Uses of Interface
adams.ml.data.Dataset
-
-
Uses of Dataset in adams.data.binning
Methods in adams.data.binning that return Dataset Modifier and Type Method Description static Dataset
BinnableDataset. toDataset(List<Binnable<DataRow>> list)
Turns a binnable list back into Rows. -
Uses of Dataset in adams.flow.container
Constructors in adams.flow.container with parameters of type Dataset Constructor Description TrainTestSetContainer(Dataset train, Dataset test)
Initializes the container.TrainTestSetContainer(Dataset train, Dataset test, Long seed)
Initializes the container.TrainTestSetContainer(Dataset train, Dataset test, Long seed, Integer foldNumber, Integer foldCount)
Initializes the container.TrainTestSetContainer(Dataset train, Dataset test, Long seed, Integer foldNumber, Integer foldCount, int[] trainOriginal, int[] testOriginal)
Initializes the container. -
Uses of Dataset in adams.ml.capabilities
Methods in adams.ml.capabilities that return Dataset Modifier and Type Method Description static Dataset
CapabilitiesHelper. adjust(Dataset data, Capabilities caps)
Tries to adjust the dataset to the capabilities.static Dataset
CapabilitiesHelper. adjust(Dataset data, CapabilitiesHandler handler)
Tries to adjust the dataset to the capabilities of the handler.Methods in adams.ml.capabilities with parameters of type Dataset Modifier and Type Method Description static Dataset
CapabilitiesHelper. adjust(Dataset data, Capabilities caps)
Tries to adjust the dataset to the capabilities.static Dataset
CapabilitiesHelper. adjust(Dataset data, CapabilitiesHandler handler)
Tries to adjust the dataset to the capabilities of the handler.static Capabilities
CapabilitiesHelper. forDataset(Dataset data)
Returns capabilities that are required for the specified dataset.static Capabilities
CapabilitiesHelper. forDataset(Dataset data, int col)
Returns capabilities that are required for the specified dataset column.static String
CapabilitiesHelper. handles(CapabilitiesHandler handler, Dataset data)
Returns whether the capabilities handler handles the dataset.static String
CapabilitiesHelper. handles(Capabilities caps, Dataset data)
Returns whether the capabilities can handle the dataset.static String
CapabilitiesHelper. handles(Capabilities caps, Dataset data, int col)
Returns whether the capabilities can handle the dataset column. -
Uses of Dataset in adams.ml.data
Classes in adams.ml.data that implement Dataset Modifier and Type Class Description class
DatasetView
Provides a view of another dataset.class
DefaultDataset
ExtendedDefaultSpreadSheet
class, providing additional machine learning functionality.class
InstancesView
Provides a view of anInstances
object.Fields in adams.ml.data declared as Dataset Modifier and Type Field Description protected Dataset
DatasetView. m_Dataset
the underlying spreadsheet.protected Dataset
DatasetInfo. m_Header
the header.Methods in adams.ml.data that return Dataset Modifier and Type Method Description Dataset
Dataset. getClone()
Returns a clone of itself.Dataset
DatasetView. getClone()
Returns a clone of itself.Dataset
DefaultDataset. getClone()
Returns a clone of itself.Dataset
InstancesView. getClone()
Returns a clone of itself.Dataset
DatasetView. getDataset()
Returns the underlying dataset.Dataset
Dataset. getHeader()
Returns the a spreadsheet with the same header and comments.Dataset
DatasetInfo. getHeader()
Returns the header.Dataset
DatasetView. getHeader()
Returns the view with the same header and comments.Dataset
DefaultDataset. getHeader()
Returns the a spreadsheet with the same header and comments.Dataset
InstancesView. getHeader()
Returns the a spreadsheet with the same header and comments.static Dataset
WekaConverter. toDataset(weka.core.Instances data)
Converts a Weka Instances object into an ADAMS Dataset.Methods in adams.ml.data with parameters of type Dataset Modifier and Type Method Description static int[]
DatasetUtils. getNumericColumns(Dataset data)
Determines the numeric columns in a dataset.static List<double[]>
DatasetUtils. numericToArrays(Dataset data)
Turns all the numeric columns into a list of double arrays.static List<double[]>
DatasetUtils. numericToArrays(Dataset data, int[] cols)
Turns the specified numeric columns into a list of double arrays.static Jama.Matrix
DatasetUtils. numericToJama(Dataset data)
