerator(Dataset data, double percentage)Initializes the generator.DefaultRandomSplitGenerator(Dataset data, long seed, double percentage)Initializes the generator.DefaultRandomSplitGenerator(Dataset data, long seed, double percentage, boolean preserveOrder)Initializes the generator. -
Uses of Dataset in adams.ml.model
Methods in adams.ml.model with parameters of type Dataset Modifier and Type Method Description TAlgorithm. buildModel(Dataset data)Builds a model from the data.StringAlgorithm. handles(Dataset data, boolean strict)Checks whether the data can be handled.StringModel. isCompatible(Dataset data)Checks whether the dataset is compatible with the model.static StringModelHelper. isCompatible(Model model, Dataset data)Checks whether the model is compatible with the dataset.voidIncrementalAlgorithm. updateModel(T model, Dataset data)Updates the model with the given data. -
Uses of Dataset in adams.ml.model.classification
Methods in adams.ml.model.classification that return Dataset Modifier and Type Method Description protected DatasetAbstractClassifier. check(Dataset data)Performs checks on the data.protected DatasetAbstractMultiTargetClassifier. check(Dataset data)Performs checks on the data.Methods in adams.ml.model.classification with parameters of type Dataset Modifier and Type Method Description ClassificationModelAbstractClassifier. buildModel(Dataset data)Builds a model from the data.MultiTargetClassificationModelAbstractMultiTargetClassifier. buildModel(Dataset data)Builds a model from the data.protected DatasetAbstractClassifier. check(Dataset data)Performs checks on the data.protected DatasetAbstractMultiTargetClassifier. check(Dataset data)Performs checks on the data.protected abstract ClassificationModelAbstractClassifier. doBuildModel(Dataset data)Builds a model from the data.protected abstract MultiTargetClassificationModelAbstractMultiTargetClassifier. doBuildModel(Dataset data)Builds a model from the data.protected ClassificationModelWekaClassifier. doBuildModel(Dataset data)Builds a model from the data.StringAbstractClassifier. handles(Dataset data, boolean strict)Checks whether the data can be handled.StringAbstractMultiTargetClassifier. handles(Dataset data, boolean strict)Checks whether the data can be handled.StringWekaClassificationModel. isCompatible(Dataset data)Checks whether the dataset is compatible with the model.Constructors in adams.ml.model.classification with parameters of type Dataset Constructor Description WekaClassificationModel(weka.classifiers.Classifier model, Dataset data, weka.core.Instances inst)Initializes the model. -
Uses of Dataset in adams.ml.model.clustering
Methods in adams.ml.model.clustering that return Dataset Modifier and Type Method Description protected DatasetAbstractClusterer. check(Dataset data)Performs checks on the data.Methods in adams.ml.model.clustering with parameters of type Dataset Modifier and Type Method Description ClusteringModelAbstractClusterer. buildModel(Dataset data)Builds a model from the data.protected DatasetAbstractClusterer. check(Dataset data)Performs checks on the data.protected abstract ClusteringModelAbstractClusterer. doBuildModel(Dataset data)Builds a model from the data.protected ClusteringModelWekaClusterer. doBuildModel(Dataset data)Builds a model from the data.StringAbstractClusterer. handles(Dataset data, boolean strict)Checks whether the data can be handled.StringWekaClusteringModel. isCompatible(Dataset data)Checks whether the dataset is compatible with the model.Constructors in adams.ml.model.clustering with parameters of type Dataset Constructor Description WekaClusteringModel(weka.clusterers.Clusterer model, Dataset data, weka.core.Instances inst)Initializes the model. -
Uses of Dataset in adams.ml.model.regression
Methods in adams.ml.model.regression that return Dataset Modifier and Type Method Description protected DatasetAbstractMultiTargetRegressor. check(Dataset data)Performs checks on the data.protected DatasetAbstractRegressor. check(Dataset data)Performs checks on the data.Methods in adams.ml.model.regression with parameters of type Dataset Modifier and Type Method Description MultiTargetRegressionModelAbstractMultiTargetRegressor. buildModel(Dataset data)Builds a model from the data.RegressionModelAbstractRegressor. buildModel(Dataset data)Builds a model from the data.protected DatasetAbstractMultiTargetRegressor. check(Dataset data)Performs checks on the data.protected DatasetAbstractRegressor. check(Dataset data)Performs checks on the data.protected abstract MultiTargetRegressionModelAbstractMultiTargetRegressor. doBuildModel(Dataset data)Builds a model from the data.protected abstract RegressionModelAbstractRegressor. doBuildModel(Dataset data)Builds a model from the data.protected RegressionModelWekaRegressor. doBuildModel(Dataset data)Builds a model from the data.StringAbstractMultiTargetRegressor. handles(Dataset data, boolean strict)Checks whether the data can be handled.StringAbstractRegressor. handles(Dataset data, boolean strict)Checks whether the data can be handled.StringWekaRegressionModel. isCompatible(Dataset data)Checks whether the dataset is compatible with the model.Constructors in adams.ml.model.regression with parameters of type Dataset Constructor Description WekaRegressionModel(weka.classifiers.Classifier model, Dataset data, weka.core.Instances inst)Initializes the model. -
Uses of Dataset in adams.ml.preprocessing