Turns all the numeric columns into a Jama Matrix.static Jama.Matrix
DatasetUtils. numericToJama(Dataset data, int[] cols)
Turns the specified numeric columns into a Jama Matrix.static com.github.waikatodatamining.matrix.core.Matrix
DatasetUtils. numericToMatrixAlgo(Dataset data)
Turns all the numeric columns into a Jama Matrix.static com.github.waikatodatamining.matrix.core.Matrix
DatasetUtils. numericToMatrixAlgo(Dataset data, int[] cols)
Turns the specified numeric columns into a Jama Matrix.static weka.core.Instances
WekaConverter. toInstances(Dataset data)
Converts an ADAMS Dataset to Weka Instances.Constructors in adams.ml.data with parameters of type Dataset Constructor Description DatasetInfo(Dataset data)
Initializes the dataset structure.DatasetView(Dataset dataset, int[] rows, int[] columns)
Initializes the view. -
Uses of Dataset in adams.ml.evaluation
Fields in adams.ml.evaluation declared as Dataset Modifier and Type Field Description protected Dataset
AbstractSplitGenerator. m_Data
the original dataset.Methods in adams.ml.evaluation that return Dataset Modifier and Type Method Description Dataset
AbstractSplitGenerator. getData()
Returns the original data.Methods in adams.ml.evaluation with parameters of type Dataset Modifier and Type Method Description void
AbstractSplitGenerator. setData(Dataset value)
Sets the original data.void
DefaultCrossValidationFoldGenerator. setData(Dataset value)
Sets the original data.Constructors in adams.ml.evaluation with parameters of type Dataset Constructor Description DefaultCrossValidationFoldGenerator(Dataset data, int numFolds, long seed, boolean stratify)
Initializes the generator.DefaultCrossValidationFoldGenerator(Dataset data, int numFolds, long seed, boolean randomize, boolean stratify)
Initializes the generator.DefaultRandomSplitGenerator(Dataset data, double percentage)
Initializes the generator.DefaultRandomSplitGenerator(Dataset data, long seed, double percentage)
Initializes the generator.DefaultRandomSplitGenerator(Dataset data, long seed, double percentage, boolean preserveOrder)
Initializes the generator. -
Uses of Dataset in adams.ml.model
Methods in adams.ml.model with parameters of type Dataset Modifier and Type Method Description T
Algorithm. buildModel(Dataset data)
Builds a model from the data.String
Algorithm. handles(Dataset data, boolean strict)
Checks whether the data can be handled.String
Model. isCompatible(Dataset data)
Checks whether the dataset is compatible with the model.static String
ModelHelper. isCompatible(Model model, Dataset data)
Checks whether the model is compatible with the dataset.void
IncrementalAlgorithm. updateModel(T model, Dataset data)
Updates the model with the given data. -
Uses of Dataset in adams.ml.model.classification
Methods in adams.ml.model.classification that return Dataset Modifier and Type Method Description protected Dataset
AbstractClassifier. check(Dataset data)
Performs checks on the data.protected Dataset
AbstractMultiTargetClassifier. check(Dataset data)
Performs checks on the data.Methods in adams.ml.model.classification with parameters of type Dataset Modifier and Type Method Description ClassificationModel
AbstractClassifier. buildModel(Dataset data)
Builds a model from the data.MultiTargetClassificationModel
AbstractMultiTargetClassifier. buildModel(Dataset data)
Builds a model from the data.protected Dataset
AbstractClassifier. check(Dataset data)
Performs checks on the data.protected Dataset
AbstractMultiTargetClassifier. check(Dataset data)
Performs checks on the data.protected abstract ClassificationModel
AbstractClassifier. doBuildModel(Dataset data)
Builds a model from the data.protected abstract MultiTargetClassificationModel
AbstractMultiTargetClassifier. doBuildModel(Dataset data)
Builds a model from the data.protected ClassificationModel
WekaClassifier. doBuildModel(Dataset data)
Builds a model from the data.String
AbstractClassifier. handles(Dataset data, boolean strict)
Checks whether the data can be handled.String
AbstractMultiTargetClassifier. handles(Dataset data, boolean strict)
Checks whether the data can be handled.String
WekaClassificationModel. isCompatible(Dataset data)
Checks whether the dataset is compatible with the model.Constructors in adams.ml.model.classification with parameters of type Dataset Constructor Description WekaClassificationModel(weka.classifiers.Classifier model, Dataset data, weka.core.Instances inst)
Initializes the model. -
Uses of Dataset in adams.ml.model.clustering
Methods in adams.ml.model.clustering that return Dataset Modifier and Type Method Description protected Dataset
AbstractClusterer. check(Dataset data)
Performs checks on the data.Methods in adams.ml.model.clustering with parameters of type Dataset Modifier and Type Method Description ClusteringModel
AbstractClusterer. buildModel(Dataset data)
Builds a model from the data.protected Dataset
AbstractClusterer. check(Dataset data)
Performs checks on the data.protected abstract ClusteringModel
AbstractClusterer. doBuildModel(Dataset data)
Builds a model from the data.protected ClusteringModel
WekaClusterer. doBuildModel(Dataset data)
Builds a model from the data.String
AbstractClusterer. handles(Dataset data, boolean strict)
Checks whether the data can be handled.String
WekaClusteringModel. isCompatible(Dataset data)
Checks whether the dataset is compatible with the model.Constructors in adams.ml.model.clustering with parameters of type Dataset Constructor Description WekaClusteringModel(weka.clusterers.Clusterer model, Dataset data, weka.core.Instances inst)
Initializes the model. -
Uses of Dataset in adams.ml.model.regression
Methods in adams.ml.model.regression that return Dataset Modifier and Type Method Description protected Dataset
AbstractMultiTargetRegressor. check(Dataset data)
Performs checks on the data.protected Dataset
AbstractRegressor. check(Dataset data)
Performs checks on the data.Methods in adams.ml.model.regression with parameters of type Dataset Modifier and Type Method Description MultiTargetRegressionModel
AbstractMultiTargetRegressor. buildModel(Dataset data)
Builds a model from the data.RegressionModel
AbstractRegressor. buildModel(Dataset data)
Builds a model from the data.protected Dataset
AbstractMultiTargetRegressor. check(Dataset data)
Performs checks on the data.protected Dataset
AbstractRegressor. check(Dataset data)
Performs checks on the data.protected abstract MultiTargetRegressionModel
AbstractMultiTargetRegressor. doBuildModel(Dataset data)
Builds a model from the data.protected abstract RegressionModel
AbstractRegressor. doBuildModel(Dataset data)
Builds a model from the data.protected RegressionModel
WekaRegressor. doBuildModel(Dataset data)
Builds a model from the data.String
AbstractMultiTargetRegressor. handles(Dataset data, boolean strict)
Checks whether the data can be handled.String
AbstractRegressor. handles(Dataset data, boolean strict)
Checks whether the data can be handled.String
WekaRegressionModel. isCompatible(Dataset data)
Checks whether the dataset is compatible with the model.Constructors in adams.ml.model.regression with parameters of type Dataset Constructor Description WekaRegressionModel(weka.classifiers.Classifier model, Dataset data, weka.core.Instances inst)
Initializes the model. -
Uses of Dataset in adams.ml.preprocessing
Fields in adams.ml.preprocessing declared as Dataset Modifier and Type Field Description protected Dataset
AbstractFilter. m_OutputFormat
the output format.Methods in adams.ml.preprocessing that return Dataset Modifier and Type Method Description protected abstract Dataset
AbstractBatchFilter. doFilter(Dataset data)
Filters the dataset coming through.protected abstract Dataset
AbstractColumnSubsetBatchFilter. doFilter(Dataset data)
Filters the dataset coming through.Dataset
AbstractBatchFilter. filter(Dataset data)
Filters the dataset coming through.Dataset
AbstractColumnSubsetBatchFilter. filter(Dataset data)
Filters the dataset coming through.Dataset
AbstractColumnSubsetStreamFilter. filter(Dataset data)
Filters the dataset coming through.Dataset
AbstractStreamFilter. filter(Dataset data)
Filters the dataset coming through.Dataset
BatchFilter. filter(Dataset data)
Filters the dataset coming through.Dataset
AbstractFilter. getOutputFormat()
Returns the output format.Dataset
ColumnSubsetFilter. getOutputFormat()
Returns the output format.Dataset
Filter. getOutputFormat()
Returns the output format.protected abstract Dataset
AbstractBatchFilter. initOutputFormat(Dataset data)
Initializes the output format.protected abstract Dataset