Fields in adams.ml.preprocessing declared as Dataset Modifier and Type Field Description protected DatasetAbstractFilter. m_OutputFormatthe output format.Methods in adams.ml.preprocessing that return Dataset Modifier and Type Method Description protected abstract DatasetAbstractBatchFilter. doFilter(Dataset data)Filters the dataset coming through.protected abstract DatasetAbstractColumnSubsetBatchFilter. doFilter(Dataset data)Filters the dataset coming through.DatasetAbstractBatchFilter. filter(Dataset data)Filters the dataset coming through.DatasetAbstractColumnSubsetBatchFilter. filter(Dataset data)Filters the dataset coming through.DatasetAbstractColumnSubsetStreamFilter. filter(Dataset data)Filters the dataset coming through.DatasetAbstractStreamFilter. filter(Dataset data)Filters the dataset coming through.DatasetBatchFilter. filter(Dataset data)Filters the dataset coming through.DatasetAbstractFilter. getOutputFormat()Returns the output format.DatasetColumnSubsetFilter. getOutputFormat()Returns the output format.DatasetFilter. getOutputFormat()Returns the output format.protected abstract DatasetAbstractBatchFilter. initOutputFormat(Dataset data)Initializes the output format.protected abstract DatasetAbstractColumnSubsetBatchFilter. initOutputFormat(Dataset data)Initializes the output format.protected abstract DatasetAbstractColumnSubsetStreamFilter. initOutputFormat(Row data)Initializes the output format.protected abstract DatasetAbstractStreamFilter. initOutputFormat(Row data)Initializes the output format.Methods in adams.ml.preprocessing with parameters of type Dataset Modifier and Type Method Description protected abstract DatasetAbstractBatchFilter. doFilter(Dataset data)Filters the dataset coming through.protected abstract DatasetAbstractColumnSubsetBatchFilter. doFilter(Dataset data)Filters the dataset coming through.protected abstract voidAbstractBatchFilter. doInitFilter(Dataset data)Filter-specific initialization.protected abstract voidAbstractColumnSubsetBatchFilter. doInitFilter(Dataset data)Filter-specific initialization.DatasetAbstractBatchFilter. filter(Dataset data)Filters the dataset coming through.DatasetAbstractColumnSubsetBatchFilter. filter(Dataset data)Filters the dataset coming through.DatasetAbstractColumnSubsetStreamFilter. filter(Dataset data)Filters the dataset coming through.DatasetAbstractStreamFilter. filter(Dataset data)Filters the dataset coming through.DatasetBatchFilter. filter(Dataset data)Filters the dataset coming through.protected voidAbstractColumnSubsetFilter. initColumns(Dataset data)Initializes the columns to use for the filter.protected voidAbstractBatchFilter. initFilter(Dataset data)Initializes the filter.protected voidAbstractColumnSubsetBatchFilter. initFilter(Dataset data)Initializes the filter.protected abstract DatasetAbstractBatchFilter. initOutputFormat(Dataset data)Initializes the output format.protected abstract DatasetAbstractColumnSubsetBatchFilter. initOutputFormat(Dataset data)Initializes the output format.protected voidAbstractBatchFilter. postInitFilter(Dataset data)After the filter has been initialized.protected voidAbstractColumnSubsetBatchFilter. postInitFilter(Dataset data)After the filter has been initialized.protected voidAbstractBatchFilter. preInitFilter(Dataset data)Before the actual filter initialization.protected voidAbstractColumnSubsetBatchFilter. preInitFilter(Dataset data)Before the actual filter initialization. -
Uses of Dataset in adams.ml.preprocessing.supervised
Methods in adams.ml.preprocessing.supervised that return Dataset Modifier and Type Method Description protected DatasetPLS. doFilter(Dataset data)Filters the dataset coming through.protected DatasetPLS. initOutputFormat(Dataset data)Initializes the output format.Methods in adams.ml.preprocessing.supervised with parameters of type Dataset Modifier and Type Method Description protected DatasetPLS. doFilter(Dataset data)Filters the dataset coming through.protected voidPLS. doInitFilter(Dataset data)Filter-specific initialization.protected DatasetPLS. initOutputFormat(Dataset data)Initializes the output format. -
Uses of Dataset in adams.ml.preprocessing.unsupervised
Methods in adams.ml.preprocessing.unsupervised that return Dataset Modifier and Type Method Description protected DatasetMultiBatch. doFilter(Dataset data)Filters the dataset coming through.protected DatasetPCA. doFilter(Dataset data)Filters the dataset coming through.protected DatasetMultiBatch. initOutputFormat(Dataset data)Initializes the output format.protected DatasetMultiStream. initOutputFormat(Row data)Initializes the output format.protected DatasetPassThrough. initOutputFormat(Row data)Initializes the output format.protected DatasetPCA. initOutputFormat(Dataset data)Initializes the output format.protected DatasetSavitzkyGolay. initOutputFormat(Row data)Initializes the output format.Methods in adams.ml.preprocessing.unsupervised with parameters of type Dataset Modifier and Type Method Description protected DatasetMultiBatch. doFilter(Dataset data)Filters the dataset coming through.protected DatasetPCA. doFilter(Dataset data)Filters the dataset coming through.protected voidMultiBatch. doInitFilter(Dataset data)Filter-specific initialization.protected voidPCA. doInitFilter(Dataset data)Filter-specific initialization.protected DatasetMultiBatch. initOutputFormat(Dataset data)Initializes the output format.protected DatasetPCA. initOutputFormat(Dataset data)Initializes the output format.
-