AbstractColumnSubsetBatchFilter. initOutputFormat(Dataset data)
Initializes the output format.protected abstract Dataset
AbstractColumnSubsetStreamFilter. initOutputFormat(Row data)
Initializes the output format.protected abstract Dataset
AbstractStreamFilter. initOutputFormat(Row data)
Initializes the output format.Methods in adams.ml.preprocessing with parameters of type Dataset Modifier and Type Method Description protected abstract Dataset
AbstractBatchFilter. doFilter(Dataset data)
Filters the dataset coming through.protected abstract Dataset
AbstractColumnSubsetBatchFilter. doFilter(Dataset data)
Filters the dataset coming through.protected abstract void
AbstractBatchFilter. doInitFilter(Dataset data)
Filter-specific initialization.protected abstract void
AbstractColumnSubsetBatchFilter. doInitFilter(Dataset data)
Filter-specific initialization.Dataset
AbstractBatchFilter. filter(Dataset data)
Filters the dataset coming through.Dataset
AbstractColumnSubsetBatchFilter. filter(Dataset data)
Filters the dataset coming through.Dataset
AbstractColumnSubsetStreamFilter. filter(Dataset data)
Filters the dataset coming through.Dataset
AbstractStreamFilter. filter(Dataset data)
Filters the dataset coming through.Dataset
BatchFilter. filter(Dataset data)
Filters the dataset coming through.protected void
AbstractColumnSubsetFilter. initColumns(Dataset data)
Initializes the columns to use for the filter.protected void
AbstractBatchFilter. initFilter(Dataset data)
Initializes the filter.protected void
AbstractColumnSubsetBatchFilter. initFilter(Dataset data)
Initializes the filter.protected abstract Dataset
AbstractBatchFilter. initOutputFormat(Dataset data)
Initializes the output format.protected abstract Dataset
AbstractColumnSubsetBatchFilter. initOutputFormat(Dataset data)
Initializes the output format.protected void
AbstractBatchFilter. postInitFilter(Dataset data)
After the filter has been initialized.protected void
AbstractColumnSubsetBatchFilter. postInitFilter(Dataset data)
After the filter has been initialized.protected void
AbstractBatchFilter. preInitFilter(Dataset data)
Before the actual filter initialization.protected void
AbstractColumnSubsetBatchFilter. preInitFilter(Dataset data)
Before the actual filter initialization. -
Uses of Dataset in adams.ml.preprocessing.supervised
Methods in adams.ml.preprocessing.supervised that return Dataset Modifier and Type Method Description protected Dataset
PLS. doFilter(Dataset data)
Filters the dataset coming through.protected Dataset
PLS. initOutputFormat(Dataset data)
Initializes the output format.Methods in adams.ml.preprocessing.supervised with parameters of type Dataset Modifier and Type Method Description protected Dataset
PLS. doFilter(Dataset data)
Filters the dataset coming through.protected void
PLS. doInitFilter(Dataset data)
Filter-specific initialization.protected Dataset
PLS. initOutputFormat(Dataset data)
Initializes the output format. -
Uses of Dataset in adams.ml.preprocessing.unsupervised
Methods in adams.ml.preprocessing.unsupervised that return Dataset Modifier and Type Method Description protected Dataset
MultiBatch. doFilter(Dataset data)
Filters the dataset coming through.protected Dataset
PCA. doFilter(Dataset data)
Filters the dataset coming through.protected Dataset
MultiBatch. initOutputFormat(Dataset data)
Initializes the output format.protected Dataset
MultiStream. initOutputFormat(Row data)
Initializes the output format.protected Dataset
PassThrough. initOutputFormat(Row data)
Initializes the output format.protected Dataset
PCA. initOutputFormat(Dataset data)
Initializes the output format.protected Dataset
SavitzkyGolay. initOutputFormat(Row data)
Initializes the output format.Methods in adams.ml.preprocessing.unsupervised with parameters of type Dataset Modifier and Type Method Description protected Dataset
MultiBatch. doFilter(Dataset data)
Filters the dataset coming through.protected Dataset
PCA. doFilter(Dataset data)
Filters the dataset coming through.protected void
MultiBatch. doInitFilter(Dataset data)
Filter-specific initialization.protected void
PCA. doInitFilter(Dataset data)
Filter-specific initialization.protected Dataset
MultiBatch. initOutputFormat(Dataset data)
Initializes the output format.protected Dataset
PCA. initOutputFormat(Dataset data)
Initializes the output format.
-